首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A new combined rhenium-osmium- and platinum-group element data set for basalts from the Moon establishes that the basalts have uniformly low abundances of highly siderophile elements. The data set indicates a lunar mantle with long-term, chondritic, highly siderophile element ratios, but with absolute abundances that are over 20 times lower than those in Earth's mantle. The results are consistent with silicate-metal equilibrium during a giant impact and core formation in both bodies, followed by post-core-formation late accretion that replenished their mantles with highly siderophile elements. The lunar mantle experienced late accretion that was similar in composition to that of Earth but volumetrically less than (approximately 0.02% lunar mass) and terminated earlier than for Earth.  相似文献   

2.
Samarium-neodymium isotope data for six lunar basalts show that the bulk Moon has a 142Nd/144Nd ratio that is indistinguishable from that of chondritic meteorites but is 20 parts per million less than most samples from Earth. The Sm/Nd formation interval of the lunar mantle from these data is 215(-21)(+23) million years after the onset of solar system condensation. Because both Earth and the Moon likely formed in the same region of the solar nebula, Earth should also have a chondritic bulk composition. In order to mass balance the Nd budget, these constraints require that a complementary reservoir with a lower 142Nd/144Nd value resides in Earth's mantle.  相似文献   

3.
Stochastic late accretion to Earth, the Moon, and Mars   总被引:1,自引:0,他引:1  
Core formation should have stripped the terrestrial, lunar, and martian mantles of highly siderophile elements (HSEs). Instead, each world has disparate, yet elevated HSE abundances. Late accretion may offer a solution, provided that ≥0.5% Earth masses of broadly chondritic planetesimals reach Earth's mantle and that ~10 and ~1200 times less mass goes to Mars and the Moon, respectively. We show that leftover planetesimal populations dominated by massive projectiles can explain these additions, with our inferred size distribution matching those derived from the inner asteroid belt, ancient martian impact basins, and planetary accretion models. The largest late terrestrial impactors, at 2500 to 3000 kilometers in diameter, potentially modified Earth's obliquity by ~10°, whereas those for the Moon, at ~250 to 300 kilometers, may have delivered water to its mantle.  相似文献   

4.
The major findings of the preliminary examination of the lunar samples are as follows: 1) The samples from Fra Mauro base may be contrasted with those from Tranquillity base and the Ocean of Storms in that about half the Apollo 11 samples consist of basaltic rocks, and all but three Apollo 12 rocks are basaltic, whereas in the Apollo 14 samples only two rocks of the 33 rocks over 50 grams have basaltic textures. The samples from Fra Mauro base consist largely of fragmental rocks containing clasts of diverse lithologies and histories. Generally the rocks differ modally from earlier lunar samples in that they contain more plagioclase and contain orthopyroxene. 2) The Apollo 14 samples differ chemically from earlier lunar rocks and from their closest meteorite and terrestrial analogs. The lunar material closest in composition is the KREEP component (potassium, rare earth elements, phosphorus), "norite," "mottled gray fragments" (9) from the soil samples (in particular, sample 12033) from the Apollo 12 site, and the dark portion of rock 12013 (10). The Apollo 14 material is richer in titanium, iron, magnesium, and silicon than the Surveyor 7 material, the only lunar highlands material directly analyzed (11). The rocks also differ from the mare basalts, having much lower contents of iron, titanium, manganese, chromium, and scandium and higher contents of silicon, aluminum, zirconium, potassium, uranium, thorium, barium, rubidium, sodium, niobium, lithium, and lanthanum. The ratios of potassium to uranium are lower than those of terrestrial rocks and similar to those of earlier lunar samples. 3) The chemical composition of the soil closely resembles that of the fragmental rocks and the large basaltic rock (sample 14310) except that some elements (potassium, lanthanum, ytterbium, and barium) may be somewhat depleted in the soil with respect to the average rock composition. 4) Rocks display characteristic surface features of lunar material (impact microcraters, rounding) and shock effects similar to those observed in rocks and soil from the Apollo 11 and Apollo 12 missions. The rocks show no evidence of exposure to water, and their content of metallic iron suggests that they, like the Apollo 11 and Apollo 12 material, were formed and have remained in an environment with low oxygen activity. 5) The concentration of solar windimplanted material in the soil is large, as was the case for Apollo 11 and Apollo 12 soil. However, unlike previous fragmental rocks, Apollo 14 fragmental rocks possess solar wind contents ranging from approximately that of the soil to essentially zero, with most rocks investigated falling toward one extreme of this range. A positive correlation appears to exist between the solar wind components, carbon, and (20)Ne, of fragmental rocks and their friability (Fig. 12). 6) Carbon contents lie within the range of carbon contents for Apollo 11 and Apollo 12 samples. 7) Four fragmental rocks show surface exposure times (10 x 10(6) to 20 x 10(6) years) about an order of magnitude less than typical exposure times of Apollo 11 and Apollo 12 rocks. 8) A much broader range of soil mechanics properties was encountered at the Apollo 14 site than has been observed at the Apollo 11, Apollo 12, and Surveyor landing sites. At different points along the traverses of the Apollo 14 mission, lesser cohesion, coarser grain size, and greater resistance to penetration was found than at the Apollo 11 and Apollo 12 sites. These variations are indicative of a very complex, heterogeneous deposit. The soils are more poorly sorted, but the range of grain size is similar to those of the Apollo 11 and Apollo 12 soils. 9) No evidence of biological material has been found in the samples to date.  相似文献   

5.
The variation in trace element abundance patterns indicates that lunar igneous rocks are the product of extensive igneous fractionation. Variations in the Sr(87)/ Sr(86) ratio indicate that these rocks crystallized 3.5+/-0.3 x 10(9) years ago.  相似文献   

6.
Luminescence measurements were made of four lunar rocks, two terrestrial rocks (granite and gabbro), and one terrestrial mineral (willemite) by comparing the spectral curves with the curve of a barium sulfate standard. Efficiencies with 3000 angstrom excitation were < 6 x 10(-5) for the lunar samples, < 8 x 10(-5) for gabbro of very similar composition to the lunar samples, approximately 10(-4) for granite, and approximately 2 X 10(-2) for willemite. If these are typical values for other ultraviolet excitation wavelengths, the Apollo 11 site appears to contribute little to the observed lunar luminescence.  相似文献   

7.
Major and trace element concentrations have been determined by atomic absorption spectrophotometry, colorimetry, and isotope dilution in Apollo 15 mare basalt 15555 from the Hadley Rille area; trace element concentrations have also been determined in plagioclase and pyroxene separates from basalt 15555 and in soil 15531 from the same area. Basalt 15555 most closely resembles in composition the Apollo 12 olivine-rich basalts. The concentrations of lithium, potassium, rubidium, barium, rare-earth elements, and zirconium in basalt 15555 are the lowest, and the negative europium anomaly is the smallest, reported for lunar basalts; this basalt might be the least differentiated material yet returned from the moon. Crystallization and removal of about 6 percent of plagioclase similar to that contained in the basalt would account for the observed europium anomaly; if plagioclase is not on the liquidus of this basalt, a multistage origin is indicated. Mineral data indicate that plagioclase and pyroxene approached quasi-equilibrium. Most of the chemical differences between basalt 15555 and soil 15531 would be accounted for if the soil were a mixture of 88 percent basalt, 6 percent KREEP (a component, identified in other Apollo soils, rich in potassium, rare-earth elements, and phosphorus) and 6 percent plagioclase (anorthosite?).  相似文献   

8.
A chemically distinct group of lunar rocks with the trace element characteristics of basaltic lunar rocks is apparently ubiquitous on the lunar surface. Such rocks have been found at the Apollo 15, Apollo 16, and Luna 20 landing sites. They may be derived from the plains-forming material that has been designated Cayley Formation.  相似文献   

9.
Elemental abundances of major (Ti, Al, Fe, and Ca), minor (Na, Mn, and Cr), and trace elements [14 rare-earth elements (REE), Y, In, Cd, Rb, Cs, Ba, Co, and Sc] in lunar anorthosites separated from Apollo 11 sample 10085 coarse fines have been determined by means of instrumental and radiochemical neutron activation analysis. The REE distribution pattern of lunar anorthosites, relative to ordinary chondrites, has a positive Eu anomaly. On the assumption that (i) the lunar composition is similar to that of ordinary chondritic meteorites low in total Fe ( approximately 13 percent); (ii) lunar anorthosites are derived from highland cratering events and are representative of the highlands; and (iii) the moon differentiated into olivine, hypersthene, and basaltic and anorthositic phases, and plagioclase crysstallization began after approximately 93 percent solidification, then mass balance calculations yield approximately 30-kilometer and approximately 10-kilometer thicknesses for the lunar highlands for the melting and chemical differentiation of the entire moon and of the upper 200 kilometers, respectively. Corresponding thicknesses of the basaltic basement rocks were approximately 5 kilometers and approximately 2 kilometers, respectively. Alternatively, if the anorthosites of this study are representative of the highlands and the onset of plagioclase crystallization occurred after approximately 50 percent solidification of the initially melted moon, calculations with REE and Ba partition coefficients suggest that the REE and Ba abundances in the primeval moon were similar to those observed in basaltic achondrites.  相似文献   

10.
The lunar mare basalt 15555 from the edge of Hadley Rille has been dated at 3.3x10(9) years by both rubidium-strontium and potassium-argon techniques. Age and trace element abundances closely resemble those of the Apollo 12 mare basalts. Data from lunar basalts obtained thus far indicate that they cannot be derived by simple fractionation from a homogeneous source.  相似文献   

11.
The landing dynamics of and soil penetration by Surveyor I indicated that the lunar soil has a porosity in the range 0.35 to 0.45. Experiments with Surveyor III's surface sampler for soil mechanics show that the lunar soil is approximately incompressible (as the word is used in soil mechanics) and that it has an angle of internal friction of 35 to 37 degrees; these results likewise point to a porosity of 0.35 to 0.45 for the lunar soil. Combination of these porosity measurements with the already-determined radar reflectivity fixes limits to the dielectric constant of the grains of the lunar soil. The highest possible value is about 5.9, relative to vacuum; a more plausible value is near 4.3. Either figure is inconsistent with the idea that the lunar surface is covered by chondritic meteorites or other ultrabasic rocks. The data point to acid rocks, or possibly vesicular basalts; carbonaceous chondrites are not excluded.  相似文献   

12.
The lunar surface, a key proxy for the early Earth, contains relics of asteroids and comets that have pummeled terrestrial planetary surfaces. Surviving fragments of projectiles in the lunar regolith provide a direct measure of the types and thus the sources of exogenous material delivered to the Earth-Moon system. In ancient [>3.4 billion years ago (Ga)] regolith breccias from the Apollo 16 landing site, we located mineral and lithologic relics of magnesian chondrules from chondritic impactors. These ancient impactor fragments are not nearly as diverse as those found in younger (3.4 Ga to today) regolith breccias and soils from the Moon or that presently fall as meteorites to Earth. This suggests that primitive chondritic asteroids, originating from a similar source region, were common Earth-Moon-crossing impactors during the latter stages of the basin-forming epoch.  相似文献   

13.
麦饭石口服液中微量元素测定及其聚类分析   总被引:1,自引:1,他引:0  
[目的]测定麦饭石口服液中微量元素含量及其之间的相互关系。[方法]采用电感耦合等离子体发射光谱法(ICP-AES)测定麦饭石口服液中微量元素含量,并通过聚类分析的方法研究各微量元素之间的相互关系。[结果]麦饭石口服液中共含有9种微量元素,其中碘含量最多,其他依次为硅、磷、钼、硼、锶,钴、镍,它们含量相当,氟含量最少,锗在设定仪器条件下未检出。聚类谱系显示,这9种微量元素明显地分为5类。氟为Ⅰ类,碘为Ⅱ类,锶、磷为Ⅲ类,硅为Ⅳ类,钴、镍、硼、钼为Ⅴ类。[结论]该研究为麦饭石的应用提供了一定的理论参考依据。  相似文献   

14.
Neutron activation analyses of gallium, germanium, indium, and iridium in eight lunar samples and in meteorites and rocks (including four calciulnrich achondrites and five terrestrial basalts) with similar bulk compositions are reported. Lunar gallium concentrations are remarkably constant at about 5 parts per million, three times higher and four times lower than those in eucritic (calcium-rich) achondrites and terrestrial basalts, respectively. Lunar germanium concentrations range from 相似文献   

15.
Hotspots, basalts, and the evolution of the mantle   总被引:2,自引:0,他引:2  
The trace element concentration patterns of continental and ocean island basalts and of mid-ocean ridge basalts are complementary. The relative sizes of the source regions for these fundamentally different basalt types can be estimated from the trace element enrichment-depletion patterns. Their combined volume occupies most of the mantle above the 670 kilometer discontinuity. The source regions separated as a result of early mantle differentiation and crystal fractionation from the resulting melt. The mid-ocean ridge basalts source evolved from an eclogite cumulate that lost its late-stage enriched fluids at various times to the shallower mantle and continental crust. The mid-ocean ridge basalts source is rich in garnet and clinopyroxene, whereas the continental and ocean island basalt source is a garnet peridotite that has experienced secondary enrichment. These relationships are consistent with the evolution of a terrestrial magma ocean.  相似文献   

16.
Animal agriculture contributes to environmental pollutions through the surplus nitrogen(N), phosphorus(P), and trace minerals that animals excrete. Animal nutritionists have sought alternatives to formulate more efficient diets and reduce production costs and environmental concerns. In general, element excretions may be reduced by avoiding the overfeeding of specific elements or using nutritional approaches to improve element utilizations by the animals. Several nutritional strategies are possible for minimizing N, P, and trace mineral excretions: 1) to accurately meet dietary N, P and trace mineral requirements of animals, which includes reducing the dietary crude protein contents with synthetic amino acids or feeding high rumenally undegraded protein, minimizing the adequate levels of dietary P and trace elements, adopting phase or group-feeding program, and considering the bioavailable trace mineral contents in the feed ingredients; 2) to improve the bioavailabilities of dietary N, P, and trace elements for animals by using some additives(enzymes, growth promoters, probiotics, prebiotics, vitamin D isomers, and organic acids); 3) to use highly available P sources or organic trace elements. In the future, nutrient strategies must be integrated into total production systems so that animal production systems are environmentally safe as well as economically viable.  相似文献   

17.
A proton microprobe capable of focusing proton beams with energies up to 6 million electron volts to a spot size of 2 x 2 square micrometers has been used for chemical analysis of small grains of minerals in lunar samples by proton-induced x-ray emission. The proton microprobe is preferable to the electron microprobe for analyzing trace elements whose concentrations are below the detection limit of the latter and for analyzing objects with numerous major and trace elements with a wide range of atomic numbers. Application of the proton microprobe to biological samples is feasible.  相似文献   

18.
The fact that twice as many chondritic meteorites are observed falling in the afternoon as in the morning is not believed to be primarily of social origin, but to be a dynamic effect. Monte Carlo calculations show that the observed afternoon excess is not compatible with a lunar or Apollo asteroidal origin. Compatibility appears to require a source having an aphelion near Jupiter, such as could be provided conceivably by the Hilda or Trojan families of asteroids, or by short-period comets.  相似文献   

19.
Luminescence measurements of Tranquillity samples indicate that energy efficiencies for excitation by protons and ultraviolet are in the range 10(-6) or below; natural and induced thermoluminescence is even weaker. If these samples are typical, lunar surface luminescence cannot occur at reported levels. Comparison of proton luminescence spectra from the exterior and interior of rocks and fine fragments provides evidence of solar wind impingement on the moon's surface. Spectral reflectance and albedo measurements of fresh rock powders before and after both laboratory proton irradiation and fusion indicate that vitrification may be an important mechanism of lunar darkening.  相似文献   

20.
Nuclear gamma resonance measurements for the nuclide (57)Fe in lunar material were made in transmission on lunar fines and in scattering on intact lunar rock chips. No appreciable amnount of ferric iron was detected. Resonances were observed for ilmenite in all samples. Strong resonances attributed to ferrous iron in silicates, including pyroxenes and, in some samples, glasses and olivine, were also present. Metallic iron, alloyed with nickel, and troilite were also detected in the lunar fines. Differences in the spectra of various samples of lunar material and their significance are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号