首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Slope correction for LAI estimation from gap fraction measurements   总被引:1,自引:0,他引:1  
Digital hemispherical photography poses specific problems when deriving leaf area index (LAI) over sloping terrain. This study proposes a method to correct from the slope effect. It is based on simple geometrical considerations to account for the path length variation within the canopy for cameras pointing vertically. Simulations over sloping terrain show that gap fraction increases up-slope while decreasing down-slope. As a consequence of this balance between up- and down-slope effects, effective LAI estimates derived from inversion of the Poisson model are marginally affected for low to medium slopes (<25°) and LAI (LAI < 2). However, for larger slopes and LAI values, estimated LAI values may be strongly underestimated. The proposed correction was evaluated over four forested sites located over sloping terrain. Results indicate that in these conditions (LAI between 0.6 up to 3.0, clumped canopies with relatively erectophile leaf distribution), the effect of the slope (between 25° and 36°) was moderate as compared to other potential sources of problems when deriving LAI from gap fraction measurements, including clumping, leaf angle inclination and spatial sampling.  相似文献   

2.
A simplified evaporative fraction (Λ) based single-source energy balance scheme was tested with moderate resolution (1 km) noontime satellite observations to evaluate clear sky latent heat flux (λE) estimates over diverse agricultural landscapes. This approach uses two-dimensional (2D) scatter between land surface temperature (LST) and albedo to determine Λ. The operational utility of this scheme was demonstrated for estimating regional evapotranspiration and consumptive water use during rabi (November to April) crop growing season to predict pre-harvest wheat yield (error within 15.9% of reported mean) using time series data. The existence of triangular relations between Λ and LAI (leaf area index) or NDVI (normalized difference vegetation index) was found with basal line (hypotenuse) linearly coupled with LAI or NDVI at low level of surface soil wetness. The analysis of diurnal course of in situ Λ proved the validity of constant-Λ hypothesis over pure, uniform, homogeneous crop canopies but showed irregular and wave-like patterns over heterogeneous, mixed crop canopies. The root mean square error (RMSE) of noontime and daytime average λE estimates with respect to in situ λE measurements were also smaller over homogeneous agricultural canopies (41 and 23 W m−2) with correlation coefficients (r) 0.94 and 0.96, respectively, from 135 clear sky datasets as compared to RMSE over heterogeneous ones (59 and 28 W m−2 with r = 0.66 and 0.82, respectively from 22 datasets). The intercomparison with another Λ based approach (LST–NDVI 2D scatter) showed the supremacy of Λ determined from LST–albedo 2D scatter. The efficiency of LST–NDVI scatter was better during the dry down or water limited phases of crop growth only. The uncertainties of λE estimates were attributed to errors in core radiation budget inputs, relative loss of conservativeness of Λ due to canopy heterogeneity, and the inherent limitations of the single-source approach. There is further scope to reduce present λE uncertainties by combining the new findings on Λ (LST–albedo scatter)–NDVI triangular relations, diurnal Λ and two-source radiation budget.  相似文献   

3.
A Poisson model is developed to describe sunfleck or gap size distributions beneath clumped plant canopies. This model is based on the assumption that foliage clumps are randomly distributed in space and foliage elements are randomly distributed within each clump. Using this model, the foliage clumping index, leaf area index (L), clump area index, element area index in each clump, and element and clump widths were successfully derived for two artificial canopies and a thinned and pruned Douglas-fir forest stand. It is shown that existing theories for deriving L from measurements of canopy gap fraction have limitations, and the use of canopy architectural information derived from canopy gap size distribution can substantially improve the technique for indirectly measuring L of plant canopies.  相似文献   

4.
5.
Surface (0–15 cm) and subsurface (30–45 cm) soil samples from under canopy, edge of canopy and away from canopy of isolated Cordia africana Lam. and Croton macrostachyus Del. trees and their leaves were examined to investigate leaf nutrient content, root biomass and the contribution of trees on farms to soil fertility parameters in Badessa area, eastern Ethiopia. Leaves of C. macrostachyus had 20% higher P and 25% lower K contents than those of C. africana. The studied species had comparable leaf N content. Both species produced shallow lateral roots that extended beyond the canopy zone. Typically, higher fine root biomass was observed in the surface soils than the subsurface soils. Both species did not affect soil organic C, pH and cation exchange capacity. Surface and subsurface soils under tree canopies had 22–26 and 12–17% higher N, respectively, than the corresponding soils away from tree canopies. Surface soil available P under tree canopies was 34–50% higher than the corresponding soil away from canopies. Available P content of subsurface soil was improved only under C. africana canopy. The available P of surface soil under C. macrostachyus canopy was more than double that for C. africana. Trees of both species increased underneath surface and subsurface exchangeable K by 18–46% compared with the corresponding controls. In conclusion, C. macrostachyus and C. africana trees on farms keep soil nutrient high via protection against leaching, translocation of nutrients from deeper to the surface layer and accumulation of litter, which create a temporary nutrient pool in the surface soils under their canopies.  相似文献   

6.
The feasibility of detecting the seasonal variation in leaf area index (LAI) in boreal conifer forests is investigated using optical instruments. The LAI of six stands was measured. They include young and old jack pine (Pinus banksiana) and old black spruce (Picea mariana) located near the southern border (near Prince Albert, Saskatchewan) and near the northern border (near Thompson, Manitoba) of the Canadian boreal ecotone. LAI values of the stands are obtained by making several corrections to the effective LAI measured from the LI-COR LAI-2000 Plant Canopy Analyzer (PCA). The corrections include a foliage element (shoot) clumping index (for clumping at scales larger than the shoot) measured using the optical instrument TRAC (Tracing Radiation and Architecture of Canopies) developed by Chen and Cihlar (Chen, J.M. and Cihlar, J., 1995a, Plant canopy gap size analysis theory for improving optical measurements of leaf area index of plant canopies, Appl. Opt., 34: 6211–6222), a needle-to-shoot area ratio (for clumping within the shoot) obtained from shoot samples, and a woody-to-total area ratio obtained through destructive sampling of trees. It is found that the effective LAI varied about 5% to 10% in the growing season and the element clumping index remained almost unchanged. The needle-to-shoot area ratio varied the most, about 15% to 25%, which is of the same order of magnitude as the expected seasonal variability in LAI. This demonstrates that most of the seasonal variation information is contained in the needle-to-shoot area ratio, which can not be measured indirectly using in situ optical instruments and has to be obtained from a large quantity of shoot sample analysis which is laborious and error-prone. Based on our experience, an improved and convenient shoot sampling strategy is suggested for future studies. The optically-based LAI values were compared with destructive sampling results for three of the stands. Based on error analysis, we believe that optical measurements combined with shoot sample analysis can produce LAI values for conifer stands which are more accurate than destructive sampling results.  相似文献   

7.
We investigated the life cycle and habitat use of an arboreal collembolan species, Xenylla brevispina, in the canopy and soil of a conifer (Cryptomeria japonica D. Don) plantation. The adaptive significance of migration between arboreal and soil habitats in the maintenance of its population in relation to the vertical structure of the forest is discussed. We sampled dead branches with foliage in the canopy (canopy litter) and on the forest-floor (soil litter). X. brevispina had one generation a year throughout the 3 years of the study. The mean densities of X. brevispina were similar in the canopy litter (0.06 to 14.57 g−1 dry weight) and the soil litter (0.44 to 18.99 g−1 dry weight). Seasonal patterns of density and relative abundance indicate that individuals of X. brevispina in the canopy were closely associated with those in the soil. These results suggest that vertical migration between the canopy and the soil might be a strategy allowing X. brevispina to be a predominant collembolan species in this forest.  相似文献   

8.
This paper compares estimates of Leaf Area Index (LAI) obtained from the MODIS (Moderate Resolution Imaging Spectroradiometer) collections 4.8 (MC4) and 5.0 (MC5) with ground-based measurements taken along a 900 km north-south transect through savanna in the Northern Territory, Australia. There was excellent agreement for both the magnitude and timing in the annual variation in LAI from MC5 and biometric estimates at Howard Springs, near Darwin, whereas MC4 overestimated LAI by 1-2 m2 m−2 for the first 200 days of the year. Estimates of LAI from MC5 were also compared with those obtained from the analysis of digital hemispherical photographs taken during the dry season (September 2008) based on algorithms that included random and clumped distribution of leaves. Linear regression of LAI from MC5 versus that using the clumping algorithm yielded a slope close to 1 (m = 0.98). The regression based on a random distribution of leaves yielded a slope significantly different from 1 (m = 1.37), with higher Mean Absolute Error (MAE) and bias compared to the clumped analysis. The intercept for either analysis was not significantly different from zero but inclusion of five additional sites that were visually bare or without green vegetation produced a statistically significant offset of +0.16 m2 m−2 by MC5. Overall, our results show considerable improvement of MC5 over MC4 LAI and good agreement between MC5 and ground-based LAI estimates from hemispherical photos incorporating clumping of leaves.  相似文献   

9.
The theoretical background of modeling the gap fraction and the leaf inclination distribution is presented and the different techniques used to derive leaf area index (LAI) and leaf inclination angle from gap fraction measurements are reviewed. Their associated assumptions and limitations are discussed, i.e., the clumping effect and the distinction between green and non-green elements within the canopy. Based on LAI measurements in various canopies (various crops and forests), sampling strategy is also discussed.  相似文献   

10.
Ayman A. Suleiman   《CATENA》2008,73(3):312-320
Crop management models require simulation of daily soil water dynamics. The objective of this study was to develop a model to simulate the daily soil water dynamics during vertical drainage with reasonable accuracy using the incoming flow concept. The execution of this model, which has been developed based on the conservation of mass law, consists of two steps. First, calculating the potential daily change of soil water content (Δθp) for each soil layer in the profile assuming each one receives no water from the above layer. Then, calculating the actual daily change of soil water (Δθa) for each soil layer in the profile by adjusting Δθp using the incoming water flow, which can be defined as the amount of drainage water that reaches a layer in a soil profile from the above layer. The model was compared with the Suleiman and Ritchie [Suleiman, A.A., Ritchie, J.T., 2004. Modifications to the DSSAT vertical drainage model for more accurate soil water dynamics estimation. Soil Sci. 169 (11), 745–757] vertical drainage model (SRVDM) and HYDRUS-1D for diverse soils and was tested using drainage experimental data of a Eutric Regosol in Bekkevoort, Belgium and a sandy soil in Georgia, U.S. The difference in Δθp between the new model and HYDRUS-1D for diverse soils ranged from − 0.01 to 0.016 m3 m− 3 for the first day and from − 0.005 to − 0.025 m3 m− 3 for the second day while the difference in Δθp between the SRVDM and HYDRUS-1D for these soils ranged from 0.014 to 0.062 m3 m− 3 for the first day and from − 0.01 to 0.026 m3 m− 3 for the second day. The relative maximum absolute errors in Δθa between the new model and HYDRUS-1D was 10% while the relative maximum absolute errors in Δθa between the SRVDM and HYDRUS-1D was 112%. In the experiments, the root mean square difference of the soil water content for the new model was lower than that for the SRVDM at the different soil depths. These results indicated that the new model outperformed the SRVDM in simulating Δθp and Δθa for diverse soil. It can be concluded that the new model was robust and reasonably accurate for diverse soils at different soil depths. The implementation of such model will improve the accuracy and applicability of regional soil water dynamics simulation and will reduce considerably the computational time and the required inputs.  相似文献   

11.
The spatial variability of the fraction of photosynthetically active radiation absorbed by the canopy (fPAR) was characterized for a heterogeneous boreal mixedwood forest site located in northern Ontario, Canada, based on relationships found between fPAR and light detection and ranging (lidar) data over different canopy architectures. Estimates of fPAR were derived from radiation measurements made above the canopy at a flux tower and below-canopy radiation was measured across a range of species compositions and canopy architectures. Airborne lidar data were used to characterize spatial variability of canopy structure around the flux tower and a map of mean canopy chlorophyll concentration was derived from airborne hyperspectral imagery. Different volumes of lidar points for the locations directly above each photosynthetically active radiation (PAR) sensor were examined to determine if there is an optimal method of relating lidar returns to estimated fPAR values.The strongest correlations between mean lidar height and fPAR occurred when using points that fell within a theoretical cone which originated at the PAR sensor having a solid angle α = 55°. For diffuse conditions, the correlation (r) between mean lidar height versus fPAR × chlorophyll was stronger than between mean lidar height versus fPAR by 8% for mean daily fPAR and from 10 to 20% for diurnal fPAR, depending on solar zenith angle. For direct light conditions, the relationship was improved by 12% for mean daily fPAR and 12–41% for diurnal relationships.Linear regression models of mean daily fPAR × chlorophyll versus mean lidar height were used in conjunction with gridded lidar data and the canopy chlorophyll map to generate maps of mean daily fPAR for direct and diffuse sunlight conditions. Site average fPAR calculated from these maps was 0.79 for direct light conditions and 0.78 for diffuse conditions. When compared to point estimates of mean daily fPAR calculated on the tower, the average fPAR was significantly lower than the point estimate. Subtracting the direct sunlight fPAR map from the diffuse sunlight fPAR map revealed a distinct spatial pattern showing that areas with open canopies and relatively low chlorophyll (e.g., black spruce patches) have a higher fPAR under direct sunlight conditions, while closed canopies with higher chlorophyll (e.g., deciduous species) absorb more PAR under diffuse conditions. These findings have implications for scaling from point measurements at flux towers to larger resolution satellite imagery and addressing local scale heterogeneity in flux tower footprints.  相似文献   

12.
基于夏玉米冠层内辐射分布的不同层叶面积指数模拟   总被引:1,自引:1,他引:1  
为了模拟夏玉米冠层内各层叶面积指数垂直分布,光合有效辐射(photosynthetically active radiation, PAR)是研究作物群体光合作用和长势的重要特征参数,阐明冠层内PAR的垂直分布规律与冠层结构等参数之间的相关关系,可为遥感定量反演冠层结构参数提供模型基础。该文基于PAR在冠层内的辐射传输规律结合冠层结构模拟不同太阳高度角的PAR透过率垂直分布模型,并用地面冠层分析仪测量值进行验证,结果表明模型对封垄前玉米抽雄期冠层内PAR透过率垂直分布模拟精度较高。通过不同太阳高度角PAR透过率的垂直分布模型结合消光系数运用不同算法分别反演层叶面积指数(leaf area index, LAI),并与不同高度层LAI实测值进行比较。结果显示:Bonhomme& Chartier算法反演不同高度层LAI精度较高,上层均方根误差(root mean square error,RMSE)为0.18,中层RMSE为0.55,下层RMSE为0.09。不同太阳高度角反演结果存在差异,30°和45°高度角均能较好地反演下层LAI,RMSE分别为0.11与0.09;30°高度角反演中层LAI精度较高,RMSE为0.30;45°高度角反演上层LAI精度较高,RMSE为0.18。结果表明基于不同太阳高度角构建的层LAI反演模型更适于实现夏玉米不同高度层LAI的遥感估算。该研究可为模拟垄行结构冠层内LAI垂直分布提供参考。  相似文献   

13.
14.
The surface characteristics of soil can have a profound effect on the hydrology of tilled land. Apposite measurements of the surface hydraulic properties of Plainfield sand (Wisconsin, U.S.A.), a Typic Udipsamment, were used to assess the hydrologic impact of 5 years tillage by either moldboard plow or no-till. The crop was always corn (Zea mays L.). The “mean” pore size (λm), weighted in a way relevant to the flow of water through the soil surface, was computed here from saturated and unsaturated measurements of sorptivity (S0) and hydraulic conductivity (K0). Disc permeameters of dissimilar radii were used at two unsaturated supply-potential heads of ψ0=−100 mm and −20 mm to find S0 (ψ0) and K0 (ψ0). At saturation (ψ0=0), infiltration rings of contrasting radii were employed. The saturated and unsaturated values for S0 and K0 of the plowed soil were either the same as, or greater than the corresponding values for the no-till soil. Combination of the values for the saturated S0 and K0 showed that the no-till soil had a λm=1.34 (±0.67) mm, while in the plowed soil the “mean” pore size during saturated flow was only 0.19 (±0.18) mm. The large λm, and the high coefficient of variation, for the no-till soil was presumed to be related to the macropore network associated with the decay of crop residue in the less-sorptive matrix. The small homogeneous λm of both the saturated and unsaturated plowed soil reflects the annual pulverization of the soil surface by tillage.  相似文献   

15.
In order to more accurately evaluate the functional activity of forest stands by canopy production and evapotranspiration, we improved the methods for field measurements and statistical modeling to estimate foliage configuration (spatial distribution of leaves) while simultaneously reconstructing the three-dimensional photosynthetically active photon flux density (PPFD) distribution (PPFD pattern) in a forest canopy. By using a sensor (photodiode) array, a PPFD pattern was observed in summer 2002 under the canopy in an even-aged, pure stand of Japanese mountain birch Betula ermanii Cham. (17-years old) in Hokkaido, northern Japan. A Markov chain Monte Carlo (MCMC) sampling technique is developed such that a set of foliage configurations generated by the model referred to as the Gibbs foliage canopy (GFC) approximates the field-measured PPFD pattern. The posterior distribution of the foliage configurations is generated by the parallel tempering MCMC of eight independent series of foliage configurations. The GFC model generated the posterior distribution of the LAI estimates (mean 4.56) that appeared to be appropriate in comparison to other LAI estimates of the B. ermanii stand based on the indirect and nondestructive methods by LAI-2000 (LAI = 3.43) and litterfall traps (LAI = 5.56) because they could be under- and overestimated, respectively. Our evaluations of the canopy production and evapotranspiration rates suggest that the relationship between LAI and canopy functions was not very simple because it depended on the nonlinear functional forms of the leaf responses of photosynthesis and transpiration to PPFD. The current study demonstrates an application of MCMC techniques that can generate a set of possible structures of unobserved/unobservable objects based on the high-resolution dataset obtained by some indirect (or remote-sensing) methods.  相似文献   

16.
作物冠层BRDF的Monte Carlo模拟与分析   总被引:2,自引:0,他引:2  
该文构建了光子在作物冠层传输的随机过程,采用蒙特卡罗(Monte Carlo)方法模拟了作物冠层BRDF。对比蒙特卡罗模型和MCRM模型,分析了叶倾角(LAD)与叶面积指数(LAI)对两模型BRDF的影响,并对其中的变化给出了合理的解释。研究表明,两模型虽然在模拟的BRDF数值上有一定差异,但在不同LAD和LAI对BRDF的变化趋势上达到了较好的一致性。最后,用实测BRDF数据验证和分析蒙特卡罗模型,结果表明,蒙特卡罗模型与实测BRDF较为吻合,蒙特卡罗模型可以作为其他作物冠层BRDF前向模拟的有效验证工具。  相似文献   

17.
Tillage-induced changes in soil quality are important to understanding soil strength and water retention and transmission properties. Thus, this study was conducted to assess the effects of two tillage systems under un-drained and drained conditions on tensile strength (TS) of 5–8 mm aggregates, soil water characteristics (SWC), plant available water (PAW), and the water infiltration rate (i). Soil properties were determined mainly in the surface (0–10 cm) layer on a Crosby (fine, mixed, mesic, Aeric Ochraqualf) silt loam soil at the Waterman Farm of the Ohio State University, Columbus, OH on a 14-year-old field study. Effect of two tillage treatments comprising no-tillage (NT) and conventional tillage (CT) were studied for two levels of drainage: un-drained (UD) and tile drained (D). The TS for 0–10 cm depth was significantly (P ≤ 0.01) affected by tillage and drainage treatments, and was higher in CT than NT by 61% in UD and by 48% in D soil. In comparison, TS increased by 13% in NT and 4% in CT in D compared with the UD treatments. Soil organic carbon (SOC) in 0–10 cm depth of NT–UD treatment was 23% higher than CT–UD treatment and 38% more than NT–D treatments. Tillage and drainage impact on SWC was non-significant at 0 kPa suction, but significant (P ≤ 0.1) at −3, −6, −10, −30, −100 and −300 kPa suctions indicating that water was retained more in NT–UD than CT–UD soil. The PAW was significantly influenced by drainage (P ≤ 0.01) but not by tillage treatments. Yet, there existed a general trend of about 8% more PAW in NT–UD than CT–UD treatments. In contrast, PAW was 48% more in soil from NT–UD than NT–D treatments. PAW increased with increase in the SOC concentration (R2 = 0.89; P ≤ 0.01). There were also differences in soil water sorptivity (S), and equilibrium infiltration rate (ic) in NT–UD compared with CT–UD treatments. A positive and significant correlation (r = 0.57, P ≤ 0.05) occurred between ic and SOC concentration. The value of S was more in NT–UD by 70% than CT–UD, and 46% in NT–D than CT–D. Similarly, the ic was more in NT than CT by 119% in UD compared with 82% in D soil. The value of A in NT was higher than that in CT by 39% and 12% in UD and D treatments, respectively. The mean cumulative infiltration (I) in 3 h was 71.4 cm in NT versus 44.0 cm in CT in UD compared with 62.1 cm in NT and 48.4 cm in CT for the D treatment. The I was positively and significantly correlated with SOC concentration (r = 0.32, n = 12, P ≤ 0.1) indicating improvement of I with increase in SOC concentration. Results of this study suggest that conversion from CT to NT management system may reduce the risk of surface runoff, increase soil aggregation, and improve soil hydrological properties.  相似文献   

18.
A.J. Fristensky  M.E. Grismer   《CATENA》2009,79(1):93-102
Application of organic soil amendments to disturbed soil has been shown to improve aggregate stability and reduce soil susceptibility to erosion. Employing ultrasonic aggregate stability assessment techniques described earlier [Fristensky, A. and Grismer, M.E., 2008. A simultaneous model for ultrasonic aggregate stability assessment. Catena, 74: 153–164.], we assess the effect of two experimental organic soil amendments – a compost and a woodchip mulch incorporated at a rate of 2000–6000 kg ha− 1 N-equivalence – on soil aggregation and aggregate stability at four drastically disturbed sites within the Lake Tahoe Basin, USA. Experimental plots were established 1–3 years prior to testing. The soils were of granitic or volcanic origin, and disturbed by either ski run or road development. Soil treatments were observed to significantly (p < 0.05) increase both aggregation (300% average increase) and ultrasonic aggregate stability (600% average increase) relative to the untreated soil. However, at the two sites disturbed by ski run development, the control treatment (tilling and surface application of pine–needle mulch) performed comparably to the two incorporated compost treatments, suggesting that the effects of the experimental amendments on aggregation were negligible at these sites, or their effective duration was shorter than the evaluation period.Rainfall simulations (72–120 mm h− 1) were performed on the treatment plots, and results were compared with the ultrasonic aggregate stability indices. Significant (p < 0.05) positive correlations were obtained between the measurements of aggregate instability and indices of soil susceptibility to runoff, including steady-state infiltration rate (measured values between 1 and 120 mm h− 1), and the level of kinetic energy of applied rainfall at which runoff commences (EBR, measured values between 12 and 224 J m− 2). However, no correlation was found between the ultrasonic aggregate stability indices and observed soil erosion variables. Interestingly, positive relationships (p < 0.05) were observed between both infiltration rate and EBR and the proportion of 2–20 μm and < 2 μm particles liberated from the largest aggregates detected in each soil. Our results suggest that ultrasonic aggregate stability indices may be useful indicators of soil susceptibility to runoff and erosion under rainfall.  相似文献   

19.
Protected cultivation, mainly represented by plastic-film mulching, has greatly improved crop production worldwide since the 1950s. However, despite its widespread use in tropical USA, Europe and China, its use in sub-Saharan Africa is not widespread. A field experiment was conducted using cocoyam (Colocasia esculenta L. Schott) to evaluate the effects of two tillage systems (tilled and no-till) and plastic-film mulch (black and clear plastic-film mulch) on soil properties and cocoyam growth and yield in 2003 and 2004 planting seasons on a Typic paleudult in southeastern Nigeria. The experiment comprised six treatments and was laid out in the field using randomized complete block design replicated three times. Results showed that 70–80% of the corms emerged 7–8 days (21 days after planting [DAP]) earlier in both tilled and no-till plastic-film mulched plots when compared to the unmulched plots. At later stages of crop development, the plants in the tilled black plastic-film mulched plots were taller by 61–67% than those in the unmulched no-till plots, which had the lowest plant height (27–30 cm). At 98 DAP, there were no significant treatment differences in leaf area index (LAI) between tilled and no-till mulched plots with LAI of 15.5–19.8. However, LAI was reduced in both unmulched plots by 35–54% when compared to the mulched plots. On the average soil temperature was higher in plastic-film mulched plots than that under plots without mulch by about 2 °C. Results show significantly lower soil bulk density (between 1.10 and 1.26 Mg m−3) in both tilled clear and black plastic-film mulched plots when compared to the corresponding no-till clear or black plastic-film mulched plots (1.40–1.45 Mg m−3). For the two seasons studied volumetric water content (VWC) in tilled black plastic-film mulched plots were significantly higher than VWC in other mulched plots by between 10 and 38% in 2003 and between 17 and 30% in 2004. At harvest (270 DAP) the highest corm yield was obtained in tilled black plastic mulched plots (29.1 Mg ha−1). This was higher (P = 0.05) than yields obtained in no-till, no mulch plots by 72%. Yields were also higher in tilled black plastic mulched plots when compared to tilled clear plastic mulched plots, no-till black plastic mulched plots and no-till clear plastic mulched plots by 29, 47 and 59%, respectively. These findings suggest that plastic mulched plots provide a better soil environment for cocoyam than unmulched plots and that tilled mulched plots especially tilled black plastic mulched plots provide superior edaphic environment for cocoyam when compared to other treatments used.  相似文献   

20.
RZ-SHAW is a hybrid model, comprised of modules from the Simultaneous Heat and Water (SHAW) model integrated into the Root Zone Water Quality Model (RZWQM) that allows more detailed simulation of different residue types and architectures that affect heat and water transfer at the soil surface. RZ-SHAW allows different methods of surface energy flux evaluation to be used: (1) the SHAW module, where evapotranspiration (ET) and soil heat flux are computed in concert with a detailed surface energy balance; (2) the Shuttleworth–Wallace (S–W) module for ET in which soil surface temperature is assumed equal air temperature; and (3) the PENFLUX module, which uses a Penman transformation for a soil slab under incomplete residue cover. The objective of this study was to compare the predictive accuracy of the three RZ-SHAW modules to simulate effects of residue architecture on net radiation, soil temperature, and water dynamics near the soil surface. The model was tested in Akron, Colorado in a wheat residue-covered (both standing and flat) no-till (NT) plot, and a reduced till (RT) plot where wheat residue was incorporated into the soil. Temperature difference between the soil surface and ambient air frequently exceeded 17 °C under RT and NT conditions, invalidating the isothermal assumption employed in the S–W module. The S–W module overestimated net radiation (Rn) by an average of 69 Wm−2 and underestimated the 3-cm soil temperature (Ts3) by 2.7 °C for the RT plot, attributed to consequences of the isothermal assumption. Both SHAW and PENFLUX modules overestimated midday Ts3 for RT conditions but underestimated Ts3 for NT conditions. Better performances of the SHAW and PENFLUX surface energy evaluations are to be expected as both approaches are more detailed and consider a more discretized domain than the S–W module. PENFLUX simulated net radiation slightly better than the SHAW module for both plots, while Ts3 was simulated the best by SHAW, with a mean bias error of +0.1 °C for NT and +2.7 °C for RT. Simulation results for soil water content in the surface 30 cm (θv30) were mixed. The NT conditions were simulated best by SHAW, with mean bias error for θv30 within 0.006 m3 m−3; RT conditions were simulated best by the PENFLUX module, which was within 0.010 m3 m−3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号