首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dothistroma needle blight (DNB), caused by Dothistroma septosporum, is currently the disease causing most concern in British pine plantations. Previous artificial inoculation (AI) experiments showed that native Scottish Scots pine (Pinus sylvestris) populations vary in susceptibility to DNB. However, it is unclear if the relative susceptibility of Scots pine populations observed in these experiments can be replicated under natural conditions. It is also unknown whether relative susceptibility of Scots pine populations varies between sites or years. To answer these two questions, young Scots pine plants from six native Scottish populations (Abernethy, Allt Broighleachan, Amat, Beinn Eighe, Glen Cannich and Glen Loyne) were exposed to natural D. septosporum inoculum at two Scottish sites (Culbin and Torrs Warren) between 2012 and 2014. DNB disease incidence and severity was assessed each October. Relative susceptibilities of the Scots pine populations varied between sites and across years. In two of the three years at Torrs Warren (2012 and 2014), the relative susceptibilities of the populations were strongly positively correlated with those observed in previous AI experiments. In these years, trees from Glen Loyne and Glen Cannich were the most susceptible. Conversely, there was no correlation between the relative susceptibilities seen in any year at Culbin with those observed in AI experiments. At Culbin, Beinn Eighe was the most susceptible population. Across both sites, there was a strong positive relationship between total summer precipitation and DNB severity (= 0·93, = 8·2, = 0·001).  相似文献   

2.
The threat from pests and pathogens to native and commercially planted forest trees is unprecedented and expected to increase under climate change. The degree to which forests respond to threats from pathogens depends on their adaptive capacity, which is determined largely by genetically controlled variation in susceptibility of the individual trees within them and the heritability and evolvability of this trait. The most significant current threat to the economically and ecologically important species Scots pine (Pinus sylvestris) is dothistroma needle blight (DNB), caused by the foliar pathogen Dothistroma septosporum. A progeny‐population trial of 4‐year‐old Scots pine trees, comprising six populations from native Caledonian pinewoods each with three to five families in seven blocks, was artificially inoculated using a single isolate of D. septosporum. Susceptibility to D. septosporum, assessed as the percentage of non‐green needles, was measured regularly over a period of 61 days following inoculation, during which plants were maintained in conditions ideal for DNB development (warm; high humidity; high leaf wetness). There were significant differences in susceptibility to D. septosporum among families indicating that variation in this trait is heritable, with high estimates of narrow‐sense heritability (0.38–0.75) and evolvability (genetic coefficient of variation, 23.47). It is concluded that native Scots pine populations contain sufficient genetic diversity to evolve lower susceptibility to D. septosporum through natural selection in response to increased prevalence of this pathogen.  相似文献   

3.
Plantation forestry in Colombia is based mainly on non‐native species of Pinus and Eucalyptus. Since 2008, a disease with symptoms similar to those of dothistroma needle blight (DNB) has been found affecting large areas planted to Pinus spp. The aim of this study was to identify the causal pathogen as well as to document the levels of disease incidence and severity. Isolates from each of three forestry zones, collected from different host species, were compared based on rDNA sequence of the ITS regions. These were conclusively identified as Dothistroma septosporum, one of two Dothistroma spp. known to cause DNB. Susceptibility was greatest on low elevation Pinus tecunumanii followed by Pinus kesiya and Pinus oocarpa. Pinus maximinoi and high elevation P. tecunumanii showed tolerance to D. septosporum. The disease incidence in the different zones varied significantly with the North zone being the most severely affected. This constitutes the first report of disease distribution and susceptibility of hosts, as well as the first consideration of the relative importance of D. septosporum in Colombia.  相似文献   

4.
Dothistroma needle blight (DNB) is a serious disease of the Pinaceae, mainly Pinus species, caused by the fungi Dothistroma septosporum and D. pini. Both species are regarded as invasive forest pathogens worldwide, with rising incidence in central and northern Europe over the last three decades. In this work, 29 sites were investigated between 2013 and 2015 in south-western Turkey. Morphological examination of needles confirmed DNB infection (i.e., Dothistroma conidiospores observed) at 18 sites, and a total of 108 Dothistroma sp. isolates were obtained from 11 of the sites. Host age seemed to be an important factor in both occurrence and severity of DNB in Pinus brutia forests. Continuous rainy days, especially in December, may increase severity of disease; however, extreme rain events may reduce available conidiospores on plant tissues or in the air. Species-specific mating type primers showed that all isolates were D. septosporum; D. pini was not detected. The mating type ratio was close to 1:1, indicating sexual recombination was occurring. Eleven microsatellite markers revealed 59 unique multilocus haplotypes (MLHs) among the 73 isolates originating from different conidiomata. The majority of MLHs were represented by a single isolate (n = 52) and only one MLH was shared between two localities. Analyses showed high genetic diversity, isolation-by-distance, and clear population clusters. These findings suggest that D. septosporum is well established in south-western Turkey and is probably not a recent introduction.  相似文献   

5.
The natural spread of Dothistroma septosporum, the causal agent of a foliar disease of pines, was investigated at three sites in the south of England using trap plants. The pathogen is considered to be primarily rain‐splash dispersed, but this study shows that it can be spread many hundreds of metres from an inoculum source, demonstrating that dispersal is not solely via rain splash. The maximum distance the pathogen was recorded from any infection source was in excess of 1400 m, over five times the distance defined in the only previous work of this kind. Consequently, a reassessment of forest and production nursery management practices is called for, as these assume that the pathogen only spreads naturally over limited distances. Detection of the pathogen on trap plants over 100 m from the inoculum source was, in most cases, only possible using quantitative real‐time PCR diagnosis. The entire diagnostic procedure, from DNA extraction to amplification, was able to detect a minimum of approximately 17 D. septosporum cells in a pine needle sample, assuming only a moderate DNA extraction efficiency of 30%.  相似文献   

6.
Dothistromin is a broad‐spectrum mycotoxin produced by the Dothideomycete pine needle pathogen Dothistroma septosporum. It accumulates in lesions, causing characteristic red bands on needles infected with this fungus. Dothistromin is similar in structure to the aflatoxin precursor versicolorin B and the biosynthetic pathways of these toxins share many common gene products. Although dothistromin is not essential for pathogenicity in dothistroma needle blight, its presence in infected needles suggests it might have a role in the disease process. The hypothesis that dothistromin is a virulence factor was tested by studying Pinus radiata infected with dothistromin‐deficient mutants of D. septosporum. The mutants were able to infect pine needles and complete their life cycle as previously shown, and were unaffected in spore germination, epiphytic growth or needle penetration. However, colonization of the mesophyll by the mutants was restricted compared to the wild type. Correspondingly, lesions produced by the mutants were smaller and produced significantly fewer spores than lesions produced by wildtype strains. Interestingly, ‘green islands’, in which chlorophyll was maintained at a higher level than in adjacent chlorotic and necrotic regions, surrounded early‐appearing lesions caused by both wildtype and mutant strains. At a later stage of disease development green islands were still present in the mutant but appeared to be masked by the extended dothistromin‐containing lesions in the wild type. Overall the results support a role for dothistromin in virulence in dothistroma needle blight.  相似文献   

7.
The order Coryneliales includes several fungi such as Corynelia spp. that are pathogenic to trees in the Podocarpaceae. The aim of this study was to assess the spatial pattern and temporal progress of disease caused by Corynelia uberata on Podocarpus falcatus in Ethiopian forests and to evaluate the germination potential of seed retrieved from fruit infected by C. uberata. Corynelia uberata was found on leaves, young stems and/or on fruit of P. falcatus in Ethiopian forests. Spatial analysis in the Adaba‐Dodola forest showed that disease intensity of C. uberata was significantly higher in non‐‘WAJIB’ blocks (disturbed forest) than ‘WAJIB’ blocks (sustainably managed forest) (< 0·0001). In the temporal disease progress study, a significantly higher incidence and severity of disease on fruit was recorded during the wet season relative to dry season (< 0·0001). The green milk stage of fruit exhibited significantly higher mean incidence (< 0·0001) and severity (< 0·0001) of disease compared to other growth stages of fruit. The disease incidence and severity in general, as well as on different fruit growth stages, were highly correlated (< 0·0001, R2 ≥ 0·95). Germination rate of seed decreased significantly with an increase in the level of fruit infection by C. uberata (< 0·0001). Thus, C. uberata can apparently influence germination of seed and may pose a threat to the regeneration of P. falcatus from seeds in Ethiopian forests.  相似文献   

8.
Gnomoniopsis castanea is an emerging fungal pathogen causing nut rot of sweet chestnut, Castanea sativa. This study was aimed at testing and modelling the effects of climate on disease incidence. Up to 120 ripe nuts were collected in 2011 from trees in each of 12 sites located in the northwest of Italy. The incidence of G. castanea in each site was expressed as the number of infected nuts out of the total number of nuts sampled (%), determined by combining the results of morphological identification of isolates obtained from nuts, and their typing through a newly developed taxon‐specific molecular assay. Disease incidence ranged from 20 to 93%, depending on site. Geostatistical analyses revealed that, despite the clustering of sites (< 0·05), disease incidence was not spatially autocorrelated (> 0·05). This finding suggests that the disease is influenced by site‐dependent factors whose scale (c. 7·5–15·6 km) is consistent with the climate variability throughout the sampling region. Multivariate analyses on maximum, mean and minimum temperatures and on rainfall showed that warmer temperatures were associated with higher levels of disease incidence. The temperatures of months before nut harvesting were selected as predictors for partial least squares regression (PLSR) models (GnoMods) of G. castanea incidence. External validation on data collected either on sites or in years not used for model fitting showed the good predictive abilities of the GnoMods (Spearman's ρobs/pred > 0·72, < 0·05). The above findings support a relationship between climate and incidence of G. castanea, providing statistical tools to forecast disease incidence at site level.  相似文献   

9.
The suitability of watermelon cultivars and cucurbit rootstocks as hosts to Meloidogyne incognita and M. javanica was determined in pot and field experiments. Meloidogyne incognita showed higher reproduction than did M. javanica on watermelon and cucurbit rootstocks. The watermelon cultivars did not differ in host status when challenged with these two species and supported lower nematode reproduction than the cucurbit rootstocks. Rootstocks Lagenaria siceraria cv. Pelops and Cucurbita pepo AK15 supported lower reproduction than did the squash hybrid rootstocks (C. maxima × C. moschata). Egg production increased (< 0·05) with a rising initial inoculum level (Pi) in the non‐grafted Sugar Baby but the reproduction factor Rf (eggs per plant/Pi) was similar at two Pi levels. The total egg production in the plants grafted onto squash hybrids RS841 and Titan was greater (< 0·05) at the higher Pi, but the Rf values were lower. The development of field‐grown non‐grafted watermelon plants was significantly stunted in plots where nematodes were detected at planting. However, no differences were observed in plots with grafted plants. In plots with nematodes, non‐grafted and Titan‐grafted plants had similar yields that were higher than that of RS841‐grafted plants. In the commercial plastic houses with grafted watermelon, the average Rf value was 42‐fold, confirming the high susceptibility of squash hybrids as rootstocks for grafted watermelon. The Titan–Sugar Baby combination was tolerant to M. javanica.  相似文献   

10.
The aim of this 4‐year study was to characterize temporal development of brown rot blossom blight and fruit blight (caused by Monilinia spp.) and their sporulating areas in sour cherry orchards; and to determine the relationships amongst incidence and sporulating area of blossom blight, fruit blight and fruit rot. The study was performed in integrated and organic orchard blocks on two cultivars (Újfehértói fürtös and Érdi b?term?). On both cultivars, disease progress on flowers and fruits was 2–10 times slower in the integrated than in the organic management system. The peak incidence values were 9 and 31 days after petal fall for blossom blight and fruit blight, respectively. After these dates, no new blight symptoms on flowers and/or fruits appeared and the disease was levelling off. Final blossom blight incidence ranged from 1 to 5% and from 12 to 34%, and fruit rot incidence from 2 to 6% and from 11 to 26% in the integrated and the organic orchards, respectively. The sum of fruit blight incidence ranged from 9 to 22% for the organic system, but was below 5% for the integrated system, while the final sporulating area was 5–16 mm2 and <3 mm2, respectively. Among the five highest Pearson's correlation coefficients, relationships between blossom blight and early fruit blight stage (= 0·845, = 0·0087 integrated; = 0·901, = 0·0015 organic), and between sporulating area and fruit rot (= 0791, = 0·0199 integrated; = 0·874, = 0·0039 organic) were the most significant relationships from an epidemic standpoint as they indicated a connection between different brown rot symptom types.  相似文献   

11.
Breeding efforts have been undertaken to increase resistance of maize to fusarium ear rot (FER) and to fumonisin accumulation. Flavonoids in the pericarp of the kernels are considered particularly able to reduce the fumonisin accumulation. The aim of this 2‐year field study was to assess the effect of flavonoids on FER symptoms and fumonisin contamination in maize kernels using two isogenic hybrids, one providing pigmentation in the pericarp (P1‐rr) and the other without it (P1‐wr). FER incidence (FERi), FER severity (FERs), the incidence of infections caused by Fusarium spp. in symptomless kernels (FF) and fumonisin contamination (FUM) were assessed in both hybrids. Significant differences between the two hybrids were detected mainly in 2012 trials where P1‐rr showed lower FERi (< 0·01), FF (< 0·05) and FUM (< 0·1) than P1‐wr. Site, characterized by local temperature and precipitation, played a relevant role in modelling all the measured variables, as its effect was highly significant in both years, whether they were considered individually or altogether. The interaction of hybrid with location was a significant (< 0·001) source of variation only for FF. FF, together with FERi, was also significantly (< 0·001) influenced by the interaction of hybrid with year. In general, FUM was more influenced by year and location parameters, such as temperatures during late ripening, than by flavonoid presence in kernel pericarp. The results indicate that flavonoid pigments alone may not be an important component in the resistance of maize to fumonisin accumulation.  相似文献   

12.
Potato blackleg, caused by Pectobacterium and Dickeya species, is one of the most significant bacterial diseases affecting potato production globally. Although it is generally accepted to be a seedborne disease, the processes underlying the spread of disease largely remain unknown. Spatial point pattern analysis was applied to blackleg occurrence in seed potato crops in Scotland during the period of 2010–2013 (approximately 8000 blackleg‐affected crops), to assess whether its distribution was random, regular or aggregated, and the spatial scales at which these patterns occurred. Blackleg‐affected crops derived from mother stocks with symptoms were omitted from the analyses in order to examine the statistical evidence for horizontal transmission of blackleg. The pair correlation function was used to test for global spatial autocorrelation, and results indicated significant (< 0·05) clustering of incidence at a wide range of spatial scales. Strength of clustering (degree of aggregation) among blackleg‐affected crops was notably larger at spatial scales of 25 km or less. A hot‐ and coldspot analysis was performed to test for local spatial autocorrelation, and statistically significant clusters of high and low values of disease were found across the country. These analyses provide the first quantitative evidence of localized and large‐scale spatial clustering of potato blackleg. Understanding the mode(s) of inoculum dispersal will be important for developing new management strategies that minimize host–pathogen contacts in potato and numerous other crops affected by pathogenic Pectobacterium and Dickeya species.  相似文献   

13.
Since 1911, dothistroma needle blight, caused by Dothistroma septosporum, has been recorded in most European countries. In the Czech Republic, the fungus has become an important disease of pines since 2000, especially Austrian pines in plantations of Christmas and ornamental trees. The aim of this study was to analyse the population structure, gene flow and mode of reproduction of this pathogen. Microsatellite and mating‐type markers were analysed in a Dothistroma population in the southeastern part of the country using reference isolates from other European countries. The haplotypic diversity was high, with 87 unique and 13 shared haplotypes (probable clones) identified in 121 samples. Based on structure analysis, the isolates were divided into two populations, with an uneven distribution over the sampling sites. The grouping of the sites to the populations did not follow a geographical pattern because certain isolates that were sympatrically co‐occurring at the same site were placed in different populations. Tests for random mating (the index of association and a parsimony tree‐length permutation test) showed a significant clonal mode of reproduction in most cases, but the intrapopulation haplotypic diversity is unexpectedly high. Although a teleomorphic stage of D. septosporum has not been previously observed in the Czech Republic, the high intrapopulation haplotypic diversity can be explained by infrequent sexual reproduction consistent with the occurrence of both mating types.  相似文献   

14.
This study tested the hypothesis that Botyrtis cinerea shows host specialization on tomato and lettuce, using phenotypic and genotypic tools. Strains were isolated from tomato and lettuce grown together in the same greenhouse. Forty‐four lettuce strains and 42 tomato strains were investigated for their genetic diversity and their aggressiveness. Both gene diversity and allelic richness were significantly higher in lettuce strains than in tomato strains (= 0·01). Cluster analysis revealed a clear division of the strains under study into two clusters. However, this structure did not separate the strains according to their host of origin. Tomato strains were significantly more aggressive than lettuce strains when inoculated on tomatoes (= 0·001), but no significant differences in aggressiveness were observed when the strains were inoculated on lettuce (= 0·17) or on apple (= 0·87). The results suggest an absence of clear host specialization of B. cinerea on tomato and lettuce.  相似文献   

15.
The effects of post‐harvest curing and storage temperature on severity of black dot, caused by Colletotrichum coccodes, were investigated for potato crops grown for different crop durations (days from 50% emergence to harvest) in soils that posed a low, medium and high risk of disease. In field trials over four growing seasons (2005–8), black dot severity at harvest increased with increasing crop duration, within the range 103–146 days from 50% emergence to harvest (< 0.05). In field trials over three growing seasons (2006–8), black dot severity on tubers at harvest increased significantly with increasing soil inoculum in each year, within the range 43–4787 pg C. coccodes DNA/g soil (< 0.05). Storage trials were conducted to measure the influence of accumulated post‐harvest temperature on black dot. In 2005, no difference in black dot severity was observed on tubers stored for 20 weeks at 2.5 and 3.5 °C. In 2006 (but not 2007), increasing the duration of curing after harvest from 4 to 14 days increased black dot severity on tubers from 8.9 to 11.2% (P < 0.01) in long duration crops (>131 days after 50% emergence) grown under high (>1000 pg C. coccodes DNA/g soil) soil inoculum. The number of days of curing did not affect disease severity for shorter duration crops grown at high soil inoculum, or on crops grown at medium or low (100–1000 and <100 pg C. coccodes DNA/g soil, respectively) soil inoculum concentrations. Soil inoculum and crop duration together provided a reasonable prediction of black dot severity at harvest and after a 20‐week storage period.  相似文献   

16.
Grosmannia alacris is a fungus commonly associated with root‐infesting bark beetles occurring on Pinus spp. The fungus has been recorded in South Africa, the USA, France, Portugal and Spain and importantly, has been associated with pine root diseases in South Africa and the USA. Nothing is known regarding the population genetics or origin of G. alacris, although its association with root‐infesting beetles native to Europe suggests that it is an invasive alien in South Africa. In this study, microsatellite markers together with newly developed mating type markers were used to characterize a total of 170 isolates of G. alacris from South Africa and the USA. The results showed that the genotypic diversity of the South African population of G. alacris was very high when compared to the USA populations. Two mating types were also present in South African isolates and the MAT1‐1/MAT1‐2 ratio did not differ from 1:1 (χ2 = 1·39, = 0·24). This suggests that sexual reproduction most probably occurs in the fungus in South Africa, although a sexual state has never been seen in nature. In contrast, the large collection of USA isolates harboured only a single mating type. The results suggest that multiple introductions, followed by random mating, have influenced the population structure in South Africa. In contrast, limited introductions of probably a single mating type (MAT1‐2) may best explain the clonality of USA populations.  相似文献   

17.
The aim of this research was to confirm the efficacy of the yeast antagonist Candida sake CPA‐1 in suppressing botrytis bunch rot development, in an organic vineyard under Mediterranean conditions for two seasons, and compare its performance with that of two biologically based products currently registered for botrytis bunch rot control in New Zealand. In 2009, treatments applied were: commercial formulations of Ulocladium oudemansii (BOTRY‐Zen®) and chitosan (ARMOUR‐Zen®), C. sake CPA‐1 combined with the fatty acid‐based additive Fungicover® and combinations of these products. All treatments were applied six times between early flowering and harvest and compared with an unsprayed control. In 2010, the treatments focused on C. sake and Fungicover and the number of applications was reduced from six to four. The population dynamics of U. oudemansii and C. sake were measured and wine quality tests were carried out in both seasons. Disease control achieved by C. sake treatments in 2009 were comparable to those achieved by BOTRY‐Zen and ARMOUR‐Zen. Applications of C. sake plus Fungicover between flowering and harvest significantly (< 0·05) reduced botrytis bunch rot incidence and severity by 64% and 90%, respectively, compared with the untreated control in 2009, and by 67% and 89%, respectively, in 2010. Treatments did not adversely affect wine quality parameters after treated grapes were processed. Candida sake consistently provided effective control of botrytis bunch rot in grapes under different meteorological and disease pressure conditions, thereby improving its potential for future commercial applications.  相似文献   

18.
The relationship between initial soil inoculum level of Spongospora subterranea f. sp. subterranea (Sss) and the incidence and severity of powdery scab on potato tubers at harvest was investigated. In all experiments soil inoculum level of Sss (sporeballs/g soil) was measured using a quantitative real‐time PCR assay. Of 113 commercial potato fields across the UK, soil inoculum was detected in 75%, ranging from 0 to 148 Sss sporeballs/g soil. When arbitrary soil inoculum threshold values of 0, <10 and >10 sporeballs/g soil were set, it was observed that the number of progeny crops developing powdery scab increased with the level of inoculum quantified in the field soil preplanting. In four field trials carried out to investigate the link between the amount of inoculum added to the soil and disease development, disease incidence and severity on progeny tubers was found to be significantly (P < 0·01) greater in plots with increasing levels of inoculum incorporated. There was a cultivar effect in all years, with disease incidence and severity scores being significantly greater in cvs Agria and Estima than in Nicola (P < 0·01).  相似文献   

19.
Aspergillus flavus accumulates carcinogenic aflatoxins in peanuts, mainly in immature kernels during drought. Aspergillus flavus invasion induces accumulation of phytoalexins, mostly stilbenoids in peanut, as a plant defence mechanism. Because fungal laccases are often related to pathogenicity and can degrade stilbenoids, this study reports for the first time the expression of A. flavus laccases in the presence of kernels, hulls and low water potential in relation to the accumulation of phytoalexins in peanut kernels. Packed‐cell volume (PCV) of A. flavus biomass was significantly higher ( 0·01) in the presence of mature kernels, dead kernels, and mature and immature peanut hulls than the control. The presence of kernels and hulls lowered the level of expression of three A. flavus laccases by 4–6‐fold (< 0·01), whereas 3% sucrose up‐regulated them by 35–304‐fold, and low water potential (?1·1 MPa) up‐regulated them by 85–248‐fold (< 0·01). Phytoalexins that accumulated in peanut kernels in the presence of A. flavus and were quantified by HPLC‐DAD‐MS were primarily the stilbenoids: 3′‐isopentadienyl‐3,5,4′‐trihydroxystilbene (IPD), chiricanine‐A, arachidin‐2, arachidin‐3 and arahypin‐1. Apparent degradation of phytoalexins was observed when using a priori induction of phytoalexins in seeds in combination with a priori induction of laccases in A. flavus. The up‐regulation of laccase expression observed at ?1·1 MPa and at high sucrose concentration could be contributing to peanut invasion in immature kernels under drought conditions.  相似文献   

20.
Although magnesium (Mg) is considered an essential element for wheat growth, its importance for disease control has often been overlooked, and the physiological features of diseased plants mediated by Mg remain elusive. In this study, the effect of three Mg concentrations (0·25, 2·5 and 4 mm ) on wheat resistance to leaf blast (Pyricularia oryzae), leaf gas exchange, invertase activity, cellular damage and foliar concentration of photosynthetic pigments and nutrients was investigated. Foliar Mg increased from 1·9 to 3·9 g kg?1, whereas calcium (Ca) decreased from 7·8 to 4·9 g kg?1 as the applied Mg increased from 0·25 to 4 mm . Blast severity increased from 11·3 to 39·6% as the applied Mg increased from 0·25 to 4 mm . Photosynthesis, stomatal conductance, transpiration and photosynthetic pigment concentrations decreased in inoculated plants compared to non‐inoculated plants regardless of the Mg concentration; however, the reductions were more pronounced for plants grown with 4 mm Mg than those grown with 0·25 mm Mg. On the other hand, a higher internal CO2 concentration, invertase activity and malondialdehyde concentration was recorded in inoculated plants grown with 4 mm Mg compared to those grown with 0·25 mm Mg. In conclusion, reduced Ca uptake may partially explain the increased susceptibility of wheat to leaf blast with the highest Mg concentration. Mg‐induced susceptibility to leaf blast appeared responsible for the photosynthetic impairments. These were most probably due to biochemical constraints because plants grown with the highest Mg concentration suffered extensive cellular damage and degradation of photosynthetic pigments as a result of high disease severity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号