首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A homothallic Phytophthora species was found to be consistently associated with a rot of mature fruits of two local cultivars of olive (Olea europaea) in Calabria, southern Italy. The phylogenetic analysis of sequences of the ITS1‐5.8S‐ITS2 region and cox1 gene enabled its identification as a new species of clade 2, with a basal position compared to previously described subclades. The new species is described formally with the epithet Phytophthora oleae, referring to the natural matrix from which it was isolated. A unique combination of molecular and morphological characters clearly separates P. oleae from other already described Phytophthora species. This new species produced semipapillate, occasionally bipapillate, persistent sporangia on simple sympodially branching sporangiophores as well as globose and smooth‐walled oogonia, paragynous antheridia and spherical, plerotic oospores. The pathogenicity of P. oleae was confirmed in inoculation trials on fruits of three olive cultivars, including the two local cultivars from which the pathogen had been isolated.  相似文献   

2.
Phytophthora boodjera is a newly described pathogen causing damping off and mortality of Eucalyptus seedlings in Western Australian nurseries. This study evaluated the age‐related susceptibility of several taxa of mallee Eucalyptus to P. boodjera in sterilized washed river sand‐infestation pot trials. Phytophthora cinnamomi and P. arenaria were included for comparison. Seedlings of Eucalyptus taxa were inoculated at 0, 2, 4, 12 and 88 weeks with individual Phytophthora isolates. Pre‐emergent mortality in the presence of Phytophthora was almost 100%. Post‐emergent mortality was 50–100%, depending on isolate, compared to 0% for the control. Mortality was also high for inoculated 1 month‐old seedlings (46–68%) and root length of surviving seedlings was severely reduced. Death from root infection was not observed for seedlings inoculated at 12 and 88 weeks, but they developed root necrosis and reduced root dry weight compared to non‐inoculated controls. Phytophthora boodjera is a pre‐ and post‐emergent pathogen of mallee eucalypts. These eucalypts are susceptible to P. boodjera at all life stages tested, but the mortality rates declined with plant age. Similar results were obtained for P. cinnamomi and P. arenaria. The events leading to its recent appearance in the nurseries remain unknown and further investigations are underway to determine if this is an introduced or endemic pathogen. The approach used here to understand the impact of a Phytophthora species on multiple hosts at different seedling ages is novel and sets a benchmark for future work.  相似文献   

3.
Two novel homothallic species of Phytophthora causing dieback of Kwongan vegetation in south‐west Western Australia are described here as Phytophthora arenaria sp. nov. and Phytophthora constricta sp. nov. DNA sequencing of the ITS rDNA and cox1 gene confirmed that P. arenaria and P. constricta are unique species residing in ITS clades 4 and 9, respectively. Phytophthora arenaria has been isolated from vegetation occurring on the northern sandplains which are warmer and drier than the southern sandplains from which P. constricta has been predominantly isolated, and both species appear morphologically and physiologically well adapted to the ecosystems in which they occur. Both species have been associated mainly with dead and dying Banksia species and the pathogenicity of both P. arenaria and P. constricta to Banksia attenuata was confirmed in this study. The combination of unique DNA sequences, including considerable variation in cox1 sequence data, thick oospore walls and physiological characteristics that appear to be adaptations favouring survival in the harsh Kwongan ecosystem suggest that these species may be endemic to Western Australia.  相似文献   

4.
The genus Phytophthora is one of the genera of organisms that poses the most threat to plant health worldwide. Statutory monitoring for Phytophthora species focuses on the species regulated in the European Union and recommended for regulation by EPPO (Plant Health Directive 2000/29 EC and the EPPO A2 List). This research provides details of the Phytophthora species detected from trade and non‐trade environments in Ireland between 2013 and 2015. The results of statutory surveys for the regulated species Phytophthora ramorum, Phytophthora kernoviae and Phytophthora lateralis from 2003 to 2015 are also presented. Testing of more than 11 000 samples was carried out using morphological and/or DNA identification with specifically designed Phytophthora conserved primers. This led to the detection of 19 species and 3 informally designated taxa of Phytophthora, including 8 new records for Ireland. Eight species were found in both trade and non‐trade locations, and three informally designated taxa were also detected. Phytophthora ramorum was found on the most hosts (30 hosts), followed by Phytophthora syringae (6 hosts) and Phytophthora kernoviae (3 hosts). Rhododendron was the host on which Phytophthora species were most frequently detected (12 Phytophthora species). The role of the plant trade in spreading invasive Phytophthora species is discussed.  相似文献   

5.
Isolates of an unknown Phytophthora species from the ‘Phytophthora citricola complex’ have been found associated with mortality of Aucuba japonica in the UK. Based on morphological characteristics, growth–temperature relationships, sequences of five DNA regions and pathogenicity assays, the proposed novel species is described as Phytophthora pachypleura. Being homothallic with paragynous antheridia and semipapillate sporangia, P. pachypleura resembles other species in the ‘P. citricola complex’ but can be discriminated by its distinctively thick‐walled oospores with an oospore wall index of 0·71. In the phylogenetic analysis based on three nuclear (ITS, β‐tubulin, EF‐1α) and two mitochondrial (cox1, nadh1) DNA regions, P. pachypleura formed a distinct clade within the ‘P. citricola complex’ with P. citricola s. str., P. citricola E and P. acerina as its closest relatives. Phytophthora pachypleura is more aggressive to A. japonica than P. plurivora and P. multivora and has the potential to affect other ornamental species.  相似文献   

6.
Among the Phytophthora species that cause black pod of cacao, P. megakarya is the most virulent, posing a serious threat to cacao production in Africa. Correct identification of the species causing the black pod and understanding the virulence factors involved are important for developing sustainable disease management strategies. A simple PCR‐based species identification method was developed using the species‐specific sequences in the ITS regions of the rRNA gene. A phylogenetic tree generated for 119 Phytophthora isolates, based on the 60S ribosomal protein L10 gene and rDNA sequence, verified the PCR‐based identification assay and showed high interspecific variation among the species causing black pod. Phytophthora megakarya isolates were uniformly virulent in an assay using susceptible cacao pod husks inoculated with zoospores, while the P. palmivora isolates showed greater divergence in virulence. The virulence of P. megakarya was associated with earlier production of sporangia and an accelerated induction of necrosis. While zoospore germ tubes of both species penetrated pods through stomata, only P. megakarya produced significant numbers of appressoria. A hypersensitive‐like response was observed when attached SCA‐6 pods were inoculated with P. palmivora. SCA‐6 pods became vulnerable to P. palmivora when wounded prior to zoospore inoculation. Phytophthora megakarya was more aggressive than P. palmivora on attached SCA‐6 pods, causing expanding necrotic lesions with or without wounding. Phytophthora megakarya is predominant in the Volta region of Ghana and it remains to be seen whether it can displace P. palmivora from cacao plantations of Ghana as it has in Nigeria and Cameroon.  相似文献   

7.
The evergreen holm oaks (Quercus ilex subsp. ilex and Q. ilex subsp. ballota) are the most representative tree species in the Iberian peninsula and the main tree species in oak‐rangeland ecosystems (dehesas). Oak decline in western, central and southern parts of Spain has been associated with root rot caused by Phytophthora cinnamomi for decades. However, Phytophthora species such as P.  quercina and P. psychrophila have recently been found associated with Quercus decline in eastern Spain where calcareous soils are predominant. Soil and root samples from two Quercus forests presenting decline symptoms in two different geographical areas in eastern Spain (Carrascar de la Font Roja and Vallivana) were analysed by amplicon pyrosequencing. Metabarcoding analysis showed Phytophthora species diversity, and revealed that an uncultured Phytophthora taxon, named provisionally Phytophthora taxon ballota, was the predominant species in both areas. In addition, a real‐time PCR assay, based on the pyrosequencing results, was developed for the detection of this uncultured Phytophthora taxon, and also for the detection of P. quercina. TaqMan assays were tested on soil and root samples, and on Phytophthora pure cultures. The new assays showed high specificity and were consistent with metabarcoding results. A new real‐time PCR protocol is proposed to evaluate the implication of different Phytophthora spp. in oak decline in eastern Spain.  相似文献   

8.
Bean anthracnose is a seedborne disease of common bean (Phaseolus vulgaris) caused by the fungal pathogen Colletotrichum lindemuthianum. Using seed that did not test positive for the pathogen has been proven to be an effective strategy for bean anthracnose control. To quantify the extent of anthracnose seed infection, a real‐time PCR‐based diagnostic assay was developed for detecting C. lindemuthianum in seeds of the commercial bean class navy bean. The ribosomal DNA (rDNA) region consisting of part of the18S rDNA, 5.8S rDNA, internal transcribed spacers (ITS) 1, 2 and part of the 28S rDNA of seven races of C. lindemuthianum, 21 isolates of Colletotrichum species and nine other bean pathogens were sequenced with the universal primer set ITS5/ITS4. Based on the aligned sequence matrix, one primer set and a probe were designed for a SYBR Green dye assay and a TaqMan MGB (minor groove binder) assay. The primer set was demonstrated to be specific for C. lindemuthianum and showed a high sensitivity for the target pathogen. The detection limit of both assays was 5 fg of C. lindemuthianum genomic DNA. To explore the correlation between the lesion area and the DNA amount of C. lindemuthianum in bean seed, seeds of the navy bean cultivar Navigator with lesions of different sizes, as well as symptomless seeds, were used in both real‐time PCR assays.  相似文献   

9.
A transposon‐like element, A3aPro, with multiple copies in the Phytophthora sojae genome, was identified as a suitable detection target for this devastating soyabean root rot pathogen. The PCR primers TrapF1/TrapR1 were designed based on unique sequences derived from the transposon‐like sequence. A 267‐bp DNA fragment was amplified using this primer pair, the specificity of which was evaluated against 118 isolates of P. sojae, 72 isolates of 25 other Phytophthora spp., isolates of Pythium spp. and isolates of true fungi. In tests with P. sojae genomic DNA, detection sensitivities of 10 pg and 10 fg DNA were achieved in standard PCR (TrapF1/TrapR1) and nested PCR (TrapF1/TrapR1 and TrapF2/TrapR2), respectively. Meanwhile, PCR with TrapF1/TrapR1 primers detected the pathogen at the level of a single oospore, and even one zoospore. These primers also proved to be efficient in detecting pathogens from diseased soyabean tissues, residues and soils. In addition, real‐time quantitative PCR (qPCR) assays coupled with the TrapF1/TrapR1 primers were developed to detect and quantify the pathogen. The results demonstrated that the TrapF1/TrapR1 and TrapF2/TrapR2 primer‐based PCR assay provides a rapid and sensitive tool for the detection of P. sojae in plants and in production fields.  相似文献   

10.
Phytophthora niederhauserii, P. pisi, P. sojae and P. vignae are closely related species that are pathogenic to various legume plants. While P. sojae and P. vignae are reported to specifically infect soybean and cowpea, respectively, P. pisi is reported to attack pea and faba bean. Phytophthora niederhauserii is considered to have a broad host range. Zoospores of some Phytophthora species are chemotactically attracted to the isoflavones that are secreted by their host plants. The focus of the current study was to determine the chemotaxic behaviour of zoospores from closely related legume‐root infecting Phytophthora species and to investigate the correlation, if any, to host preference as determined by greenhouse pathogenicity tests. The results showed that P. sojae and P. vignae were attracted to the non‐soybean isoflavone prunetin as well as to the soybean isoflavones genistein and daidzein, which is in contrast with their host specificity on soybean and cowpea, respectively. On the other hand, P. pisi and P. niederhauserii were only attracted to prunetin, previously reported to be produced by pea, but not to the isoflavones associated with the non‐host soybean. The lack of responsiveness to genistein and daidzein in P. pisi may represent a recent adaptation to the host specialization towards pea. However, the affinity of P. niederhauserii to prunetin shows that this trait can also be present in taxa not specifically associated with legume hosts.  相似文献   

11.
The genetic diversity of Phytophthora spp. was investigated in potted ornamental and fruit tree species. A metabarcoding approach was used, based on a semi‐nested PCR with Phytophthora genus‐specific primers targeting the ITS1 region of the rDNA. More than 50 ITS1 sequence types representing at least 15 distinct Phytophthora taxa were detected. Nine had ITS sequences that grouped them in defined taxonomic groups (P. nicotianae, P. citrophthora, P. meadii, P. taxon Pgchlamydo, P. cinnamomi, P. parvispora, P. cambivora, P. niederhauserii and P. lateralis) whereas three phylotypes were associated to two or more taxa (P. citricola taxon E or III; P. pseudosyringae, P. ilicis or P. nemorosa; and P. cryptogea, P. erythroseptica, P. himalayensis or P. sp. ‘kelmania’) that can be challenging to resolve with ITS1 sequences alone. Three additional phylotypes were considered as representatives of novel Phytophthora taxa and defined as P. meadii‐like, P. cinnamomi‐like and P. niederhauserii‐like. Furthermore, the analyses highlighted a very complex assemblage of Phytophthora taxa in ornamental nurseries within a limited geographic area and provided some indications of structure amongst populations of P. nicotianae (the most prevalent taxon) and other taxa. Data revealed new host–pathogen combinations, evidence of new species previously unreported in Italy (P. lateralis) or Europe (P. meadii) and phylotypes representative of species that remain to be taxonomically defined. Furthermore, the results reinforced the primary role of plant nurseries in favouring the introduction, dissemination and evolution of Phytophthora species.  相似文献   

12.
Members of the Phytophthora citricola complex (Phytophthora clade 2c), such as P. plurivora, are destructive pathogens of trees and shrubs in nursery, landscape and forest settings worldwide. During surveys of Phytophthora species from streams and rivers in Massachusetts and North Carolina, a novel species in the P. citricola complex was recovered. Based on sequences from three nuclear (ITS, β‐tub and tef1) and two mitochondrial (cox1 and nadh1) loci, morphological characters, temperature–growth relationships and host plant inoculations, this novel species is described as Phytophthora caryae sp. nov. Phytophthora caryae resembles several other species in the P. citricola complex, demonstrating homothallism and producing paragynous antheridia and semipapillate and noncaducous sporangia. However, P. caryae exhibits smaller sexual structures, higher rates of oogonia with a tapered base and sporangia with an offset attachment of the sporangiophores. Phylogenetic analyses using maximum likelihood and Bayesian inference placed isolates of P. caryae into a unique clade with significant statistical support. Based on the mitochondrial dataset, P. caryae is most closely related to P. pini and P. citricola III, which are believed to be native in eastern North America. Inoculations of P. caryae on 1‐year‐old twigs of 12 tree species representing nine genera resulted in under‐bark lesions on species of Carya and Juglans. Sapling inoculations under greenhouse conditions suggest that P. caryae may be pathogenic to shagbark hickory (Carya ovata) but not to black walnut (Juglans nigra).  相似文献   

13.
Since its first isolation from Salix roots in 1972, isolates of a sexually sterile Phytophthora species have been obtained frequently from wet or riparian habitats worldwide and have also been isolated from roots of Alnus and Prunus spp. Although originally assigned to Phytophthora gonapodyides on morphological grounds, it was recognized that these isolates, informally named P. taxon Salixsoil, might represent a separate lineage within ITS Clade 6. Based on phylogenetic analyses and comparisons of morphology, growth‐temperature relationships and pathogenicity, this taxon is formally described here as Phytophthora lacustris sp. nov. Isolates of P. lacustris form a clearly resolved cluster in both ITS and mitochondrial cox1 phylogenies, basal to most other Clade 6 taxa. Phytophthora lacustris shares several unusual behavioural properties with other aquatic Clade 6 species, such as sexual sterility and tolerance of high temperatures, that have been suggested as adaptations to riparian conditions. It appears to be widespread in Europe and has also been detected in Australia, New Zealand and the USA. It was shown to be weakly or moderately aggressive on inoculation to Alnus, Prunus and Salix. The extent of P. lacustris’ activity as a saprotroph in plant debris in water and as an opportunistic pathogen in riparian habitats needs further investigation. Its pathogenic potential to cultivated fruit trees also deserves attention because P. lacustris has apparently been introduced into the nursery trade.  相似文献   

14.
Phytophthora nicotianae and P. palmivora are the most important soil-borne pathogens of citrus in Florida. These two species were detected and identified in singly and doubly infected plants using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) of internal transcribed spacer (ITS) regions of ribosomal DNA. The sensitivity of the PCR-RFLP was analyzed and the usefulness of the method evaluated as an alternative or supplement to serological methods and recovery on semi-selective medium. In a semi-nested PCR with universal primers ITS4 and ITS6, the detection limit was 1 fg of fungal DNA, which made it 1000× more sensitive than a single-step PCR with primers ITS4 and DC6. The sensitivity of detection for P. nicotianae was shown to be ten-fold lower than for P. palmivora, limiting its detection with restriction profiles in plants infected by both fungal species. Phytophthora nicotianae was detected with species-specific primers in all samples inoculated with this species despite the absence of species-specific patterns in RFLP. In contrast, the incidence of detection of P. palmivora in the presence of P. nicotianae was considerably lower using plating and morphological detection methods. Due to its high sensitivity, PCR amplification of ribosomal ITS regions is a valuable tool for detecting and identifying Phytophthora spp. in citrus roots, provided a thorough knowledge of reaction conditions for the target species is established prior to the interpretation of data.  相似文献   

15.
The ectoparasitic dagger nematodes Xiphinema index and Xiphinema diversicaudatum, often at low numbers in the soil, are vectors of grapevine nepoviruses, which cause huge agronomical problems for the vineyard industry. This study reports a method, based on real‐time PCR, for the specific detection of these species and of the closely related non‐vector species Xiphinema vuittenezi and Xiphinema italiae. Specific primers and TaqMan probes were designed from the ribosomal DNA internal transcribed spacer 1 (ITS1), enabling the specific detection of single individuals of each of the X. index, X. diversicaudatum, X. italiae and X. vuittenezi species whatever the nematode population. The specificity of detection and absence of false positive reaction were confirmed in samples of each species mixed with the three other Xiphinema species or mixed with nematodes representative from other genera (non‐plant‐parasitic Dorylaimida, Longidorus sp., Meloidogyne spp., Globodera spp. and Pratylenchus sp.). The method was shown to be valid for the relative quantification of X. index numbers through its use, from crude nematode extracts of soil samples, in a greenhouse assay of grapevine accessions ranging from highly susceptible to resistant. As an alternative to time‐consuming microscopic identification and counting, this real‐time PCR method will provide a fast, sensitive and reliable diagnostic and relative quantification technique for X. index nematodes extracted from fields or controlled conditions.  相似文献   

16.
Introns are generally highly polymorphic regions within genes and were proven to be of great interest for discriminating among phylogenetically-close Phytophthora species. Phytophthora ramorum and P. fragariae are considered as quarantine pathogens by the European Union and accurate detection tools are therefore necessary for their monitoring. From introns located in different single copy genes (GPA1, RAS-like, and TRP1), we developed a series of PCR primers specific to P. ramorum and P. fragariae. The specificity of these primers was successfully checked with a wide collection of Phytophthora isolates and a protocol was developed to detect both pathogens directly in infected plant tissues. These genes should be of particular interest for the development of additional species-specific detection tools within the Phytophthora genus.  相似文献   

17.
A severe dieback of Acer pseudoplatanus trees was noticed in planted forest stands in northern Italy in 2010. Affected trees showed collar rot and aerial bleeding cankers along the stems, leading to crown dieback and eventually death. An unknown Phytophthora species was consistently isolated from necrotic bark and xylem tissue and from rhizosphere soil. Based on its unique combination of morphological and physiological characters and phylogenetic analysis, this new taxon is here described as Phytophthora acerina sp. nov. Phylogenetic analysis of ITS, cox1 and β‐tubulin gene regions demonstrated that P. acerina is unique and forms a separate cluster within the ‘P. citricola complex’, closely related to P. plurivora. Phytophthora acerina is homothallic with smooth‐walled oogonia, thick‐walled, mostly aplerotic oospores with a high abortion rate, paragynous antheridia, and persistent, morphologically variable semipapillate sporangia. Four to 5‐week‐old cultures produced globose to subglobose, appressoria‐like and coralloid hyphal swellings and characteristic stromata‐like hyphal aggregations. Optimum and maximum temperatures for growth are 25°C and 32°C, respectively. Genetic uniformity of all 15 studied isolates and the apparent absence of this species in the extensive surveys of nurseries, forests and seminatural ecosystems conducted in the previous two decades across Europe indicate a recent clonal introduction to northern Italy. Under‐bark inoculation tests demonstrated high aggressiveness of P. acerina to A. pseudoplatanus indicating that this pathogen might be a serious risk to maple plantations and forests in Europe.  相似文献   

18.
The quarantine pathogen Bursaphelenchus xylophilus (pine wood nematode, PWN) represents a serious threat for Pinus species in Europe. To exclude its presence in Switzerland, in 2010 and 2011 a countrywide survey was conducted in 102 Pinus sylvestris stands, chosen according to whether they contained dying or dead trees or were located in areas at risk of PWN introduction. In total, 285 trees (1–5 per site) were sampled. Nematodes were extracted from wood chips using a standard procedure, and identified to species by internal transcribed spacer (ITS) sequencing. Bursaphelenchus species were present in 34% of the trees, but no B. xylophilus was identified, i.e. PWN is still not present in Switzerland. The nematodes found belonged to seven different species, with B. vallesianus the most frequent species, followed by B. sexdentati, B. mucronatus kolymensis and B. eggersi. Three other species (B. borealis, B. pinophilus, B. poligraphi) were each only present in one or two trees. Three groups of sequences could not be assigned to a species because of the lack of matching reference sequences. The species composition found in Switzerland suggests co‐existence of southern and central European Bursaphelenchus species. Intraspecific ITS variability differed considerably among the four most common species. Bursaphelenchus eggersi, B. mucronatus kolymensis and B. sexdentati had several variable sites in the ITS region, resulting in multiple ITS genotypes in each species. In contrast, all 99 B. vallesianus isolates had an identical ITS region. This could indicate a founder effect, and possibly that B. vallesianus is not native to the Alpine region.  相似文献   

19.
The oomycete Phytophthora infestans, the cause of late blight, is one of the most important potato pathogens. During infection, it secretes effector proteins that manipulate host cell function, thus contributing to pathogenicity. This study examines sequence differentiation of two P. infestans effectors from 91 isolates collected in Poland and Norway and five reference isolates. A gene encoding the Avr‐vnt1 effector, recognized by the potato Rpi‐phu1 resistance gene product, is conserved. In contrast, the second effector, AvrSmira1 recognized by Rpi‐Smira1, is highly diverse. Both effectors contain positively selected amino acids. A majority of the polymorphisms and all selected sites are located in the effector C‐terminal region, which is responsible for their function inside host cells. Hence it is concluded that they are associated with a response to diversified target protein or recognition avoidance. Diversification of the AvrSmira1 effector sequences, which existed prior to the large‐scale cultivation of plants containing the Rpi‐Smira1 gene, may reduce the predicted durability of resistance provided by this gene. Although no isolates virulent to plants with the Rpi‐phu1 gene were found, the corresponding Avr‐vnt1 effector has undergone selection, providing evidence for an ongoing ‘arms race’ between the host and pathogen. Both genes remain valuable components for resistance gene pyramiding.  相似文献   

20.
Big vein disease of lettuce (Lactuca sativa) is an economically important disease transmitted through soil by Olpidium virulentus, and has occurred in most production areas worldwide. The disease is assumed to be caused by Mirafiori lettuce big‐vein virus (MiLBVV). To understand the dynamics of the virus and its vector, MiLBVV and O. virulentus were directly detected in soil. DNA and RNA were extracted from 5 g soil using a bead beating method, followed by purification using adsorption to a column. Detection and quantification were performed using real‐time PCR and a TaqMan probe that was prepared based on the CP region of MiLBVV and the rDNA‐ITS region of O. virulentus, respectively. Furthermore, using a visual assessment of the incidence rate of big vein disease on lettuce in agricultural fields, the Ct values of MiLBVV and O. virulentus from soil were also determined using real‐time PCR. The results showed that MiLBVV concentrations in the soil were high in the field, as also determined by a visual assessment of the incidence rate of big vein disease on lettuce. However, the amount of O. virulentus in soil was not directly correlated with the incidence of MiLBVV. From these results, it is suggested that the risk of lettuce crops developing big vein disease can be estimated using an index of the amount of MiLBVV in the soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号