首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Five-year-old Scots pine (Pinus sylvestris L.) seedlings were grown in open-top chambers at ambient and elevated (ambient + 400 &mgr;mol mol(-1)) CO(2) concentrations. Net photosynthesis (A), specific leaf area (SLA) and concentrations of nitrogen (N), carbon (C), soluble sugars, starch and chlorophyll were measured in current-year and 1-year-old needles during the second year of CO(2) enrichment. The elevated CO(2) treatment stimulated photosynthetic rates when measured at the growth CO(2) concentration, but decreased photosynthetic capacity compared with the ambient CO(2) treatment. Acclimation to elevated CO(2) involved decreases in carboxylation efficiency and RuBP regeneration capacity. Compared with the ambient CO(2) treatment, elevated CO(2) reduced light-saturated photosynthesis (when measured at 350 &mgr;mol mol(-1) in both treatments) by 18 and 23% (averaged over the growing season) in current-year and 1-year-old needles, respectively. We observed significant interactive effects of CO(2) treatment, needle age and time during the growing season on photosynthesis. Large seasonal variations in photosynthetic parameters were attributed to changes in needle chemistry, needle structure and feedbacks governed by whole-plant growth dynamics. Down-regulation of photosynthesis was probably a result of reduced N concentration on an area basis, although a downward shift in the relationship between photosynthetic parameters and N was also observed.  相似文献   

2.
Effects of elevated CO2 concentration ([CO2]) on carbon assimilation and needle biochemistry of fertilized and unfertilized 25-30-year-old Scots pine (Pinus sylvestris L.) trees were studied in a branch bag experiment set up in a naturally regenerated stand. In each tree, one branch was enclosed in a bag supplied with ambient [CO2] (360 micromol mol(-1)), a second branch was enclosed in a bag supplied with elevated [CO2] (680 micromol(-1)) and a control branch was left unbagged. The CO2 treatments were applied from April 15 to September 15, starting in 1993 for unfertilized trees and in 1994 for fertilized trees, which were treated with N in June 1994. Net photosynthesis, amount and activity of Rubisco, N, starch, C:N ratio and SLA of needles were measured during the growing season of 1995. Light-saturated net photosynthetic rates of 1-year-old and current-year shoots measured at ambient [CO2] were not affected by growth [CO2] or N fertilization. Elevated [CO2] reduced the amount and activity of Rubisco, and the relative proportion of Rubisco to soluble proteins and N in needles of unfertilized trees. Elevated [CO2] also reduced the chlorophyll concentration (fresh weight basis) of needles of unfertilized trees. Soluble protein concentration of needles was not affected by growth [CO2]. Elevated [CO2] decreased the Rubisco:chlorophyll ratio in unfertilized and fertilized trees. Starch concentration was significantly increased at elevated [CO2] only in 1-year-old needles of fertilized trees. Elevated [CO2] reduced needle N concentration on a dry weight or structural basis (dry weight minus starch) in unfertilized trees, resulting in an increase in needle C:N ratio. Fertilization had no effect on soluble protein, chlorophyll, Rubisco or N concentration of needles. The decrease in the relative proportions of Rubisco and N concentration in needles of unfertilized trees at elevated [CO2] indicates reallocation of N resources away from Rubisco to nonphotosynthetic processes in other plant parts. Acclimation occurred in a single branch exposed to high [CO2], despite the large sink of the tree. The responses of 1-year-old and current-year needles to elevation of growth [CO2] were similar.  相似文献   

3.
Zha T  Wang KY  Ryyppö A  Kellomäki S 《Tree physiology》2002,22(17):1241-1248
Sixteen 20-year-old Scots pine (Pinus sylvestris L.) trees growing in the field were enclosed in environment-controlled chambers that for 4 years maintained: (1) ambient conditions (CON); (2) elevated atmospheric carbon dioxide concentration [CO2] (ambient + 350 micromol mol-1; EC); (3) elevated temperature (ambient + 2-3 degrees C; ET); or (4) elevated [CO2] and temperature (EC+ET). Dark respiration rate, specific leaf area (SLA) and the concentrations of starch and soluble sugars in needles were measured in the fourth year. Respiration rates, on both an area and a mass basis, and SLA decreased in EC relative to CON, but increased in ET and EC+ET, regardless of needle age class. Starch and soluble sugar concentrations for a given needle age class increased in EC, but decreased slightly in ET and EC+ET. Respiration rates and SLA were highest in current-year needles in all treatments, whereas starch and soluble sugar concentrations were highest in 1-year-old needles. Relative to that of older needles, respiration of current-year needles was inhibited less by EC, but increased in response to ET and EC+ET. All treatments enhanced the difference in respiration between current-year and older needles relative to that in CON. Age had a greater effect on needle respiration than any of the treatments. There were no differences in carbohydrate concentration or SLA between needle age classes in response to any treatment. Relative to CON, the temperature coefficient (Q10) of respiration increased slightly in EC, regardless of age, but declined significantly in ET and EC+ET, indicating acclimation of respiration to temperature.  相似文献   

4.
Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst.) seedlings were grown for 50 days in growth chambers in an ambient or twice ambient carbon dioxide concentration ([CO2]) at a day/night temperature of 19/12 degrees C or 23/16 degrees C. Although elevated [CO2] (EC) had only slight effects on the growth parameters measured, elevated temperature (ET) increased above ground dry mass of both species. Among treatments, biomass accumulation of both species was greatest in the combined EC + ET treatment. The EC treatment induced thylakoid swelling and increased numbers of plastoglobuli observed in Scots pine needles. Although EC had little effect on Rubisco protein or N concentration of needles, ET had a large effect on N-containing compounds and enhanced N allocation from 1-year-old needles. Terpenoids were more responsive to EC and ET than total phenolics. Generally, terpene concentrations were reduced by EC and increased by ET. Increased terpenoid concentrations in response to ET might be associated with thermotolerance of photosynthesis. In Norway spruce, EC decreased total phenolic concentrations in needles, probably as a result of increased growth. We conclude that, in seedlings of these boreal species, the effects of elevated [CO2] on the studied parameters were small compared with the effects of elevated temperature.  相似文献   

5.
Sitka spruce (Picea sitchensis (Bong.) Carr.) seedlings were supplied with solutions containing nitrogen (N) at 0.1 x or 2 x the optimum rate (low-N and high-N supply, respectively) and grown either outside in a control plot or inside open-top chambers and exposed to ambient (355 &mgr;mol mol(-1)) or elevated (700 &mgr;mol mol(-1)) CO(2) concentration ([CO(2)]). Gas exchange measurements, chlorophyll determinations and nutrient analysis were made on current-year (< 1-year-old) shoots of the upper whorl after the seedlings had been growing in the [CO(2)] treatments for 17 months and the nutrient treatments for 6 months. Total seedling biomass and biomass allocation were assessed at the end of the experiment. Nutrient treatment had a significant effect on the light response curves, irrespective of [CO(2)] or chamber treatment; seedlings supplied with high-N rates had higher net photosynthetic rates than seedlings supplied with low-N rates. The degree of photosynthetic stimulation in response to elevated [CO(2)] was larger in seedlings receiving high-N rates than in seedlings receiving low-N rates. Light-saturated net photosynthesis of seedlings grown and measured in elevated [CO(2)] was 26% higher than that of seedlings grown and measured in ambient [CO(2)]. There was no significant effect of [CO(2)] or chamber treatment on the CO(2) response curves of seedlings receiving High-N supply rates. In contrast, analysis of the CO(2) response curves of seedlings receiving Low-N supply rates showed acclimation to elevated [CO(2)]. Both maximum rate of carboxylation (V(cmax)) and maximum electron transport capacity (J(max)) were lower and J(max)/V(cmax) higher in seedlings in the elevated [CO(2)] treatment. There was no effect of elevated [CO(2)] on stomatal conductance, although it was highly dependent on foliar [N], ranging from ~60 mmol m(-2) s(-1) at ~1.5 g N m(-2) to 200 mmol m(-2) s(-1) at ~5 g N m(-2). In the high-N and low-N treatments, foliar N concentration was 10 and 28% lower in seedlings grown in elevated [CO(2)] than in seedlings grown in ambient [CO(2)], respectively. There was no [CO(2)] effect on foliar phosphorus concentration ([P]). Chlorophyll concentration increased with increasing N supply in all treatments. There was no significant effect of elevated [CO(2)] on specific leaf area. Chlorophyll concentration expressed either on an area or dry mass basis for a given foliar [N] was higher in seedlings grown in elevated [CO(2)] than in seedings grown in ambient [CO(2)]. Elevated [CO(2)] increased total biomass accumulation by 37% in seedlings in the high-N treatment but had no effect in seedlings in the low-N treatment. There was a proportionally bigger allocation of biomass to roots of seedlings in the elevated [CO(2)] + low-N supply rate treatment compared with seedlings in other treatments. This resulted in a reduction in aboveground biomass compared with corresponding seedlings grown in ambient [CO(2)].  相似文献   

6.
Within-leaf variations in cell size, mitochondrial numbers and dark respiration rates were compared in the most recently expanded tip, the mid-section and base of needles of Pinus radiata D. Don trees grown for 4 years in open-top chambers at ambient (36 Pa) or elevated (65 Pa) carbon dioxide partial pressure (p(CO2)a). Mitochondrial numbers and respiratory activity varied along the length of the needle, with the highest number of mitochondria per unit cytoplasm and the highest rate of respiration per unit leaf area at the base of the needle. Regardless of the location of the cells (tip, middle or basal sections), needles collected from trees grown in elevated p(CO2)a had nearly twice the number of mitochondria per unit cytoplasm as those grown in ambient p(CO2)a. This stimulation of mitochondrial density by growth at elevated p(CO2)a was greater at the tip of the needle (2.7 times more mitochondria than in needles grown in ambient CO2) than at the base of the needle (1.7 times). The mean size of individual mitochondria was unaffected either by growth at elevated p(CO2)a or by position along the needle. Tree growth at elevated p(CO2)a had a variable effect on respiration per unit leaf area, significantly increasing respiration in the tip of the needles (+25%) and decreasing respiration at the mid-section and base of the needles (-14% and -25%, respectively). Although a simple relationship between respiration per unit leaf area and mitochondrial number per unit cytoplasm was found within each CO2 treatment, the variable effect of growth at elevated p(CO2)a on respiration along the length of the needles indicates that a more complex relationship must determine the association between structure and function in these needles.  相似文献   

7.
Pseudotsuga menziesii (Mirb.) Franco (Douglas-fir) seedlings were grown in a 2 x 2 factorial design in enclosed mesocosms at ambient temperature or 3.5 degrees C above ambient, and at ambient CO2 concentration ([CO2]) or 179 ppm above ambient. Two additional mesocosms were maintained as open controls. We measured the extent of mycorrhizal infection, foliar nitrogen (N) concentrations on both a weight basis (%N) and area basis (Narea), and foliar delta15N signatures (15N/14N ratios) from summer 1993 through summer 1997. Mycorrhizal fungi had colonized nearly all root tips across all treatments by spring 1994. Elevated [CO2] lowered foliar %N but did not affect N(area), whereas elevated temperature increased both foliar %N and Narea. Foliar delta15N was initially -1 per thousand and dropped by the final harvest to between -4 and -5 per thousand in the enclosed mesocosms, probably because of transfer of isotopically depleted N from mycorrhizal fungi. Based on the similarity in foliar delta15N among treatments, we conclude that mycorrhizal fungi had similar N allocation patterns across CO2 and temperature treatments. We combined isotopic and Narea data for 1993-94 to calculate fluxes of N for second- and third-year needles. Yearly N influxes were higher in second-year needles than in third-year needles (about 160 and 50% of initial leaf N, respectively), indicating greater sink strength in the younger needles. Influxes of N in second-year needles increased in response to elevated temperature, suggesting increased N supply from soil relative to plant N demands. In the elevated temperature treatments, N effluxes from third-year needles were higher in seedlings in elevated [CO2] than in ambient [CO2], probably because of increased N allocation below ground. We conclude that N allocation patterns shifted in response to the elevated temperature and [CO2] treatments in the seedlings but not in their fungal symbionts.  相似文献   

8.
We used whole-tree, open-top chambers to expose 13-year-old loblolly pine (Pinus taeda L.) trees, growing in soil with high or low nutrient availability, to either ambient or elevated (ambient + 200 micromol mol-1) carbon dioxide concentration ([CO2]) for 28 months. Branch growth and morphology, foliar chemistry and gas exchange characteristics were measured periodically in the upper, middle and lower crown during the 2 years of exposure. Fertilization and elevated [CO2] increased branch leaf area by 38 and 13%, respectively, and the combined effects were additive. Fertilization and elevated [CO2] differentially altered needle lengths, number of fascicles and flush length such that flush density (leaf area/flush length) increased with improved nutrition but decreased in response to elevated [CO2]. These results suggest that changes in nitrogen availability and atmospheric [CO2] may alter canopy structure, resulting in greater foliage retention and deeper crowns in loblolly pine forests. Fertilization increased foliar nitrogen concentration (N(M)), but had no consistent effect on foliar leaf mass (W(A)) or light-saturated net photosynthesis (A(sat)). However, the correlation between A(sat) and leaf nitrogen per unit area (N(A) = W(A)N(M)) ranged from strong to weak depending on the time of year, possibly reflecting seasonal shifts in the form and pools of leaf nitrogen. Elevated [CO2] had no effect on W(A), N(M) or N(A), but increased A(sat) on average by 82%. Elevated [CO2] also increased photosynthetic quantum efficiency and lowered the light compensation point, but had no effect on the photosynthetic response to intercellular [CO2], hence there was no acclimation to elevated [CO2]. Daily photosynthetic photon flux density at the upper, middle and lower canopy position was 60, 54 and 33%, respectively, of full sun incident to the top of the canopy. Despite the relatively high light penetration, W(A), N(A), A(sat) and R(d) decreased with crown depth. Although growth enhancement in response to elevated [CO2] was dependent on fertilization, [CO2] by fertilization interactions and treatment by canopy position interactions generally had little effect on the physiological parameters measured.  相似文献   

9.
To study the effects of elevated CO(2) on gas exchange, nonstructural carbohydrate and nutrient concentrations in current-year foliage of 30-year-old Norway spruce (Picea abies (L.) Karst.) trees, branches were enclosed in ventilated, transparent plastic bags and flushed with ambient air (mean 370 &mgr;mol CO(2) mol(-1); control) or ambient air + 340 &mgr;mol CO(2) mol(-1) (elevated CO(2)) during two growing seasons. One branch bag was installed on each of 24 selected trees from control and fertilized plots. To reduce the effect of variation among trees, results from each treated branch were compared with those from a control branch on the same whorl of the same tree. Elevated CO(2) increased rates of light-saturated photosynthesis on average by 55% when measured at the treatment CO(2) concentration. The increase was larger in shoots with high needle nitrogen concentrations than in shoots with low needle nitrogen concentrations. However, shoots grown in elevated CO(2) showed a decrease in photosynthetic capacity compared with shoots grown in ambient CO(2). When measured at the internal CO(2) concentration of 200 &mgr;mol CO(2) mol(-1), photosynthetic rates of branches in the elevated CO(2) treatments were reduced by 8 to 32%. The elevated CO(2) treatment caused a 9 to 20% reduction in carboxylation efficiency and an 18% increase in respiration rates. In response to elevated CO(2), starch, fructose and glucose concentrations in the needles increased on average 33%, whereas concentrations of potassium, nitrogen, phosphorus, magnesium and boron decreased. Needle nitrogen concentrations explained 50-60% of the variation in photosynthesis and CO(2) acclimation was greater at low nitrogen concentrations than at high nitrogen concentrations. We conclude that the enhanced photosynthetic rates found in shoots exposed to elevated CO(2) increased carbohydrate concentrations, which may have a negative feedback on the photosynthetic apparatus and stimulate cyanide-resistant respiration. We also infer that the decrease in nutrient concentrations of needles exposed to elevated CO(2) was the result of retranslocation of nutrients to other parts of the branch or tree.  相似文献   

10.
To study the responses of Scots pine (Pinus sylvestris L.), a commercially important tree species in Europe, to future increases in atmospheric CO2 concentration ([CO2]), we grew saplings for 4 years in the ground in open-top chambers in ambient or ambient + 400 micromol mol(-1) CO2, without supplemental addition of nutrients and water. Carbon (C) budgets were developed for trees in both CO2 treatments based on productivity and biomass data obtained from destructive harvests at the end of the third and fourth years of treatment, and simulations of annual gross photosynthesis (P(tot)) and maintenance respiration by the model MAESTRA. Simulated P(tot) was enhanced by elevated [CO2], despite significant down-regulation of photosynthetic capacity. The subsequent increase in C uptake was allocated primarily to tissues with limited longevity (needles and fine roots), which explains why the measured annual increment in woody biomass did not differ between CO2 treatments. Thus, our results suggest that accelerated stem growth only occurs in the first 2 years in the presence of elevated [CO2] and that forest rotations will not be shortened significantly in response to increasing [CO2]. In elevated [CO2], a higher proportion of available C was allocated below ground, resulting in altered biomass distribution patterns. In trees of equal size, measured ratios of fine root/needle biomass and belowground/aboveground biomass were almost twice as large in the elevated [CO2] treatment. Although there are uncertainties in scaling from saplings to mature canopies, the data indicate that, in nutrient-limited Scots pine forests, elevated [CO2] is unlikely to accelerate tree growth significantly, but is likely to increase C inputs to soil.  相似文献   

11.
Naturally regenerated 20-25-year-old Scots pine (Pinus sylvestris L.) trees were grown in open-top chambers in the presence of an elevated temperature or CO(2) concentration, or both. The elevated temperature treatment was administered year-round for 3 years. The CO(2) treatment was applied between April 15 and September 15 for 2 years. The photosynthetic responses of 1- and 2-year-old needles to varying photon flux densities (0-1500 micro mol m(-2) s(-1)) and CO(2) concentrations (350, 700 and 1400 micro mol mol(-1)) during measurement were determined. The CO(2) treatment alone increased maximum photosynthetic rate and light-use efficiency, but decreased dark respiration rate, light compensation and light saturation regardless of needle age. In contrast, the temperature treatment decreased maximum photosynthetic rate and photosynthetic efficiency, but increased dark respiration rate, light compensation and light saturation. The aging of needles affected the photosynthetic performance of the shoots; values of all parameters except photosynthetic efficiency were less in 2- than in 1-year-old needles. The CO(2) treatment decreased and the temperature treatment enhanced the reduction in maximum photosynthesis due to needle aging.  相似文献   

12.
Liu L  King JS  Giardina CP 《Tree physiology》2005,25(12):1511-1522
Human activities are increasing the concentrations of atmospheric carbon dioxide ([CO2]) and tropospheric ozone ([O3]), potentially leading to changes in the quantity and chemical quality of leaf litter inputs to forest soils. Because the quality and quantity of labile and recalcitrant carbon (C) compounds influence forest productivity through changes in soil organic matter content, characterizing changes in leaf litter in response to environmental change is critical to understanding the effects of global change on forests. We assessed the independent and combined effects of elevated [CO2] and elevated [O3] on foliar litter production and chemistry in aspen (Populus tremuloides Michx.) and birch-(Betula papyrifera Marsh.) aspen communities at the Aspen free-air CO2 enrichment (FACE) experiment in Rhinelander, WI. Litter was analyzed for concentrations of C, nitrogen (N), soluble sugars, lipids, lignin, cellulose, hemicellulose and C-based defensive compounds (soluble phenolics and condensed tannins). Concentrations of these chemical compounds in naturally senesced litter were similar in aspen and birch-aspen communities among treatments, except for N, the C:N ratio and lipids. Elevated [CO2] significantly increased C:N (+8.7%), lowered mean litter N concentration (-10.7%) but had no effect on the concentrations of soluble sugars, soluble phenolics and condensed tannins. Elevated [CO2] significantly increased litter biomass production (+33.3%), resulting in significant increases in fluxes of N, soluble sugars, soluble phenolics and condensed tannins to the soil. Elevated [O3] significantly increased litter concentrations of soluble sugars (+78.1%), soluble phenolics (+53.1%) and condensed tannins (+77.2%). There were no significant effects of elevated [CO2] or elevated [O3] on the concentrations of individual C structural carbohydrates (cellulose, hemicellulose and lignin). Elevated [CO2] significantly increased cellulose (+37.4%) input to soil, whereas elevated [O3] significantly reduced hemicellulose and lignin inputs to soil (-22.3 and -31.5%, respectively). The small changes in litter chemistry in response to elevated [CO2] and tropospheric [O3] that we observed, combined with changes in litter biomass production, could significantly alter the inputs of N, soluble sugars, condensed tannins, soluble phenolics, cellulose and lignin to forest soils in the future.  相似文献   

13.
Effects of elevated concentrations of carbon dioxide ([CO2]) and ozone ([O3]) on photosynthesis and related biochemistry of two European silver birch (Betula pendula Roth) clones were studied under field conditions during 1999-2001. Seven-year-old trees of Clones 4 and 80 were exposed for 3 years to the following treatments in an open-top chamber experiment: outside control (OC), chamber control (CC), 2x ambient [CO2] (EC), 2x ambient [O3] (EO) and 2x ambient [CO2] + 2x ambient [O3] (EC+EO). During the experiment, gas exchange, chlorophyll fluorescence, amount and activity of Rubisco, concentrations of chlorophyll, soluble protein, soluble sugars, starch, nitrogen (N) and carbon:nitrogen (C:N) ratio were determined in short- and long-shoot leaves. Elevated [CO2] increased photosynthetic rate by around 30% when measurements were made at the growth [CO2]. When measured at ambient [CO2], photosynthesis was around 15% lower in EC trees than in CC trees. This was related to a approximately 10% decrease in total leaf N, to 26 and 20% decreases in the amount and activity of Rubisco, respectively, and to a 49% increase in starch concentration in elevated [CO2]. Elevated [O3] had no significant effect on gas exchange parameters and its effect on biochemistry was small in both clones. However, elevated [O3] decreased the proportion of Rubisco in total soluble proteins and the apparent quantum yield of photosystem II (PSII) photochemistry in light and increased non-photochemical quenching in 2000. The interactive effect of CO2 and O3 was variable. Elevated [O3] decreased chlorophyll concentration only in EO trees, and the EC+EO treatment decreased the total activity of Rubisco and increased the C:N ratio more than the EO treatment alone. The small effect of elevated [O3] on photosynthesis indicates that these young silver birches were fairly tolerant to annual [O3] exposures that were 2-3 times higher than the AOT40 value of 10 ppm.h. set as a critical dose for forest trees.  相似文献   

14.
To investigate whether long-term elevated carbon dioxide concentration ([CO(2)]) causes declines in photosynthetic enhancement and leaf nitrogen (N) owing to limited soil fertility, we measured photosynthesis, carboxylation capacity and area-based leaf nitrogen concentration (N(a)) in Pinus taeda L. growing in a long-term free-air CO(2) enrichment (FACE) facility at an N-limited site. We also determined how maximum rates of carboxylation (V(cmax)) and electron transport (J(max)) varied with N(a) under elevated [CO(2)]. In trees exposed to elevated [CO(2)] for 5 to 9 years, the slope of the relationship between leaf photosynthetic capacity (A(net-Ca)) and N(a) was significantly reduced by 37% in 1-year-old needles, whereas it was unaffected in current-year needles. The slope of the relationships of both V(cmax) and J(max) with N(a) decreased in 1-year-old needles after up to 9 years of growth in elevated [CO(2)], which was accompanied by a 15% reduction in N allocation to the carboxylating enzyme. Nitrogen fertilization (110 kg N ha(-1)) in the ninth year of exposure to elevated [CO(2)] restored the slopes of the relationships of V(cmax) and J(max) with N(a) to those of control trees (i.e., in ambient [CO(2)]). The J(max):V(cmax) ratio was unaffected by either [CO(2)] or N fertilization. Changes in the apparent allocation of N to photosynthetic components may be an important adjustment in pines exposed to elevated [CO(2)] on low-fertility sites. We conclude that fundamental relationships between photosynthesis or its component processes with N(a) may be altered in aging pine needles after more than 5 years of exposure to elevated atmospheric [CO(2)].  相似文献   

15.
We studied the effects of elevated concentrations of carbon dioxide ([CO2]) and ozone ([O3]) on growth, biomass allocation and leaf area of field-grown O3-tolerant (Clone 4) and O3-sensitive clones (Clone 80) of European silver birch (Betula pendula Roth) trees during 1999-2001. Seven-year-old trees of Clones 4 and 80 growing outside in open-top chambers were exposed for 3 years to the following treatments: outside control (OC); chamber control (CC); 2 x ambient [CO2] (EC); 2 x ambient [O3] (EO); and 2 x ambient [CO2] + 2 x ambient [O3] (EC+EO). When the results for the two clones were analyzed together, elevated [CO2] increased tree growth and biomass, but had no effect on biomass allocation. Total leaf area increased and leaf abscission was delayed in response to elevated [CO2]. Elevated [O3] decreased dry mass of roots and branches and mean leaf size and induced earlier leaf abscission in the autumn; otherwise, the effects of elevated [O3] were small across the clones. However, there were significant interactions between elevated [CO2] and elevated [O3]. When results for the clones were analyzed separately, stem diameter, volume growth and total biomass of Clone 80 were increased by elevated [CO2] and the stimulatory effects of elevated [CO2] on stem volume growth and total leaf area increased during the 3-year study. Clone 80 was unaffected by elevated [O3]. In Clone 4, elevated [O3] decreased root and branch biomass by 38 and 29%, respectively, whereas this clone showed few responses to elevated [CO2]. Elevated [CO2] significantly increased total leaf area in Clone 80 only, which may partly explain the smaller growth responses to elevated [CO2] of Clone 4 compared with Clone 80. Although we observed responses to elevated [O3], the responses to the EC+EO and EC treatments were similar, indicating that the trees only responded to elevated [O3] under ambient [CO2] conditions, perhaps reflecting a greater quantity of carbohydrates available for detoxification and repair in elevated [CO2].  相似文献   

16.
Photosynthesis of tree seedlings is generally enhanced during short-term exposure to elevated atmospheric CO2 partial pressure, but longer-term studies often indicate some degree of photosynthetic adjustment. We present physiological and biochemical evidence to explain observed long-term photosynthetic responses to elevated CO2 partial pressure as influenced by needle age and canopy position. We grew Pinus radiata D. Don. trees in open-top chambers for 5 years in sandy soil at ambient (36 Pa) and elevated (65 Pa) CO2 partial pressures. The trees were well watered and exposed to natural light and ambient temperature. In the fourth year of CO2 exposure (fall 1997), when foliage growth had ceased for the year, photosynthetic down-regulation was observed in 1-year-old needles, but not in current-year needles, suggesting a reduction in carbohydrate sink strength as a result of increasing needle age (Turnbull et al. 1998). In 5-year-old trees (spring 1997), when foliage expansion was occurring, photosynthetic down-regulation was not observed, reflecting significantly large sinks for carbohydrates throughout the tree. Net photosynthesis was stimulated by 79% in trees growing in elevated CO2 partial pressure, but there was no significant effect on photosynthetic capacity or Rubisco activity and concentration. Current-year needles were more responsive to elevated CO2 partial pressure than 1-year-old needles, exhibiting larger relative increases in net photosynthesis to elevated CO2 partial pressure (98 versus 64%). Lower canopy and upper canopy leaves exhibited similar relative responses to growth in elevated CO2 partial pressure. However, needles in the upper canopy exhibited higher net photosynthesis, photosynthetic capacity, and Rubisco activity and concentration than needles in the lower canopy. Given that the ratio of mature to juvenile foliage mass in the canopy will increase as trees mature, we suggest that trees may become less responsive to elevated CO2 partial pressure with increasing age. We conclude that tree response to elevated CO2 partial pressure is based primarily on sink strength and not on the duration of exposure.  相似文献   

17.
We evaluated the response of Japanese larch (Larix kaempferi Sieb. & Zucc.) to elevated atmospheric CO(2) concentration ([CO(2)]) (689 +/- 75 ppm in 2002 and 697 +/- 90 ppm in 2003) over 2 years in a field experiment with open-top chambers. Root activity was assessed as nitrogen, phosphorus and potassium uptake rates estimated from successive measurements of absorbed amounts. Dry matter production of whole plants was unaffected by elevated [CO(2)] in the first year of treatment, but increased significantly in response to elevated [CO(2)] in the second year. In contrast, elevated [CO(2)] increased the root to shoot ratio and fine root dry mass in the first year, but not in the second year. Elevated [CO(2)] had no effect on tissue N, P and K concentrations. Uptake rates of N, P and K correlated with whole-plant relative growth rates, but were unaffected by growth [CO(2)], as was ectomycorrhizal colonization, a factor assumed to be important for nutrient uptake in trees. We conclude that improved growth of Larix kaempferi in response to elevated [CO(2)] is accompanied by increased root biomass, but not by increased root activity.  相似文献   

18.
The hybrid larch F(1) (Larix gmelinii var. japonica × Larix kaempferi) is considered one of the most important tree species not only for timber production but also as an afforestation material for severe conditions such as infertile soil. To predict the ability of hybrid larch F(1) as an afforestation material under potential climates in the future, it is important to understand the response of hybrid larch F(1) to elevated CO(2) concentration ([CO(2)]) under low nutrient availability. Three-year-old seedlings of hybrid larch F(1) were grown under two different levels of [CO(2)], 360 (ambient) and 720 μmol mol(-1) (elevated), in combination with two different levels of nitrogen (N) supply (0 and 30 kg ha(-1)) for one growing season. Elevated [CO(2)] reduced the maximum rates of carboxylation and electron transport in the needles. Net photosynthetic rates at growth [CO(2)] (i.e., 360 and 720 μmol mol(-1) for ambient and elevated treatment, respectively) did not differ between the two CO(2) treatments. Reductions in N content and N use efficiency to perform photosynthetic functions owing to the deficiency of nutrients other than N, such as P and K, and/or increase in cell wall mass were considered factors of photosynthetic down-regulation under elevated [CO(2)], whereas stomatal closure little affected the photosynthetic down-regulation. Although we observed strong down-regulation of photosynthesis, the dry matter increase of hybrid larch F(1) seedlings was enhanced under elevated [CO(2)]. This is mainly attributable to the increase in the amount of needles on increasing the number of sylleptic branches. These results suggest that elevated CO(2) may increase the growth of hybrid larch F(1) even under low nutrient availability, and that this increase may be regulated by changes in both crown architecture and needle photosynthesis, which is mainly affected not by stomatal limitation but by biochemical limitation.  相似文献   

19.
We exposed Populus tremuloides Michx. and Acer saccharum Marsh. to a factorial combination of ambient and elevated atmospheric CO2 concentrations ([CO2]) and high-nitrogen (N) and low-N soil treatments in open-top chambers for 3 years. Our objective was to compare photosynthetic acclimation to elevated [CO2] between species of contrasting shade tolerance, and to determine if soil N or shading modify the acclimation response. Sun and shade leaf responses to elevated [CO2] and soil N were compared between upper and lower canopy leaves of P. tremuloides and between A. saccharum seedlings grown with and without shading by P. tremuloides. Both species had higher leaf N concentrations and photosynthetic rates in high-N soil than in low-N soil, and these characteristics were higher for P. tremuloides than for A. saccharum. Electron transport capacity (Jmax) and carboxylation capacity (Vcmax) generally decreased with atmospheric CO2 enrichment in all 3 years of the experiment, but there was no evidence that elevated [CO2] altered the relationship between them. On a leaf area basis, both Jmax and Vcmax acclimated to elevated [CO2] more strongly in shade leaves than in sun leaves of P. tremuloides. However, the apparent [CO2] x shade interaction was largely driven by differences in specific leaf area (m2 g-1) between sun and shade leaves. In A. saccharum, photosynthesis acclimated more strongly to elevated [CO2] in sun leaves than in shade leaves on both leaf area and mass bases. We conclude that trees rooted freely in the ground can exhibit photosynthetic acclimation to elevated [CO2], and the response may be modified by light environment. The hypothesis that photosynthesis acclimates more completely to elevated [CO2] in shade-tolerant species than in shade-intolerant species was not supported.  相似文献   

20.
Soil nitrogen can alter storage and remobilization of carbon and nitrogen in forest trees and affect growth responses to elevated carbon dioxide concentration ([CO(2)]). We investigated these effects in oak saplings (Quercus robur L.) exposed for two years to ambient or twice ambient [CO(2)] in combination with low- (LN, 0.6 mmol N l(-1)) or high-nitrogen (HN, 6.1 mmol N l(-1)) fertilization. Autumn N retranslocation efficiency from senescing leaves was less in HN saplings than in LN saplings, but about 15% of sapling N was lost to the litter. During the dormant season, nonstructural carbohydrates made up 20 to 30% of the dry mass of perennial organs. Starch was stored mainly in large roots where it represented 35-46% of dry mass. Accumulation of starch increased in large roots in response to LN but was unaffected by elevated [CO(2)]. The HN treatment resulted in high concentrations of N-soluble compounds, and this effect was reduced by elevated [CO(2)], which decreased soluble protein N (-17%) and amino acid N (-37%) concentrations in the HN saplings. Carbon and N reserves were labeled with (13)C and (15)N, respectively, at the end of the first year. In the second year, about 20% of labeled C and 50% of labeled N was remobilized for spring growth in all treatments. At the end of leaf expansion, 50-60% of C in HN saplings originated from assimilation versus only 10-20% in LN saplings. In HN saplings only, N uptake occurred, and some newly assimilated N was allocated to new shoots. Through effects on the C and N content of perennial organs, elevated [CO(2)] and HN increased remobilization capacity, thereby supporting multiple shoot flushes, which increased leaf area and subsequent C acquisition in a positive feedback loop.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号