首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 693 毫秒
1.
C. G. Liu    Y. W. Wu    H. Hou    C. Zhang  Y. Zhang  R. A. McIntosh 《Plant Breeding》2002,121(5):407-410
Differences between alloplasmic lines and euplasmic controls indicated consistent beneficial effects of Aegilops crassa cytoplasm on common wheats. In general, the agronomic performance of alloplasmic lines was superior to that of euplasmic controls; the significant differences observed were ascribed to nucleus‐cytoplasmic (NC) interactions. A number of useful genetic attributes, for example, high yield, good quality and salt tolerance, were identified. A new NC hybrid variety ‘Xiaoshan 2134’ was bred. Field trials showed that the yield NC heterosis of ‘Xiaoshan 2134’ was 13.9% and the yield of ‘Xiaoshan 2134’ was at least 20% higher than that of a control variety widely grown in North China. The results suggested that Ae. crassa cytoplasm could broaden the genetic base of common wheat and improve common wheat cultivars by utilizing NC heterosis.  相似文献   

2.
Heterosis, or hybrid vigour, has been used to improve seed yield in several important crops for decades and it has potential applications in soybean. The discovery of over‐dominant quantitative trait loci (QTL) underlying yield‐related traits, such as seed weight, will facilitate hybrid soybean breeding via marker‐assisted selection. In this study, F2 and F2 : 3 populations derived from the crosses of ‘Jidou 12’ (Glycine max) × ‘ZYD2738’ (Glycine soja) and ‘Jidou 9’ (G. max) × ‘ZYD2738’ were used to identify over‐dominant QTL associated with seed weight. A total of seven QTL were identified. Among them, qSWT_13_1, mapped on chromosome 13 and linked with Satt114, showed an over‐dominant effect in two populations for two successive generations. This over‐dominant effect was further examined by six subpopulations derived from ‘Jidou12’ × ‘ZYD2738’. The seed weight for heterozygous individuals was 1.1‐ to 1.6‐fold higher than that of homozygous individuals among the six validation populations examined in different locations and years. Therefore, qSWT_13_1 may be a useful locus to improve the yield of hybrid soybean and to understand the molecular mechanism of heterosis in soybean.  相似文献   

3.
Relationship between heterosis and genetic divergence in 'Tongil'-type rice   总被引:1,自引:0,他引:1  
S.-J. Kwon    W.-G. Ha    H.-G. Hwang    S.-J. Yang    H.-C. Choi    H.-P. Moon  S.-N. Ahn 《Plant Breeding》2002,121(6):487-492
Improving grain yield and quality of ‘Tongil’‐type rice (indica/japonica) continues to be a major breeding objective in Korea. In this study, genetic divergence among 13‘Tongil’‐type rice cultivars was evaluated and the relationship between genetic distance and hybrid performance in all possible nonreciprocal crosses between them assessed. The 78 F1 hybrids together with the 13 parents were evaluated for eight traits of agronomic importance, including yield, in a replicated field trial. The 13 parents were examined for DNA polymorphism using 71 micro‐satellite or simple sequence repeats and 46 random decamer oligonucleotide primers. A total of 319 polymorphic variants were generated and, based on the polymorphism data, genetic distances (GDs) ranged from 0.021 to 0.437. Cluster analysis based on GDs revealed associations among cultivars which was in agreement with the pedigree data. Heterosis was observed in hybrids for most of the traits, and yield exhibited the highest heterosis among the eight traits examined. The correlation values of GDs with F1 performance were mostly nonsignificant, except for yield, culm length and spikelets per panicle. The correlations of GDs with midparent and better‐parent heterosis were not significant enough to be of predictive value. These results indicate that GDs based on the microsatellite and random amplified polymorphic DNA (RAPD) markers may not be useful for predicting heterotic combinations in ‘Tongil’‐type rice and support the idea that the level of correlation between hybrid performance and genetic divergence is dependent on the germplasm used.  相似文献   

4.
A top‐cross‐mating design among 29 S4 inbred lines and tester (cultivar ‘Dukat’) was carried out to study their breeding value in terms of general combining ability (GCA). The objectives of this study were to evaluate the acidity, soluble solids and dry matter contents in fruits of progeny F1 in comparison with S4 inbred lines as well as the cultivars (S0); identify strawberry genotypes with high value of GCA for use in cultivar development; and determine mid‐parent heterosis regarding S4 inbred lines and cultivated strawberry. The 2‐year observations showed statistically significant differences between tested genotypes in terms of the studied traits. The highest breeding value based on GCA was estimated for Chandler 123‐5 for soluble solids and dry matter content, and Kent 7‐6 for acidity. Estimated mid‐parent heterosis had positive and negative values. The highest heterosis in terms of extract and dry matter content (26.71% and 17.50%, respectively) occurred in the offspring Chandler 123‐5 × ‘Dukat’, but as regards acidity in hybrid Chandler 123‐22 with cv. ‘Dukat’. The study of genetic divergence by dendrograms may help to identify parents suitable for obtaining hybrids with higher heterosis effects.  相似文献   

5.
A. Riaz    G. Li    Z. Quresh    M. S. Swati  C. F. Quiros 《Plant Breeding》2001,120(5):411-415
Significant heterosis for seed yield in oilseed rape has created interest in the development of hybrid cultivars. The DNA‐based marker protocol, sequence‐related amplified polymorphism (SRAP) was used to determine genetic diversity among oilseed rape maintainer and restorer lines. This measure was used in an attempt to establish an association between genetic distance and heterosis in hybrids for various agronomic traits. A total of 118 polymorphic loci were generated by 18 SRAP primer combinations. Based on the polymorphism generated by the markers, calculated similarity index values ranged from 0.46 to 0.97. Cluster analysis grouped 10 maintainer and 12 restorer lines into three groups, with the exception of two maintainer lines, PM5 and PM9, which fell outside these groups. The grouping of the lines was largely in agreement with the available pedigree data on their origin and agronomic performance. Analysis of variance among inbred lines and their resulting F1 hybrids over two locations revealed significant differences for plant height, days to maturity and seed yield, but not for oil content. Substantial mid‐parent heterosis was observed only for seed yield, and ranged from 26% to 169%. All hybrids surpassed their respective inbred lines for this trait, except for a single cross combination of related lines. In general, crosses of lines located in different clusters yielded more than those from the same clusters. Regression analysis revealed a statistically significant relationship between the genetic distance of the parents and seed yield in their hybrid, and their derived mid‐parent and high‐parent heterosis. The correlation coefficient between genetic distance and yield (0.64) indicated a moderately strong relationship, so it is possible that some of the SRAP markers might be linked to quantitative trait loci for seed yield.  相似文献   

6.
Presence of substantial heterosis and economic hybrid seed production are two most desirable components for success of any commercial hybrid breeding programme. Thermosensitive genic male sterile (TGMS) lines of rice, in this regard, have tremendous potential in realizing further quantum jump in yield and economical hybrid seed cost. Analyses for combining ability and heterosis over optimum (120N : 60P2O5 : 40K2O kg/ha) and high (200N : 90P2O5 : 60K2O kg/ha) fertility environments for six traits were made in 2 years (2001 and 2002) using 120 hybrids of inter‐ and intra‐subspecific nature derived from hybridization of 30 elite indica TGMS lines and four cultivars, viz., ‘Pant Dhan 4’ and ‘Ajaya’ (I = indica), ‘Taichung 65’ (J = japonica) and ‘IR 65598‐112‐2’ (TJ = tropical japonica) in line × tester mating design. Predominance of non‐additive genetic variance suggested good prospects of hybrid breeding. Pooled analysis revealed highly significant variances for lines, general combining ability (GCA), specific combining ability (SCA) and line x tester. TGMS line 365‐8S was the best general combiner for all the six traits including grain yield. Trend of relative mid‐parent heterosis for grain yield, panicle length, grain number per panicle and earliness in flowering was I/TJ > I/J > I/I. For panicle number per plant and 1000‐grain weight, trends were I/TJ > I/I > I/J and I/I > I/TJ > I/J, respectively. Grain yield recorded heterosis of 49.3%, 71.9% and 92.7% for I/I, I/J and I/TJ hybrid groups respectively. Effect of environments on the hybrid performance indicated better response of hybrids at high fertilizer dose. Study suggests greater prospects of combining improved japonica and tropical japonica germplasms having wide compatible gene with indica TGMS lines for exploitation of intersubspecific heterosis.  相似文献   

7.
Heterosis is a phenomenon whereby hybrids of inbred lines produce favourable phenotypes that exceed those of their parents. Traits of interest are higher yield and stronger stress tolerance. The two‐line super‐hybrid rice ‘Liangyoupei9’ (LYP9) shows superiority to both its elite inbred line ‘93‐11’ and ‘Pei'ai64s’ (‘PA64s’) parents and conventional hybrids. However, the genetic basis of its hybrid vigour, especially yield determination, remains elusive. In the present study, a set of 156 chromosome segment substitution lines (CSSLs) carrying overlapping segments from ‘PA64s’ in a genetic background of ‘93‐11’ were constructed and planted in six environments. Three major agronomic traits, viz. panicle length (PL), heading date (HD) and plant height (PH), and five yield‐related traits, viz. grain weight per panicle (GWP), number of grains per panicle (GPP), 1000‐grain weight (TGW), seed set (SS) and number of panicles of per plant (PPP), were evaluated over 3 years. Quantitative trait loci (QTL) analysis was conducted using a likelihood ratio test based on stepwise regression. Forty‐six putative QTL distributed on 11 chromosomes were detected in more than one year. Remarkably, GWP of four CSSLs carrying positive yield QTL outperformed the recurrent parent ‘93‐11’ by more than 15%, in at least two environments. These results indicate that CSSLs are effective in identifying yield‐associated traits, and lines harbouring such QTL will be rich in resources for future molecular breeding programmes.  相似文献   

8.
S. Chen    C. G. Xu    X. H. Lin  Q. Zhang 《Plant Breeding》2001,120(2):133-137
Bacterial blight (BB), caused by Xanthomonas oryzae pv. oryzae (X00), is one of the most devastating diseases of rice world‐wide; it is also a serious problem of hybrid rice production in China. In this study, a molecular marker‐assisted introgression of Xa21, a gene highly resistant to a broad spectrum of Xoo strains, from ‘IRBB21’ was performed to improve the BB resistance of‘6078′, a new restorer line with high yielding potential. The entire process took one generation of crossing followed by three generations of backcrossing and one generation of selfing. The presence of Xa21 in each generation was determined by both polymerase chain reaction (PCR) and pathogen inoculation. Recombinations between Xa21 and flanking markers were identified by PCR analysis. Background selection was conducted in BC1F1 and BC2F1 using amplified fragment length polymorphism (AFLP) markers detecting a total of 129 polymorphic bands between‘6078’ and ‘IRBB21′. The individual selected in BC3F2, or‘6078′(Xa21), carried a fragment of less than 3.8 cM from the donor line in the Xa21 region on chromosome 11, and about 98.8% of the genetic background from the recurrent parent. The results showed that‘6078′(Xa21) had the same level and spectrum of BB resistance as the donor parent ‘IRBB21′, while maintaining the agronomic performance and combining ability of the original 6078. A significant increase in BB resistance was also achieved in the hybrid using 6078(Xa21) as the restorer line.  相似文献   

9.
The development of soybean varieties that lack the β‐conglycinin α‐subunit is an attractive goal because the β‐conglycinin α‐subunit negatively influences the nutrition and gelation of tofu and is a major allergen. To remove this undesirable allergen and simultaneously improve the seed nutritional value and food‐processing quality, marker‐assisted background selection (MABS) was used in backcross breeding to incorporate cgy‐2, a null phenotype version of the gene encoding the β‐conglycinin α‐subunit, from the donor line ‘RiB’ into the genetic background of the Chinese cultivar ‘Dongnong47’ (DN47), a popular high‐oil superfine seed soybean cultivar from Heilongjiang Province, China. In each F2 (F2, BCnF2) generation of the breeding programme, the offspring that carried the introgressed cgy‐2 were identified by sodium dodecyl sulphate–polyacrylamide gel electrophoresis and rescreened by MABS using simple sequence repeat markers to accelerate recurrent parent genome recovery. Of the 49 advanced backcrossing breeding lines (ABLs), the three best lines, ABL1, ABL2 and ABL3, were selected from the BC1, BC2 and BC3 populations, respectively. The ABLs were evaluated for desirable agronomic characteristics, yield‐related traits, amino acid composition, free amino acid composition and tofu‐processing quality in the mature seeds. All of the ABLs lacked the α‐subunit but grew and reproduced normally without deleterious effects on physiological processes such as seed development and germination. The free amino acid content of ABL1 was significantly higher than that of ‘DN47’, with arginine (Arg) being particularly enriched. Compared to the recurrent parent ‘DN47’, the total protein content of the three ABLs was higher, the amino acid composition of the seed proteins was markedly modified and the yield and hardness of the tofu that was made from the ABLs were significantly increased. MABS combined with stringent phenotypic selection in a backcross breeding programme is a feasible strategy for the genetic engineering of seed protein components to produce allergenic subunit‐deficient variant alleles.  相似文献   

10.
C. G. Liu    N. Hou    L. K. Liu    J. C. Liu    X. S. Kang    A. M. Zhang 《Plant Breeding》2006,125(5):437-440
A new cytoplasmic male‐sterile (CMS) system for hybrid wheat breeding, YA‐type CMS line with the cytoplasmic mutant from the common wheat variety ‘CA8057’, was developed by the Institute of Genetics and Developmental Biology, Chinese Academy of Sciences. The pollen sterility of YA‐type CMS line was easily maintained but difficult to restore. Some sterile lines with desirable agronomic performance, such as msYA‐‘CA8057’ (BC17), msYA‐‘Yuandong 6’ (BC9), msYA‐‘Jin 411’ (BC9), msYA‐‘WL1’ (BC10), msYA‐‘Yanshi 9’ (BC10), msYA‐‘BPm16’ (BC9), msYA‐‘Jindong 8’ (BC9) and msYA‐‘Jinmai 33’ (BC9), were bred and a restorer line GR1 was screened with 26 new restorer lines being developed by transferring restorer genes from GR1. It was found that abnormal phenomena occurred at the uninucleate‐pollen stage and the abortive pollen was poor in starch content and other components. The variance analysis of agronomic traits in eight sterile lines indicated that there was no general negative effect of cytoplasm. The genetic analysis for fertility restoration showed that two pairs of independent major genes (designated YARf1YARf1YArf2YArf2) and some minor genes could be involved in the fertility restoration in restorer line GR1, and YARf1 was epistatic over YARf2 for the genetic effect of fertility restoration. As a new CMS system, the YA‐type CMS line was of potential value for hybrid wheat breeding and should be further studied.  相似文献   

11.
Plant architecture has been proposed as a means to enhance the potential yield of rice, especially by reducing height to provide lodging resistance. In this study, we developed a near‐isogenic line (NIL) using cultivar ‘Dianjingyou 1’ (DJY1) as a recipient parent and wild rice (Oryza barthii) as the donor parent. The NIL had semi‐dwarf stature and more tillers than DJY1. Cytological examination showed decreased numbers of cells in the stems of the NIL compared to DJY1. Genetic analysis indicated that this phenotype was controlled by a newly identified dominant dwarf gene, tentatively named as Dd7. A large population derived from the hybrid NIL‐Dd7/DJY1 was developed to fine‐map Dd7. Based on the physical location of molecular markers, the Dd7 locus was finally delimited to an 82‐kb region in chromosome 7. Gene prediction identified 14 open reading frames (ORFs) within this region. NIL‐Dd7 seems to confer no undesirable pleiotropic effects and therefore has potential value for rice breeding.  相似文献   

12.
Generation of novel genetic diversity for maximization of heterosis in hybrid production is a significant goal in winter oilseed rape breeding. Here, we demonstrate that doubled haploid (DH) production using microspore cultivation can simultaneously introgress favourable alleles for double‐low seed quality (low erucic acid and low‐glucosinolate content) into a genetically diverse Brassica napus genetic background. The DH lines were derived from a cross between a double‐low quality winter rapeseed variety and a genetically diverse semisynthetic B. napus line with high erucic acid and high glucosinolates (++ quality). Twenty‐three low‐glucosinolate lines were identified with a genome component of 50–67% derived from the ++ parent. Four of these lines, with a genome component of 50–55% derived from the ++ parent, also contained low erucic acid. Heterosis for seed yield was confirmed in test‐crosses using these genetically diverse lines as pollinator. The results demonstrate the potential of marker‐assisted identification of novel genetic pools for breeding of double‐low quality winter oilseed rape hybrids.  相似文献   

13.
A major quantitative trait locus (QTL) influencing seed fibre and colour in Brassica napus was dissected by marker saturation in a doubled haploid (DH) population from the black‐seeded oilseed rape line ‘Express 617’ crossed with a yellow‐seeded B. napus line, ‘1012–98’. The marker at the peak of a sub‐QTL with a strong effect on both seed colour and acid detergent lignin content lay only 4 kb away from a Brassica (H+)‐ATPase gene orthologous to the transparent testa gene AHA10. Near the peak of a second sub‐QTL, we mapped a copy of the key phenylpropanoid biosynthesis gene cinnamyl alcohol dehydrogenase, while another key phenylpropanoid biosynthesis gene, cinnamoyl co‐a reductase 1, was found nearby. In a cross between ‘Express 617’ and another dark‐seeded parent, ‘V8’, Bna.CCR1 was localized in silico near the peak of a corresponding seed fibre QTL, whereas in this case Bna.CAD2/CAD3 lay nearby. Re‐sequencing of the two phenylpropanoid genes via next‐generation amplicon sequencing revealed intragenic rearrangements and functionally relevant allelic variation in the three parents.  相似文献   

14.
M. Murai    H. B. KC  N. Gima  C. Jung 《Plant Breeding》2003,122(5):410-415
Norin‐PL8 (‘PL8’) is an extremely cool‐tolerant line of rice in Japan that contains genes for cool tolerance originating from a javanica landrace. It was investigated to see whether the dwarfing gene d18‐k (kotaketamanishiki dwarf) exerts its pleiotropic effect on enhancing the cool tolerance at the booting stage in the genetic background of PL8. The d18‐k isogenic line of the recurrent parent PL8 (D8), PL8, and two commercial cultivars ‘Hayayuki’ and ‘Kirara 397’ were used. For each line/cultivar, the 12°C‐5‐day treatment was conducted at various times during the booting stage. In addition to spikelet fertility, the ratio (%) of the fertilized‐spikelet number of each treated panicle to the varietal mean of fertilized‐spikelet number per panicle in the control (FS‐T/C) was adopted to estimate cool temperature damage. For FS‐T/C, the lines‐cultivars ranked in the order of D8 > PL8 > ‘Hayayuki’ > ‘Kirara 397’, reflecting their cool tolerances. D8 exceeded PL8 in both pollen grain number per anther in the control and as an indicator of pollen fertility after the treatment, as a result of the effects of d18‐k. Consequently, d18‐k can be used to develop super‐highly cool‐tolerant cultivars for cool‐weather areas.  相似文献   

15.
Strawberries are a common and important fruit in human diet because of their high content of essential nutrients and beneficial phytochemicals, which have relevant biological activity in human health. In this study, six cultivars and 15 selected F1 hybrids between S4 inbred lines and tester (cv. ‘Dukat’) were evaluated in a field trial over a period of two consecutive years. The amounts of total anthocyanin, phenolics and vitamin C in fruits and antiradical activity were analysed. General combining ability (GCA) and mid‐parent heterosis were also determined for those characteristics. Among all the genotypes tested, the inbred lines of ‘Senga Sengana’ 17 showed the highest breeding value based on GCA for all studied traits. Estimated heterosis varied among genotypes tested. The highest heterosis in terms of vitamin C occurred in the offspring of clone 1387 18‐15 × ‘Dukat’, but with regard to phenols and antiradical activity in hybrid ‘Teresa’ 18‐15 with cv. ‘Dukat’. This study revealed that the differentiation in chemical composition of strawberry fruits between genotypes is clearly dependent on individual genotype combinations and demonstrated the presence of heterosis in phytochemical contents in some specific genotypic combinations.  相似文献   

16.
N. Tian  Z.-Q. Liu 《Plant Breeding》2001,120(1):79-81
In order to develop genie male‐sterile lines with a blue seed marker, male‐sterile plants, controlled by a dominant nuclear gene Ms2, were used as female parents against a 4E disomic addition line ‘Xiaoyan Lanli’(2n= 44, AABBDD+4EII) as the male parent to produce monosomic addition lines with blue seed. Male‐sterile plants from the monosomic addition lines were pollinated with durum wheat for several generations and in 1989 a male‐sterile line with the blue grain gene and the male‐sterile gene Ms2 on the same additional chromosome was detected and named line 89‐2343. Using this line, the blue seed marker was successfully added to a short male‐sterile line containing Ms2 and Rht10. The segregation ratios of male sterility and seed colour as well as the chromosome figurations of different plants indicated that the blue grain genes, Ms2 and Rht10 were located on the same additional chromosome. Cytological analysis showed that the blue marker male‐sterile lines in durum wheat and common wheat were monosomic with an additional chromosome 4E. The inheritance ratio for blue seed male‐sterile plants and white seed male‐fertile plants was 19.7% and 80.3%, respectively, in common wheat. The potential for using blue marker sterile lines in population improvement and hybrid production is discussed.  相似文献   

17.
Summary Yield and yield components of F1 hybrids were studied in three experiments at 30×30 cm spacings and in one experiment at 15×15 cm spacings. In the 30×30 cm experiments, 10 of the 41 hybrids tested significantly outyielded their high parents. However, only 2 hybrids significantly outyielded the best cultivar: one hybrid yielded 23 % and the other 16 % more than their respective check cultivars. The four hybrids in the 15×15 cm experiment yielded only 59 to 92% as much as their high parents.In areas where rice is transplanted at relatively wide spacings, the observed levels of F1 heterosis in selected hybrids may be sufficient to warrant production of hybrid rice, if enough hybrid seed can be produced. For direct-seeding at the high rates normal in the USA, the relatively small levels of heterosis and the difficulties of hybrid seed production preclude use of F1 hybrid rice cultivars at present.None of 19 bulk F2 and F3 hybrids in two experiments yielded significantly more than its high parent. Similarly, none of the 12 mixtures included in one experiment yielded significantly more than its high parent. On the basis of yield alone, using bulk F2 or F3 or simple mixture populations is not merited.Contribution from the Western Region, Agricultural Research Service, U.S. Department of Agriculture, and the Department of Agronomy and Range Science, University of California, Davis, California 95616.  相似文献   

18.
N. Mutlu    P. Miklas    J. Reiser  D. Coyne 《Plant Breeding》2005,124(3):282-287
Common bacterial blight (CBB) caused by Xanthomonas campestris pv. phaseoli reduces common bean (Phaseolus vulgaris L.) yield and quality worldwide. Genetic resistance provides effective disease control; however. a high level of resistance is difficult to attain and does not exist in pinto bean, the most important dry bean market class in North America. Our objective was to determine if a backcross breeding approach with the aid of molecular markers linked to quantitative trait loci (QTL) for resistance to CBB in a donor parent could be used to attain higher levels of resistance to CBB in pinto bean. QTL conditioning CBB resistance from the donor parent XAN 159 were introgressed into the recurrent parent‘Chase’using classical backcross breeding and intermittent marker‐assisted selection.‘Chase’pinto bean is moderately resistant and the breeding line XAN 159 is highly resistant to Xanthomonas campestris. Marker assays confirmed the presence of independent QTL from GN no. 1 Sel 27 and XAN 159 in advanced backcross‐derived pinto bean lines with improved CBB resistance. Agronomic characteristics of‘Chase’were fully recovered in the backcross‐derived lines. An important QTL for CBB resistance from XAN 159 on linkage group B6 was not introgressed because tight linkage between this QTL and the dominant V allele that causes an unacceptable black‐mottled seed coat colour pattern in pinto bean could not be broken.  相似文献   

19.
Maize is an important food and feed crop worldwide. Phytic acid (PA), in maize kernel, is an antinutritional factor. PA chelates mineral cations and causes mineral deficiency in humans and phosphorous deficiency in animals. The undigested PA excreted by monogastric animals causes phosphorous eutrophication. Therefore, development of low‐phytate maize is indispensable. The low‐phytate locus (lpa2 allele) has been transferred from low‐phytate mutant line ‘EC 659418’ into an elite inbred UMI 395 through marker‐assisted backcross breeding (MABB). The MABB involved three backcrosses followed by two selfing steps, including ‘foreground selection’, that is, selecting lines with lpa2 allele with the help of a codominant SSR marker ‘umc2230’ and ‘background selection’, that is, selecting plants having genetic background similar to that of the recurrent parent using 50 codominant SSR markers. Two low‐phytate lpa2 lines with genome similar (>90% similarity) to that of recurrent parent have been identified. These lines can be used as parent in future hybridization programmes for obtaining low‐phytate high‐yielding maize hybrids.  相似文献   

20.
G. Oettler    H. C. Becker  G. Hoppe   《Plant Breeding》2001,120(4):351-353
Triticale is generally treated as a self‐pollinating crop and line breeding is practised. Hybrid breeding has been discussed for some time, but there is little information for winter triticale. This study investigated heterosis for eight agronomic traits in F1 and F2 hybrids grown together with their parents as drilled plots in three environments. On average, grain yield heterosis was 12.5 dt/ha (a relative 10.5%) compared with the mid‐parent value for F1 hybrids, and 6.2 dt/ha (5.0%) for F2 hybrids and withawide range of 4.4–17.1 dt/ha for F1 hybrids. A positive contribution to the heterosis of yield was made by kernels/spike and 1000‐kernel weight, whereas spikes/m2 showed negative heterosis. Hybrid plants in F1 and F2 were taller than mid‐parents (8.3 cm and 5.3 cm, respectively), with a tendency to earlier heading. The negative heterosis for falling number in F1 and F2 hybrids could be a problem for commercial production of triticale hybrids. By selecting parents for combining ability and the identification of heterotic patterns, grain yield heterosis of 20% appears feasible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号