首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 867 毫秒
1.
Diets with 50 (SPC50), 65 (SPC65) and 80 % (SPC80) substitution of prime fish meal (FM) with soy protein concentrate (SPC) were evaluated against a commercial type control feed with 35 % FM replacement with SPC. Increases in dietary SPC were combined with appropriate increases in methionine, lysine and threonine supplementation, whereas added phosphorus was constant among treatments. Diets were administered to quadruplicate groups of 29 g juvenile Atlantic salmon were exposed to constant light, for 97 days. On Day 63 salmon were subjected to vaccination. Significant weight reductions in SPC65 and SPC80 compared with SPC35 salmon were observed by Day 97. Linear reductions in body cross-sectional ash, Ca/P ratios, and Ca, P, Mn and Zn were observed at Days 63 (prior vaccination) and 97 (34 days post-vaccination), while Mg presented a decrease at Day 63, in salmon fed increasing dietary SPC. Significant reductions in Zn, Ca, P and Ca/P ratios persisted in SPC65 and SPC80 compared with SPC35 salmon at Day 97. Significant haematocrit reductions in SPC50, SPC65 and SPC80 salmon were observed at Days 63, 70 and 97. Enhanced plasma haemolytic activity, increased total IgM, and a rise in thrombocytes were demonstrated in SPC50 and SPC65 salmon on Day 97, while increased lysozyme activity was demonstrated for these groups on Days 63, 70 and 97. Leucocyte and lymphocyte counts revealed enhanced immunostimulation in salmon fed with increasing dietary SPC at Day 97. High SPC inclusion diets did not compromise the immune responses of salmon, while SPC50 diet also supported good growth without compromising elemental concentrations.  相似文献   

2.
An 8‐week feeding trial was conducted to compare the effects of dietary protein sources on nutrient digestibility and digestive enzyme activity. Four experimental diets were formulated to contain one of the following as the sole protein source: fish meal (FM), fish protein concentrate (FPC), soy protein concentrate (SPC) and soy protein isolate (SPI). Each diet was randomly assigned to triplicate aquaria stocked with 25 Japanese flounder (Paralichthys olivaceus) each. The dry matter, crude protein and energy digestibility and individual amino acid availability of the SPC‐based diet were significantly lower than those of the other diets. The crude lipid digestibility of soy protein‐based diets was significantly lower than that of the FM‐based diet. The pepsin/protease activity was significantly higher in fish fed fish protein‐based diets compared with fish fed soy protein‐based diets. The lipase activity in fish fed the SPI‐based diet was the highest among the dietary treatments. These results indicate that P. olivaceus can effectively digest the protein from FPC and SPI (but not SPC) as well as FM. The low protein digestibility and amino acid availability of the SPC‐based diet may be related to the non‐protein compounds present in SPC, whereas the low‐lipid digestibility of soy protein‐based diets may contribute to the undigested soy protein fractions and/or the alcohol‐soluble components.  相似文献   

3.
An experiment with 0.2‐kg Atlantic salmon, Salmo salar in saltwater was conducted to determine if the fish could grow normally, and maintain normal nitrogen (N) and mineral balance when fed a diet with the majority of the protein (75%) derived from soy‐protein concentrate (SPC). The two diets contained 50% SPC and 15% fish meal (FM) or 60% FM as the sources of protein. No calcium phosphate was added to the diets in order to assess the availability of P from the ingredients. A second aim was to investigate if whole‐body concentrations of essential elements and growth were related in individual salmon. Growth (SGR=0.88–0.89) was similar in salmon fed the two diets, and the fish nearly doubled their body weights during the 84 days of feeding. Feed conversion was more efficient for the FM diet (0.81 kg intake kg?1 gain) than for the SPC diet (0.89 kg kg?1). The intake of N was similar, faecal loss of N was lower, while the metabolic N excretion was greater in the fish fed the FM than the SPC diet. This resulted in a total excretion of 35.4 g N kg?1 gain for the salmon fed the FM diet and 35.5 g N for the fish fed the SPC diet. Both the intake, faecal and metabolic excretion of P were higher in the fish fed the FM diet than the SPC diet, resulting in a total excretion of 10.5 g P kg?1 gain for the FM diet and 7.2 g P for the SPC diet. Whole‐body concentrations of Ca, Mg, P and Zn were lower in the fish fed the SPC diet, while the Ca–P ratio was decreased, both when compared with the fish at the start of the experiment, and the fish fed the FM diet. The differences in elemental composition were ascribed to a combination of reduced availability of elements due to phytic acid and lower concentration of elements in the SPC than in the FM. No reduction in growth of individual fish, which could be ascribed to reduced availability of essential elements, was seen.  相似文献   

4.
Barley protein concentrate (BPC) was tested as a protein source in the diets of Atlantic salmon post‐smolts. Fish were fed one of four experimental diets consisting of a fish meal/soya protein concentrate control (CT) along with two feeds supplemented with increasing levels of BPC replacing the more costly SPC. A fourth diet partially replaced FM in the high BPC diet with a liquid fish protein concentrate (FPC) made from fish trimmings. No significant differences were observed in terms of growth at the end of the 12‐week feeding period, although the protein efficiency ratio (g gain g?1 protein consumed) was significantly lower for the control compared to fish fed diets containing either BPC only or FPC and BPC. This suggests that diets containing BPC had a beneficial effect when compared to the control diet. Furthermore, the lack of any detriment to fish growth in diets containing BPC suggests there are no significant issues regarding any negative effects of potential antinutritional factors which can otherwise be the case with other plant origin products. The data presented in this study indicate that BPC and FPC are products which could be of benefit to salmon culture, and related species, in providing a valuable new raw material to the industry.  相似文献   

5.
We determined the effects of complete fishmeal (FM) replacement by alternative protein (soy protein concentrate, SPC) with guanosine monophosphate (GMP) supplementation on growth, digestibility, immunity, blood chemistry profile, and stress resistance of juvenile red sea bream, Pagrus major. FM protein of a FM-based control diet (FM0) was replaced with 33.3 (FM33.3), 66.6 (FM66.7), and 100% (FM100) by SPC protein, and each replacement group was supplemented with 0.4% GMP to formulate four experimental diets. Each diet was randomly allocated to triplicate groups of fish (4.8 g) for 56 days. Results demonstrated that fish fed diet group FM33.3 had the significantly highest final weight, weight gain-specific growth rate, and feed intake. Meanwhile, in comparison to control, growth performance and feed utilization did not significantly differ with 66.7% FM replacement by SPC with GMP supplementation. Apparent digestibility coefficient of protein and lipid also followed a similar trend. All growth, feed utilization, and digestibility parameters were significantly lower in FM100 diet group. Blood urea nitrogen (BUN) and triglycerides (TG) increased (P < 0.05) with increasing FM replacement level by SPC. Interestingly, total cholesterol level reduces with the increasing level of FM replacement by SPC with GMP supplementation. Fish fed FM0 diet group showed the best condition of both oxidative and freshwater stress resistance. Meanwhile, FM33.3 and FM66.7 diet groups showed acceptable conditions. Innate immune responses enhanced with the increasing FM replacement level by SPC with GMP supplementation. In conclusion, FM could be replaced ≤66.7% by SPC with GMP supplementation in diets for red sea bream without any adverse effects on fish performances.  相似文献   

6.
A feeding trial was conducted to compare the effects of supplemental cholesterol in fish meal (FM), fish protein concentrate (FPC), soy protein isolate (SPI) and soy protein concentrate (SPC)‐based diets on growth performance and plasma lipoprotein levels of Japanese flounder (Paralichthys olivaceus). Eight isonitrogenous and isocaloric diets including FM, FPC, SPI or SPC as sole protein source with or without supplementation with 10 g cholesterol kg?1 diet were fed to juvenile fish for 8 weeks. Dietary cholesterol supplementation significantly increased the feed intake and specific growth rate in fish fed SPI‐based diets, but decreased those in fish fed FPC‐based diets. In addition, cholesterol supplementation significantly increased the level of cholesterol and ratio of low‐density lipoprotein cholesterol to high‐density lipoprotein cholesterol in plasma of fish fed fish protein‐based diets, whereas no effects were observed in fish fed soy protein‐based diets. The hepatic lipid content of fish fed FPC‐, SPI‐ or SPC‐based diets were significantly increased by supplemental cholesterol, but no influence was observed in fish fed FM‐based diets. These results suggested that dietary protein source modify the growth‐stimulating action of cholesterol; cholesterol supplementation may increase the arteriosclerotic lesion in fish fed fish protein‐based diets and the incidence of fatty liver in fish fed soy protein‐based diets.  相似文献   

7.
The effects of partial replacement of fish meal (FM) with meal made from northern krill (Thysanoessa inermis), Antarctic krill (Euphausia superba) or Arctic amphipod (Themsto libellula) as protein source in the diets for Atlantic salmon (Salmo salar L.) and Atlantic halibut (Hippoglossus hippoglossus L.) on growth, feed conversion, macro‐nutrient utilization, muscle chemical composition and fish welfare were studied. Six experimental diets were prepared using a low‐temperature FM diet as control. The other diets included northern krill where 20, 40 or 60% of the dietary FM protein was replaced with protein from northern krill, and two diets where the FM protein was replaced with protein from Antarctic krill or Arctic amphipod at 40% protein replacement level. All diets were iso‐nitrogenous and iso‐caloric. Atlantic salmon grew from 410 g to approximately 1500 g during the 160 day experiment, and Atlantic halibut grew from 345 g to 500–600 g during the 150 day experiment. Inclusion of krill in the diets enhanced specific growth rate in salmon, especially during the first 100 days (P < 0.01), and in a dose–response manner in halibut for over the 150 day feeding period (P < 0.05). Feed conversion ratio did not differ between dietary treatments, and no difference was found in dry matter digestibility, protein digestibility and fish muscle composition. Good growth rates, blood parameters within normal ranges and low mortalities in all experimental treatments indicted that fish health was not affected either Atlantic salmon or Atlantic halibut fed the various zooplankton diets.  相似文献   

8.
The impact of increased incorporation of plant ingredients on diets for rainbow trout was evaluated in terms of gene expression of gastric (gastric lipase, pepsinogen) and intestinal (prolidase, maltase, phospholipase A2) digestive enzymes and nutrient transporters (peptide and glucose transporters), as well as of postprandial levels of plasma glucose, triglycerides and total free amino acids. For that purpose, trout alevins were fed from the start of exogenous feeding one of three different experimental diets: a diet rich in fish meal and fish oil (FM–FO), a plant-based diet (noFM–noFO) totally free from fish meal and fish oil, but containing plant ingredients and a Mixed diet (Mixed) intermediate between the FM–FO and noFM–noFO diets. After 16 months of rearing, all fish were left unfed for 72 h and then given a single meal to satiation. Blood, stomach and anterior intestine were sampled before the meal and at 2, 6 and 12 h after this meal. The postprandial kinetics of gene expression of gastric and intestinal digestive enzymes and nutrient transporters were then followed in trout fed the FM–FO diet. The postprandial profiles showed that the expression of almost all genes studied was stimulated by the presence of nutrients in the digestive tract of trout, but the timing (appearance of peaks) varied between genes. Based on these data, we have focused on the molecular response to dietary factors in the stomach and the intestine at 6 and 12 h after feeding, respectively. The reduction in FM and FO levels of dietary incorporation induced a significant decrease in the gene expression of gastric lipase, GLUT2 and PEPT1. The plasma glucose and triglycerides levels were also reduced in trout fed the noFM–noFO diet. Consequently, the present study suggests a decrease in digestive capacities in trout fed a diet rich in plant ingredients.  相似文献   

9.
The aim of this study was to evaluate different replacement levels of fishmeal (FM) by feather meal (FeM) on survival and growth of juvenile crayfish (Pacifastacus leniusculus). An 80‐day experiment was conducted with stage 2 juveniles from the onset of exogenous feeding. Four practical diets (500 g kg?1 protein) differing in the level of replacement of FM protein by FeM protein were prepared: 0% (control diet), 15% (8.2% dietary FeM), 25% (13.7% dietary FeM) or 35% (19.2% dietary FeM). Each diet was tested on grouped or individually isolated crayfish. Crayfish fed the control diet or 15% replacement achieved the highest survival (average of grouped and isolated: 88.2%) and growth (grouped and isolated: 13.58 mm carapace length, 523.2 mg weight) and the lowest feed conversion ratio (average of grouped and isolated: 1.11). Final growth of isolated crayfish was significantly higher than that of grouped crayfish for all diets. This study provides the first data on the substitution possibilities of FM by FeM in diets for freshwater crayfish. An 8.2% of FeM (15% replacement of FM protein) can be included in extruded diets for juvenile P. leniusculus during the first 80 days of intensive rearing without impairing growth or feed conversion.  相似文献   

10.
The potential of soya protein concentrate (SPC) as an alternative protein source in diets for Totoaba macdonaldi juveniles was evaluated. Seven isonitrogenous and isolipidic diets were formulated containing 15–100% SPC (SPC15, SPC30, SPC45, SPC60, SPC75, SPC90 and SPC100) to replace fishmeal (FM‐protein), and a FM‐protein‐based diet without SPC was used as a reference diet (RD). Each diet was randomly assigned to triplicate groups of 20 totoaba (50 ± 1.0 g) and was fed twice daily to apparent satiation. After 60 days of experiment, effects on totoaba were evaluated. Growth performance in fish fed RD to SPC45 was similar. The maximum FM‐protein replacement for weight gain (g kg ABW?1 day?1) was estimated to be 34.17% using a broken‐line model. In vitro digestibility of fish fed RD, SPC15 and SPC30 was similar. Trypsin activity was higher in fish fed the RD (9.38 ± 0.52 mU × 10?3 mg protein?1. Chymotrypsin activity was similar in fish fed RD, SPC15 and SPC30. Activity of alkaline protease and phosphatase was similar in fish fed RD, SPC15 and SPC30. Red blood cells (RBC) were the highest in fish fed RD to SPC60. Fish fed the RD, SPC15 and SPC30 present the highest haematocrit (HT) and haemoglobin (HB) content. Diets SPC90 and SPC100 presented similar MCV and MCHC. Total protein (TP) profile overall decreased in fish fed SPC90 and SPC100, pointing to nutritional hypoproteinemia due to deficient digestion and absorption. These results indicate that SPC‐based diets could be used efficiently by totoaba with FM‐protein replacement of less than 45%.  相似文献   

11.
This study assessed the effects of yellow lupin (Lupinus luteus) and narrow-leafed lupin (L. angustifolius) kernel meals and protein concentrates on the gastrointestinal integrity, capacity for digestive hydrolysis, and digestibility of nutrients in Atlantic salmon. A basal diet (FM) was made from fish meal, wheat, and fish oil. Six additional diets were formulated by replacing 30% of the FM diet with lupin kernel meal made from L. l. cv. Wodjil (LKM), L. a. cv. Belara (BKM), and L. a. cv. Myallie (MKM), lupin protein concentrates made from the same L. l. (LPC) and L. a. cv. M (MPC), or extracted soybean meal (SBM). All diets were extruded. Each diet was fed to three groups of 176 g salmon kept in 1 m2 tanks with 5.6 °C saltwater for 3 weeks prior to sampling of blood, intestinal organs, digesta, and faeces. Inclusion of lupin meals in the diets resulted in harder and more condensed feed particles. Ulcer-like lesions were observed in the stomach of fish from all feeding groups, and this was worsened by lupin in the diet, but did not appear to be pellet hardness related. No consistent altered morphology was observed in the distal intestine (DI) of fish fed the FM and lupin diets, while the DI of fish fed SBM showed consistent and typical soybean meal-induced pathomorphological changes. Plasma cholesterol was higher when feeding MKM and LKM than when feeding FM, MPC, and LPC, with intermediate levels when feeding BKM and SBM. Feeding LKM and LPC resulted in a higher weight of the GIT when related to body weight. Trypsin activity and bile acid concentration were generally higher in digesta from the pyloric (PI) and mid (MI) intestine when feeding FM and lupin diets than when feeding SBM, while the opposite was seen for trypsin activity in digesta from DI. There were no effects of diet on leucine aminopeptidase (LAP) and maltase activity in PI and MI, but in DI the activity of these brush border enzymes were significantly lowered when feeding SBM. SBM in the diet resulted in watery faeces and lowered apparent digestibility of lipid, but this was not observed when feeding the lupin diets. To conclude, the tested lupin kernel meals and protein concentrates did not alter the intestinal function in Atlantic salmon when included at 30% of the diet. Dietary lupin was, however, involved in the worsening of ulcer-like gastric lesions.  相似文献   

12.
The 8‐week experiment was conducted to evaluate the effects of partial replacement of fish meal (FM) with soybean protein concentrate (SPC) on juvenile black sea bream, Acanthopagrus schlegelii (10.70 ± 0.04 g). Diets were formulated to replace FM protein by SPC at 0, 8, 16, 24, 32 or 40% (designated as T1, T2, T3, T4, T5 and T6, respectively). Diets except T1 were supplemented with phytase at 2000 phytase activity U kg?1. The results showed that survival rate, growth performance and feed utilization were not significantly affected by increasing dietary SPC. Fish fed diet T3 had higher feed intake compared to those fed T1, T2 and T5 diets. Whole body compositions of black sea bream were significantly influenced by SPC replacing FM except for protein, ash and phosphorus content. Condition factor of fish was significantly lower in T2 than that of fish in T3 group. Apparent digestibility coefficients (ADCs) of dry matter was higher in fish fed T6 diet than those of fish fed T1 and T2 diets, ADCs of phosphorus increased with dietary SPC level up to T3 and then decreased. The results obtained in this study indicate that FM protein could be effectively replaced by SPC protein with phytase in diet of black sea bream.  相似文献   

13.
Two experiments were conducted for red sea bream (Pagrus major). In experiment 1, the optimum level of glutamic acid and natural feeding stimulants to enhance feed intake were determined and found that glutamic acid level of 0.5% and fish meat hydrolysate (FMH) were effective. In experiment 2, fish were fed with soy protein concentrate (SPC)‐based diet with synthetic feeding stimulants (Basal diet), the Basal diet with FMH (FMH diet), the FMH diet with glutamic acid (FMHG diet) and with fish meal diet (FM diet) as a control until satiation for 8 weeks. Feed intake of FMHG‐fed fish was significantly higher than others (p < 0.05). Specific growth rate and the feed conversion ratio of FMHG were comparable to those of FM‐fed fish (p > 0.05). Relative visceral fat ratio and crude lipid content of any SPC‐based diet‐fed fish tended to be lower than those of FM diet‐fed fish. There were no significant differences in trypsin and lipase activities hepatopancreas among treatments. SPC can be utilized as a sole protein source in a diet for red sea bream. The lower growth performance in SPC‐based diet‐ fed fish was not due to poor digestive enzyme secretion but could be associated with lipid utilization disorder.  相似文献   

14.
The current high demand and cost of fish meal (FM) necessities the evaluation of alternative plant protein ingredients in diets of farmed marine fish. A 56‐day feeding trial was performed to study the effects of replacement of FM with soy protein concentrate (SPC) in diets of Acanthopagrus schlegelii. Diets were prepared at levels of 0%, 30%, 47.5%, 65%, 82.5% and 100% SPC, respectively, replacing FM. The results indicated no significant differences (p > .05) in % weight gain (WG) and specific growth rate of fish fed S30% to S82.5% diets compared with the control diet while, further inclusion at 100% significantly depressed growth performance. SPC inclusion and phytase supplementation significantly affected the phosphorous discharge (P‐load) showing lowest value (3.83 ± 0.53 g/kg WG) in S100% compared to control (14.79 ± 0.37 g/kg WG) and in fish fed S30% diet (13.24 ± 0.89 g/kg WG) (p < .05). The results of this study showed that FM could be substituted up to 82.5% by SPC in the diet of Acanthopagrus schlegelii fingerlings (5.53 ± 0.12 g) without any adverse effects. Phytase supplementation SPC based diets could be effective in reducing the phosphorus load in the aquatic culture environment.  相似文献   

15.
The effects on Atlantic salmon (Salmo salar L.) metabolic health of including modern processed land animal by‐products (LAP) to a plant‐ and marine‐based diet (50% marine and 50% plant ingredients) were investigated. Three experimental diets were made with systematic replacements of both marine and plant ingredients with LAP as a source of protein (poultry meal and porcine blood meal) and fat (poultry oil) to fit a two‐way factorial design. A 16‐week feeding trial was performed with postsmolts in seawater (initial weight 372 g). The diet with both protein and lipids from LAP reduced liver triacylglycerols more than fourfold compared to the diet without LAP. This was confirmed by histological examinations showing reduced fatty degeneration in the liver of fish fed the high LAP diet. No severe negative effects on gut or tissue health were seen by histological examinations or by measuring genetic markers with qPCR, although a trend in the histological results indicated an improved gut health by including LAP in the diets. Clinical analyses of plasma and lipoprotein fractions showed no differences between dietary groups.  相似文献   

16.
This study investigated the effects of dietary protein source and feeding regime (apparent satiation and rationed) on growth performance, nutrient digestibility, fatty acid (FA) profile, and fillet quality traits in rainbow trout. A stock of 1200 juvenile trout (mean weight 114.6 ± 0.2 g) were randomly distributed into 24 fiberglass tanks (four diets × three replications × two feeding regimes). The experimental diets were formulated to be isoproteic and isoenergetic based on bacterial protein meal (BPM), pea protein concentrate (PPC), mixture thereof (MIX), and fish meal (FM), respectively. The feeding trial lasted 77 d with water temperature of 13 C. Statistical differences appeared among the diets only in terms of crude protein digestibility. Growth performance and somatic indexes were significantly affected by the diet, while only the condition factor was influenced by the feeding regime. None of the parameters appeared to be affected by the interaction effects. Differences appeared between the FA profiles of the dorsal muscle. Oleic, linoleic, α‐linolenic, and docosahexaenoic acid contents were influenced by diet, while only minor FAs were influenced by feeding regime. In conclusion, growth performance and nutrient digestibility resulted lower in fish fed BPM diet than other groups, while PPC group was similar to FM group.  相似文献   

17.
Soya bean meal‐based formulated feeds have recently become available for snakehead culture in Vietnam. This study was conducted to determine the appropriate replacement of fish meal (FM) protein by another soya product, soya protein concentrate (SPC), in snakehead (Channa striata) diets. Five iso‐nitrogenous (45% crude protein) and iso‐caloric (19 KJ g?1) practical diets were formulated to replace 0% (control), 40%, 60%, 80% and 100% of protein FM by protein SPC (100% FM, 40% SPC, 60% SPC, 80% SPC and 100% SPC respectively). A digestibility experiment was also conducted with the same formulated diets with addition of 1% chromic oxide. Fish fed 100% FM and 40% SPC diets had significantly better growth and survival compared with other treatments. Feed intake, feed conversion ratio, protein efficiency ratio and net protein utilization, trypsin and chymotrypsin activities of experimental fish fed 100% FM and 40% SPC diets were significantly higher than those fed other diets. The apparent digestibility coefficient (ADC) of the diet and diet components, ADCdiet, ADCprotein and ADClipid, of fish fed diet 40% SPC and 100% FM treatment were significantly higher than those of other treatments. The cost/kg fish produced in diets 100% FM and 40% SPC was much lower compared with other treatments. Dietary inclusion levels of SPC in diet above 40% significantly affected fish survival, growth, digestibility and trypsin and chymotrypsin activities, although fish chemical composition was not greatly affected.  相似文献   

18.
The potential of three different protein resources (pea protein isolate, PPI; pea protein concentrate, PPC; enzyme treated poultry protein, ETPP) as fish meal (FM) alternative protein in diets for juvenile black sea bream, Acanthopagrus schlegelii. (initial average weight 7.90 ± 0.13 g) was evaluated. Seven isonitrogenous and isoenergetic diets were formulated to replace FM at 0% (T0, control diet), 8% (designated as T1‐T3) and 16% (designated as T4‐T6) using PPI, PPC and ETPP respectively. Each diet was randomly assigned to triplicate groups of 25 juvenile fish for 8 weeks. At the end of the feeding period, survival rate was not significantly affected by dietary treatments. Growth performance in T6 (16% ETPP) group was significantly inferior to T0 group, however, weight gain and specific growth rate in other treatments showed no significant differences (> 0.05). Mean feed intake, feed efficiency ratio and protein efficiency ratio were also poorer in fish fed in T6 than those of fish fed with the control diet respectively. Apparent digestibility coefficients (ADCs) of dry matter and crude protein for fish fed ETPP diets were significant lower than those of fish fed with the control diet, whereas ADCs of lipid were unaffected by dietary treatments. ADC's of dietary Leu, Ile, His and Lys was also significantly influenced. There were no marked variations in proximate compositions of dorsal muscle. With regard to plasma characteristics, significant difference was observed in triacylglycerol content. Ammonia concentration in plasma tended to increase in alternative protein diets as substitution level increased. There were significant differences in aspartate aminotransferase activities among groups, but alanine aminotransferase levels were unaffected by treatments. In conclusion, the present study demonstrated that PPI and PPC were potential protein sources for using in juvenile black sea bream diet. However, the substitution level of FM by ETPP should be limited within 16%.  相似文献   

19.
Potato protein concentrate (PPC) is a promising candidate as a fish meal (FM) substitute because it has high protein and essential amino acid content. In the present study, we replaced FM in greater amberjack diets with PPC to investigate the effect on growth and feed utilization. Four isonitrogenous, isolipidic and isocaloric experimental diets were prepared by substituting 0, 20, 40 and 60% of FM protein with PPC (Control, P20, P40 and P60 respectively). The in vitro protein digestibility of protein in PPC was 88.8%, relative to 100% protein in the FM. The in vitro protein digestibility of protein in the experimental diets also decreased with increasing PPC and was lowest at 84.2% in P60. After the 7‐week feeding trial, final body weight, weight gain and thermal growth coefficient tended to decrease with increasing PPC and were significantly lower in P60 than in the control (p < .05). Further, fish fed with diets P40 and P60 showed significantly lower feed conversion and protein efficiency ratios than the control group (p < .05). In conclusion, the results suggest that PPC can replace up to 20% of FM in the diet of greater amberjack without compromising the growth performance or feed efficiency.  相似文献   

20.
Sustainable and profitable commercial aquaculture production of marine fish species is dependent on the development of sustainable protein sources as substitutes for expensive animal meals such as fishmeal (FM). Previous Florida pompano Trachinotus carolinus studies have indicated that poultry by‐product meal (PBM) and meat and bone meal can be used to produce a FM‐free diet if suitable levels of nutrients (such as taurine) are included in the diets. In this study, we attempted to develop an all‐plant protein diet by removing the animal proteins in practical diets for pompano by substituting back select ingredients. A series of eight FM‐free diets were formulated, four systematically replaced soybean meal (SBM) with soy protein concentrate (SPC) and four replaced PBM with SPC. Based on the results, there is no clear disadvantage to the use of SPC as a replacement for SBM. However, the complete removal of PBM resulted in reduced performance. Two additional growth trials were conducted to supplement additional amino acids including glycine, valine and histidine, a proprietary chemical attractant mix, fish protein concentrate and squid hydrolysate to improve the growth of pompano when fed all‐plant protein diets. The only improvement in performance occurred with the squid hydrolysate. These results demonstrate that using soybean meal, soy protein concentrate and corn gluten meal as the primary protein sources, a plant‐based feed formulation can be developed, but the removal of all animal proteins is not yet feasible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号