首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The fungus Rhizoctonia solani AG‐1 IA causes sheath blight, one of the most important rice diseases worldwide. The first objective of this study was to analyse the genetic structure of R. solani AG‐1 IA populations from three locations in the Iranian Caspian Sea rice agroecosystem. Three population samples of R. solani AG‐1 IA isolates were obtained in 2006 from infected rice fields separated by 126–263 km. Each field was sampled twice during the season: at the early booting stage and 45 days later at the early mature grain stage. The genetic structure of these three populations was analysed using nine microsatellite loci. While the population genetic structure from Tonekabon and Amol indicated high gene flow, they were both differentiated from Rasht. The high gene flow between Tonekabon and Amol was probably due mainly to human‐mediated movement of infested seeds. The second objective was to determine the importance of recombination. All three populations exhibited a mixed reproductive mode, including both sexual and asexual reproduction. No inbreeding was detected, suggesting that the pathogen is random mating. The third objective was to determine if genetic structure within a field changes over the course of a growing season. A decrease in the proportion of admixed genotypes from the early to the late season was detected. There was also a significant (P = 0·002) increase in the proportion of loci under Hardy–Weinberg equilibrium. These two lines of evidence support the hypothesis that basidiospores can be a source of secondary inoculum.  相似文献   

2.
This study aimed to assess the extent and distribution of Fusarium graminearum species complex (FGSC) diversity in rice seeds produced in southern Brazil. Four species and two trichothecene genotypes were detected among 89 FGSC isolates, based on a multilocus genotyping assay: F. asiaticum (69·6%) with the nivalenol (NIV) genotype, F. graminearum (14·6%) with the 15‐acetyldeoxynivalenol (ADON) genotype, and F. cortaderiae (14·6%) and F. meridionale (1·1%), both with the NIV genotype. Seven selected F. asiaticum isolates from rice produced NIV in rice‐based substrate in vitro, at levels ranging from 4·7 to 84·1 μg g?1. Similarly, two F. graminearum isolates from rice produced mainly 15‐ADON (c. 15–41 μg g?1) and a smaller amount of 3‐ADON (c. 6–12 μg g?1). One F. meridionale and two F. cortaderiae isolates did not produce detectable levels of trichothecenes. Two F. asiaticum isolates from rice and two from wheat (from a previous study), and one F. graminearum isolate from wheat, were pathogenic to both crops at various levels of aggressiveness based on measures of disease severity in wheat spikes and rice kernel infection in a greenhouse assay. Fusarium asiaticum and the reference F. graminearum isolate from wheat produced NIV, and deoxynivalenol and acetylates, respectively, in the kernels of inoculated wheat heads. No trichothecene was produced in kernels from inoculated rice panicles by any of the isolates. These findings constitute the first report of FGSC composition in rice outside Asia, and confirm the dominance of F. asiaticum in rice agroecosystems.  相似文献   

3.
In order to improve understanding of its diversity, 338 isolates of Cryphonectria parasitica, the causal agent of chestnut blight, were sampled from 10 chestnut populations throughout chestnut‐growing coastal and continental areas of Croatia. Eighteen vegetative compatibility (VC) types were identified. The VC type EU‐1 was the most widespread, comprising 42·9% of the isolates, followed by EU‐2 (21%) and EU‐12 (14·2%). In respect to the occurrence of the main VC types, the C. parasitica populations in Croatia combined features of both northwestern and southeastern European populations. Perithecia and mating‐type ratios of approximately 1 : 1 were found in all populations, suggesting that sexual reproduction of the fungus is common in Croatia. Natural hypovirulence was also evident in all populations, with incidence of hypovirus‐infected isolates ranging from 12·7% in Istria‐Buje to 66·6% in the continental part of the country. A total of 36 hypovirus‐infected isolates sampled throughout Croatia were analysed in ORF‐A and ORF‐B by RT‐PCR/RFLP analysis. All viral isolates belonged to the Italian subtype of Cryphonectria hypovirus 1 (CHV‐1) and were closely related to the isolates found in other European countries. The RFLP patterns found were also identical or similar to the patterns of three isolates collected in Croatia 22 years ago, suggesting a slow evolution of the hypovirus.  相似文献   

4.
Cryphonectria parasitica, the causal agent of chestnut blight, has been present in Slovenia since at least 1950. To improve understanding of its diversity, 254 isolates of the fungus from 11 Slovenian populations were sampled. Fifteen vegetative compatibility (vc) types were identified. The dominant vc type was EU‐13, comprising 40·1% of all isolates tested, followed by EU‐1 (19·7%), EU‐2 (12·2%) and EU‐12 (9%). The vc type diversity in the most diverse population sampled in Slovenia was higher than in the populations found previously in northern Italy and Croatia. Both mating types and perithecia were observed in surveyed populations. Natural hypovirulence was found in six out of seven populations tested, with frequencies ranging from 72·2% in the population sampled near the Croatian border to 11·1% in the population sampled near the Austrian border. All identified hypoviral isolates (21) belonged to the Italian subtype of Cryphonectria hypovirus 1 and were closely related to the hypoviruses found in other European countries. Despite the high vc type diversity, incidence of hypovirulence was also high, indicating widespread natural biological control of the disease.  相似文献   

5.
An analysis of allelic diversity at nine microsatellite loci provided an insight into the population structure of Botrytis cinerea from four fields (sampled in 2003 and 2004) that represented important regional locations for chickpea production in Bangladesh. Although three populations were limited by sample size after clone‐correction, a total of 51 alleles were amplified among 146 B. cinerea isolates from Bangladesh, which revealed a high amount of within‐population and overall genetic diversity (HS = 0·48 and H= 0·54, respectively). The percentage of maximal genotypic diversity (G) ranged between populations (G = 23–40), with a total of 69 haplotypes detected (G = 25). Bayesian cluster analysis depicted two major clusters distributed among the four Bangladesh populations, indicating population admixture from two origins that have spread throughout these regions. Genotype flow between regions was detected and indicated the spread of clonal lineages, consistent with relatively low differentiation among the four populations (mean GST = 0·1, P < 0·05). These results highlighted the potential threat of host resistance breakdown as a result of considerable genetic diversity, genotype flow and the evolutionary potential of B. cinerea.  相似文献   

6.
Sclerotinia trifoliorum, an important pathogen of cool season legumes, displays both homothallism and heterothallism in its life cycle, unique among members of the genus Sclerotinia. Very little is known about its genetic diversity and population structure. A sample of 129 isolates of S. trifoliorum from diseased chickpea in California was investigated for genetic diversity, population differentiation and reproductive mode. Genetic diversity was estimated using mycelial compatibility (MCG) phenotypes, rDNA intron variation, and allelic diversity at seven microsatellite loci. Genetic analysis revealed high levels of genotypic diversity demonstrated by high genotypic richness (0·88). Similarly, high levels of gene diversity (mean expected heterozygosity HE = 0·68) were observed at the microsatellite loci. Geographic populations of S. trifoliorum were highly admixed as evident from low FST values (0–0·11), suggesting high contemporary or historical gene flow. Hierarchical analysis of molecular variance showed that more than 92% of the genetic variation occurred among isolates within populations. Bayesian clustering analysis identified four cryptic genetic populations that were not correlated to geographic location, and index of multilocus association was non‐significant in each of the four genetic populations. However, the presence of identical haplotypes within and among populations indicates clonal reproduction. The high levels of haplotype diversity and population heterogeneity, a lack of correspondence between MCG and microsatellite haplotype, and low levels of population differentiation suggest that populations of S. trifoliorum in chickpea have been undergoing extensive outcrossing and migration events probably shaped by human‐mediated dissemination, the underlying diverse cropping systems, and chickpea disease management practices.  相似文献   

7.
Phytophthora austrocedrae is a recently discovered pathogen that causes severe mortality of Austrocedrus chilensis in Patagonia. The high level of susceptibility of the host tree, together with the distribution pattern of the pathogen, have led to the hypothesis that P. austrocedrae was introduced into Argentina. The aim of this study was to assess the population structure of Paustrocedrae isolates from Argentina in order to gain an understanding of the origin and spread of the pathogen. Genetic diversity was determined based on amplified fragment length polymorphisms (AFLPs). In total, 48 isolates of Paustrocedrae were obtained from infected A. chilensis trees, representing the geographical range of the host. Four primer combinations were used for the AFLP analysis. Of the 332 scored bands, 12% were polymorphic. Gene diversity (h) ranged from 0·01 to 0·03; the Shannon index (I) ranged from 0·01 to 0·04. A high degree of genetic similarity was observed among the isolates (pairwise S values = 0·958–1; 0·993 ± 0·009, mean ± SD). A frequency histogram showed that most of the isolate pairs were identical. Principal coordinate analysis using three‐dimensional plots did not group any of the isolates based on their geographical origin. The low genetic diversity (within and between sites) and absence of population structure linked to geographic origin, together with the aggressiveness of the pathogen and the disease progression pattern, suggest that Paustrocedrae might have been introduced into Argentina.  相似文献   

8.
The Basidiomycete fungus Rhizoctonia solani anastomosis group (AG)-1 IA is a major pathogen of soybean in Brazil, where the average yield losses have reached 30 to 60% in some states in Northern Brazil. No information is currently available concerning levels of genetic diversity and population structure for this pathogen in Brazil. A total of 232 isolates of R. solani AG1 IA were collected from five soybean fields in the most important soybean production areas in central-western, northern, and northeastern Brazil. These isolates were genotyped using 10 microsatellite loci. Most of the multilocus genotypes (MLGTs) were site-specific, with few MLGTs shared among populations. Significant population subdivision was evident. High levels of admixture were observed for populations from Mato Grosso and Tocantins. After removing admixed genotypes, three out of five field populations (Maranhao, Mato Grosso, and Tocantins), were in Hardy-Weinberg (HW) equilibrium, consistent with sexual recombination. HW and gametic disequilibrium were found for the remaining soybean-infecting populations. The findings of low genotypic diversity, departures from HW equilibrium, gametic disequilibrium, and high degree of population subdivision in these R. solani AG-1 IA populations from Brazil are consistent with predominantly asexual reproduction, short-distance dispersal of vegetative propagules (mycelium or sclerotia), and limited long-distance dispersal, possibly via contaminated seed. None of the soybean-infecting populations showed a reduction in population size (bottleneck effect). We detected asymmetric historical migration among the soybean-infecting populations, which could explain the observed levels of subdivision.  相似文献   

9.
A genomic library was used to develop seven SSR markers for studying the population genetics of Alternaria solani, a pathogenic fungus causing early blight disease of potato and tomato worldwide. Population genetic analysis of 268 isolates of A. solani sampled from four locations, each representing one of four potato production systems in China, indicates that these SSR markers are moderately diverse, selectively neutral and possibly unlinked. Population genetic analysis also indicated that genetic variation of A. solani in China is high. About 2/3 of 123 genotypes were detected only once and genotype diversity measured by the standardized Shannon index ranged between 0·82 and 0·92 in the populations. Although clones were detected in multiple populations separated by thousands of kilometres, random association among SSR loci was found in half of the populations assayed. On average, nearly six copies of genetic material were exchanged among these populations each generation and no isolation by distance was detected. It is hypothesized that the joint effects of cryptic sexual reproduction and human‐mediated gene flow may account for the observed population genetic structure of A. solani in China.  相似文献   

10.
Calonectria leaf blight, caused by Calonectria pteridis, is currently one of the main foliar diseases in eucalypt plantations in Brazil. In warm and high rainfall regions, the disease can be a limiting factor for eucalypt production when planting susceptible genotypes. The most effective method for controlling this disease in the field is the use of resistant genotypes, which requires knowledge of the genetic variability and aggressiveness of the pathogen population for effective deployment of plant resistance. This work evaluated the genetic diversity and aggressiveness of C. pteridis populations obtained from infected eucalypt plants in Monte Dourado (Pará state) and Imperatriz (Maranhão state), Brazil. To study the genetic diversity, 16 ISSR primers were tested, five of which amplified polymorphic, reproducible and informative bands. Thirty-one closely related genotypes were identified from 84 isolates studied, indicating that the population has a low genetic diversity. The aggressiveness of seven isolates, selected according to geographic origin and their clustering in the ISSR-based dendogram, was determined by inoculation of a hybrid Eucalyptus grandis × E. urophylla clone under controlled conditions. Disease severity was assessed by both measuring the percentage of plant defoliation and assigning a score according to a diagrammatic scale of symptoms. A high correlation between the two evaluation methods was observed, which revealed significant differences in aggressiveness among the isolates. The diagrammatic scale is recommended for disease evaluation because results are obtained much faster, before the occurrence of severe defoliation. No correlation between clustering in the ISSR-based phylogenetic analysis and aggressiveness was observed.  相似文献   

11.
Glasshouse and field experiments showed that the pathogenicity and disease type on potato varied between different anastomosis groups (AGs) of Rhizoctonia solani. For example, severe stem and stolon disease developed in plants inoculated with a single isolate of AG3PT and AG5. Severe root disease was observed with single isolates of AG8 and to a lesser extent AG3PT, but rarely with single isolates of the other AGs tested. In both field and glasshouse experiments the AG2‐1 isolate (X81) produced only small lesions (<5 mm). However, this was not representative of two other AG2‐1 isolates. When AG2‐1 isolates of the three different rDNA IGS1 types were tested in a glasshouse trial, one caused more severe stem and stolon infection than AG3PT. In the field experiment, the yield of tubers, by weight, was significantly less (P < 0·05) in all inoculated plants than for uninoculated (control) plants. Yield losses were greatest and tuber numbers smallest in plots inoculated with an AG8 isolate, suggesting that root infection is important in determining quantitative yield loss. The incidence of black scurf was greatest in the progeny tubers in plots inoculated with AG3PT (83·9%), whereas only very small amounts of black scurf developed on tubers from plants infected with AG2‐1 (510 bp) or AG5 isolates. This is supported by laboratory tests, where isolates of AG3PT produced significantly more sclerotia on potato dextrose agar than isolates of AGs 2‐1, 4, 5 and 8.  相似文献   

12.
The population structure of Rhizoctonia solani AG-1 IA causing rice sheath blight from India was evaluated for 96 isolates using seven RFLP loci. Nineteen of the isolates did not hybridise to R. solani AG-1 IA RFLP probes and rDNA analyses subsequently confirmed that they were either Ceratobasidium oryzae-sativae isolates or another Rhizoctonia sp. The population structure of the remaining 77 R. solani AG-1 IA Indian isolates was similar to that of a previously characterized Texas population. Clonal dispersal of R. solani AG-1 IA in India was moderate within fields and no clones were shared among field populations. Low levels of population subdivision and small genetic distances among populations were consistent with high levels of gene flow. Frequent sexual reproduction was indicated by the fact that most populations were in Hardy–Weinberg equilibrium (HWE). The two loci (R68 and R111) that deviated significantly from HWE showed an excess of heterozygosity. Although Texas and Indian populations were geographically very distant, they exhibited only moderate population subdivision, with an FST value of 0.193.  相似文献   

13.
Rhizoctonia solani AG1IA is an important fungal pathogen causing significant yield and quality losses in rice production. However, little is known about the levels of genetic diversity and structure of this pathogen in North India. Out of 240 samples collected from different rice-growing regions of North India, 112 isolates were identified as R. solani AG1IA subgroups using species-specific primers. All 112 isolates were organized into four groups on the basis of percent disease index (PDI). The majority of the isolates were weakly virulent. Population genetic analysis was performed within and between populations using inter simple sequence repeat (ISSR) markers. A total of 8249 alleles were identified from the 112 isolates of R. solani AG1IA through analysis of the ten inter simple sequence repeat markers. All the ten ISSR markers were polymorphic. The average number of bands per primer was 7.3 which ranged in size from 250 to 1500 bp. Genetic structure of the isolates using inter simple sequence repeat primers showed high degree of polymorphism (PIC ≥0.81). The analysis of molecular variance (AMOVA) indicated that most of the genetic diversity occurred within populations (60%), while the variability among populations and among regions contributed 25 and 15%, respectively. Overall, the present study reveals that a large variation exists among rice-infecting isolates of R. solani AG1IA in North India. Fingerprinting of the isolates using ISSRs along with phenotypic characterization and virulence analysis will help epidemiological studies that can provide new insights into pathogen biology and disease spread.  相似文献   

14.
C. Zhang  H. Wu  X. Li  H. Shi  F. Wei  G. Zhu 《Plant pathology》2013,62(6):1378-1383
During 2009–2010, a total of 323 isolates of Xanthomonas oryzae pv. oryzae were obtained from rice with symptoms of bacterial leaf blight (BLB) in four provinces (Zhejiang, Jiangsu, Anhui and Hubei) in China. These isolates were tested for baseline sensitivity to zinc thiazole, a novel bactericide with strong antibacterial activity against Xanthomonas. The sampled pathogenic population had similar sensitivity to zinc thiazole (0·1–16·8 mg L?1) in all four regions and over the whole two‐year study period. The baseline sensitivity was distributed as a unimodal curve with a mean EC50 value of 6·79 ± 1·61 mg L?1. The risk of mutation to resistance of zinc thiazole in X. oryzae pv. oryzae was further evaluated in vitro and in vivo. Twelve zinc thiazole‐resistant mutants were obtained through ultraviolet (UV) irradiation, culturing on zinc thiazole‐amended nutrient agar (NA) plates, and culturing on zinc thiazole‐treated rice plants. These zinc thiazole‐resistant mutants had resistance factors (RF = EC50 value of a mutant / EC50 value of the wildtype parent of this mutant) of 12·4 to 186·1 with a mean RF value of 44·1. Mutants obtained via UV irradiation, culturing on NA plates and culturing on rice plants had mean RF values of 51·8, 24·5 and 14·4, respectively. All mutants showed decreases in resistance to zinc thiazole after 20 successive transfers on bactericide‐free media or 10 successive inoculation–reisolations on bactericide‐free rice plants. No significant difference was found in bacterial growth and sensitivity to bismerthiazol between zinc thiazole‐resistant mutants and their parents. However, a significant decrease was observed in the pathogenicity of zinc thiazole‐resistant mutants compared with their parents, especially for mutants obtained via UV irradiation.  相似文献   

15.
The ascomycete fungus Cryphonectria parasitica, causal agent of chestnut blight, is probably one of the best known invasive fungal pathogens in forests of Europe and North America. Mycovirus that reduces virulence of C. parasitica can be used as a biocontrol agent of the chestnut blight. However, anastomosis‐mediated virus transmission is limited by a vegetative (in)compatibility (vc) system involving at least six known diallelic vic genetic loci. This study looked at vegetative compatibility (vc) diversity in two populations of C. parasitica in Croatia. For that purpose, a PCR assay was validated and implemented using already known/published and newly designed primers for amplification of six known vic loci. The vc genotypes determined by PCR for 158 C. parasitica isolates investigated in this study were in complete agreement with the vc genotypes determined by pairwise co‐culturing of the same isolates, revealing the specificity and accuracy of the PCR‐based molecular vic genotyping assay. Twenty‐six unique vc genotypes were found among 158 isolates, and 19 vc types per population, which makes Croatian C. parasitica populations among the most diverse in Europe regarding the number of vc types and genetic diversity. Low values of multilocus linkage disequilibrium suggest sexual reproduction as a major contributor to high C. parasitica genetic diversity in studied populations.  相似文献   

16.
Q. Jia  Q. Gu  L. Zheng  T. Hsiang  C. Luo  J. Huang 《Plant pathology》2015,64(6):1440-1449
Studies on population genetics of Villosiclava virens are limited because of the lack of polymorphic markers. Based on a draft genome sequence of isolate HWD‐2 produced in this study, 20 of 403 potential simple sequence repeats (SSR) loci showed polymorphisms in preliminary screening using eight diverse V. virens isolates. Among polymorphic loci, most of them with tetra‐ to hexanucleotide unit motifs showed higher levels of polymorphism than loci with smaller motifs. After testing with 20 polymorphic SSR markers, the 87 isolates of V. virens from eight populations in China showed a high level of genetic diversity, with each as a unique haplotype. This differs from some previous findings showing little to no genetic variation based on random amplified polymorphic DNA and amplified fragment length polymorphism analyses. Among eight populations from major rice production areas of China, the population from Guangxi province in south China showed the highest levels of polymorphism, which led to the speculation that it might be closer to the centre of origin of this pathogen. The northern, central and eastern populations (Jilin, Liaoning, Hubei, Hunan, Jiangxi and Zhejiang), when considered together as a group, showed significant molecular variation compared to the southern populations (Fujian and Guangxi) (ΦPT = 0·043, = 0·037). A significant relationship (Mantel test, = 0·027) but with low correlation (R2 = 0·23) was also found between geographic distance and genetic distance. The 20 polymorphic SSR primer pairs designed in this study provide a tool for further research on the population diversity of this emerging fungal pathogen of rice.  相似文献   

17.
Limited knowledge is available on Phytophthora infestans populations in Sub‐Saharan Africa (SSA). Therefore, and in response to recent severe late blight epidemics, P. infestans isolates from potato, tomato and Petunia × hybrida from eight SSA countries were characterized. Isolates were characterized with ‘old’ markers, including mating type (176 isolates), mitochondrial DNA haplotype (mtDNA) (281 isolates), glucose‐6‐phosphate isomerase (Gpi) (70 isolates), restriction fragment length polymorphism analysis with probe RG‐57 (49 isolates), and by metalaxyl sensitivity (64 isolates). Most isolates belonged to the US‐1 genotype or its variants (US‐1.10 and US‐1.11). The exceptions were genotype KE‐1 isolates (A1 mating type, mtDNA haplotype Ia, Gpi 90/100 and unique RG‐57 genotype), identified in two fields in Kenya, which are related to genotypes previously identified in Rwanda (RW‐1 and RW‐2), Ecuador and Europe. Metalaxyl‐resistant P. infestans isolates from potato were present in all the countries except Malawi, whereas all the isolates from tomato were sensitive. Genotyping of 176 isolates with seven simple sequence repeat (SSR) markers, including locus D13 that was difficult to score, revealed 79 multilocus genotypes (MLGs) in SSA. When this locus was excluded, 35 MLGs were identified. Genetic differentiation estimates between regional populations from SAA were significant when locus D13 was either excluded (P = 0·05) or included (P = 0·007), but population differentiation was only low to moderate (FST = 0·044 and 0·053, respectively).  相似文献   

18.
Since 2006, verticillium wilt of olive induced by Verticillium dahliae has caused considerable economic losses in olive orchards in Tunisia. The genetic structure of V. dahliae isolates collected from different olive growing regions was investigated using virulence tests, vegetative compatibility grouping (VCG) and amplified fragment length polymorphism (AFLP) analyses. In total, 42 isolates of V. dahliae from diseased olive trees were tested. Cluster analysis and principal coordinate analysis revealed that geographic origin was the main factor determining the genetic structure of V. dahliae populations and both methods indicated a genetic separation between the central and coastal isolates. Isolates were divided into two major groups: the AFLP‐I group included all isolates from Sidi Bouzid, Kairouan, Kasserine and Sfax (centre of the country) and the AFLP‐II group included isolates from Monastir, Zaghouane, Sousse, Mahdia (coastal region), and two isolates from Sfax. Analysis of the molecular variance (amova ) indicated a significant level of genetic differentiation among (76%) and within (23%) the two populations. Analyses of both the defoliating (D) and non‐defoliating (ND) pathotypes and VCG markers indicated that most of the isolates belong to VCG 2A and 4B/ND pathotype. The disease severity was highly variable among the isolates tested (< 0·05) with no evidence of association between aggressiveness and geographical origin of the isolates. Overall, results of this study revealed a clear association between the genetic diversity of the isolates and their geographic origin, but not between genetic diversity and virulence patterns.  相似文献   

19.
Y. Tian  J. Sun  H. Li  G. Wang  Y. Ma  D. Liu  J. Quan  W. Shan 《Plant pathology》2015,64(1):200-206
Late blight caused by Phytophthora infestans is the most serious disease of potato worldwide. To understand the P. infestans population structure in northern Shaanxi, an emerging potato production region in China, 125 single‐lesion isolates were randomly collected from farmers' fields in 2009 and characterized phenotypically and genotypically. A mating type assay showed that 94 isolates were A1 mating type. Virulence determination of selected isolates on a set of differential potato lines containing R1 to R11, respectively, showed the presence of two pathotypes, of which the pathotype lacking avirulence genes Avr3, Avr4 and Avr10 was dominant. Isolates lacking all avirulence factors Avr1 to Avr11 were detected but at lower frequency (13·6%). Analysis for mtDNA haplotype showed all 61 examined isolates were IIa. A total of seven multilocus genotypes were distinguished among 125 isolates, as determined with seven polymorphic microsatellite markers. The genotype SG‐1 was dominant in the population with a frequency of 75·2% and was present throughout the region. Analysis of the phenotypic and genotypic structures of P. infestans populations indicated strict clonal reproduction of the pathogen and suggested that sexual reproduction probably does not occur. Potential implications for disease management are discussed.  相似文献   

20.
A. Rojas  W. W. Kirk 《Plant pathology》2016,65(6):1022-1033
Severe potato and tomato late blight epidemics in Michigan since 2008 prompted characterization of Phytophthora infestans isolates from the region. From eight counties in Michigan, 124 isolates were collected from infected potato and tomato plants from 2008 to 2010 and characterized using ‘classical’ markers and microsatellites. The classical markers included mating type, Gpi allozyme, mitochondrial DNA haplotype, sensitivity to metalaxyl‐M and tuber pathogenicity. All isolates from 2008 to 2010 were A2 mating type and Ia mtDNA haplotype (124 isolates), 105 isolates had Gpi profile 100/122, 17 isolates had the profile 100/100/111 and the remaining two isolates had 100/111/122. Sensitivity to metalaxyl‐M, expressed as EC50 for mycelial growth in vitro, ranged from <0·1 to 91 μg mL?1, where 95 and 96% of isolates were classified as either sensitive or intermediate in 2008–2009 and 2010 respectively. The metalaxyl‐M sensitivity and dominant Gpi profile were typical of clonal lineage US‐22, first isolated in 2008 in North America from tomato plants. Tuber pathogenicity, characterized as severity of tuber late blight, was also variable among isolates; however, isolates were less aggressive than previous genotypes present in Michigan, such as US‐8. Microsatellites (simple sequence repeats; SSRs) revealed a shift in the population, characterized by two clusters differentiated over time. These results suggested displacement of the US‐8 genotype by US‐22 from 2008 to 2010 in Michigan. Continuous tracking of changes within P. infestans populations provides evidence of genetic shifts due to migration, prompting modification of management strategies based on the phenotypic characteristics of causal genotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号