首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
This study examined the effect of dietary protein and lipid levels on growth, feed utilization and body composition of Asian catfish Pangasius hypophthalmus reared in cages. Eight test diets were formulated at four protein (340, 380, 420 and 460 g kg−1 crude protein) and two lipid (50 and 90 g kg−1 crude lipid) levels. Fish (initial weight 4.7 g fish−1) were fed the test diets for 8 weeks. Final body weight, weight gain (WG), feed intake (FI), feed conversion ratio (FCR), contents of crude protein, lipid and energy in whole body were dependent on both dietary protein and lipid levels, while specific growth rate (SGR), hepatosomatic index and body moisture content were dependent on dietary lipid level. The WG and SGR increased with the increase in either dietary protein level (at the same lipid level) or lipid level (at the same protein level). The FI and FCR decreased with the increase in dietary protein level (at the same lipid level) or lipid level (at the same protein level). Protein sparing action occurred in case dietary lipid level increased. Fish fed the diet containing 453 g kg−1 crude protein and 86 g kg−1 lipid had the highest WG and SGR, but the lowest FI and FCR, among the diet treatments. There were no significant differences in the protein retention efficiency (PRE) and energy retention efficiency (ERE) among the diet treatments, although PRE and ERE were relatively high in fish fed the diet containing 453 g kg−1 crude protein and 86 g kg−1 lipid. At the end of the feeding trial, body protein content increased, while body lipid content decreased, with the increase in dietary protein content at the same lipid level. Our results suggest that dietary levels of 450 g kg−1 crude protein and 90 g kg−1 lipid are adequate to support fast growth of P. hypophthalmus reared in cages.  相似文献   

2.
《Aquaculture Research》2017,48(4):1759-1766
A shrimp protein hydrolysate (SPH) containing 894.2 g kg−1 crude protein (CP) and 54.3 g kg−1 total lipids was tested as a partial replacement for fish meal (FM) in diets of juvenile cobia. The effects of increasing dietary levels of SPH on the survival, weight gain (WG), specific growth rate (SGR), feed conversion ratio (FCR), nitrogen retention efficiency (NRE) and daily feed intake (DFI) of cobia with initial body weight of 11.9 g were evaluated. Four isoproteic (from 431.1 to 439.7 g kg−1) and isoenergetic (20 825–21 347 MJ kg−1) diets were formulated to contain 0 (Control), 120, 240 or 360 g kg−1 of dietary CP derived from SPH. Survival, WG, SGR, FCR, NRE and DFI ranged from 90 to 100%, 40.2–56.5 g, 4.7–6.1% day−1, 1.04–1.54, 26.3–44.0% and 4.7–6.0% fish−1 day−1 respectively. Survival and DFI were not affected by the dietary treatments. On the other hand, fish fed the control diet and the one containing 120 g kg−1 SPH had higher WG, SGR and FCR. Nitrogen retention efficiency was significantly higher for fish fed diets 0 and 120. It is concluded that up to 120 g kg−1 of SPH in cobia diets can be used with no significant effects on feed utilization and fish performance.  相似文献   

3.
A feeding trial of three protein (200, 300 and 400 g kg−1) and two lipid levels (20 and 100 g kg−1) was conducted to determine the proper dietary protein and lipid levels for growth of juvenile sea cucumber Apostichopus japonicus. Dietary protein and lipid levels were adjusted by adding with different levels of soybean meal, squid liver oil and soybean oil, respectively. Three replicate groups of sea cucumbers (average weight of 1.3 g) were fed the experimental diets for 12 weeks. At the end of the feeding trial, survival was not affected by dietary protein and lipid levels (P > 0.05). Weight gain (WG) and specific growth rate (SGR) of sea cucumbers were significantly affected by dietary protein (P < 0.006) and lipid levels (P < 0.001). The highest WG and SGR were observed in sea cucumbers fed the 200 and 400 g kg−1 protein diet with 20 g kg−1 lipid (P < 0.05). WG and SGR of sea cucumbers fed the diet containing 20 g kg−1 lipid were higher than those of sea cucumbers fed the 100 g kg−1 lipid diets (P < 0.05) at each dietary protein level. Apparent digestibility coefficients of dry matter, crude protein, carbohydrate and gross energy of sea cucumbers fed the 20 g kg−1 lipid diets were significantly higher than those of the 100 g kg−1 lipid diets at 200 and 400 g kg−1 protein (P < 0.05). Moisture, crude protein, crude lipid and ash contents were not significantly different among the groups. The results of this study indicate that the diet containing 200 g kg−1 protein (170 g kg−1 digestible protein) with 20 g kg−1 lipid (13 g kg−1 digestible lipid) may be sufficient for optimum growth of juvenile sea cucumber.  相似文献   

4.
Two, 8‐week feeding trials were conducted to compare protein‐sparing capability of dietary lipid in herbivorous grass carp (Ctenopharyngodon idella) and omnivorous tilapia (Oreochomis niloticus × O. aureus). Utilizing a 2 × 3 factorial design, experimental diets containing two levels of crude protein (380 and 250 g kg−1) and three levels of lipid (0, 40 and 100 g kg−1) were formulated for use in both feeding trials. Growth performances showed better response of both fish fed 380 g kg−1 protein diet than those fed 250 g kg−1 protein diet. Despite the dietary protein level, weight gain (WG), specific growth ratio (SGR), feed conversion ratio (FCR) and protein efficiency ratio were much higher (P < 0.05) for grass carp fed 40 g kg−1 lipid diet than those fed 100 g kg−1 lipid diet; however, there were no significant differences in tilapia fed the two diets. The feed intake of grass carp fed lipid‐free diet was the lowest, but it tended to decrease with increase in dietary lipids in tilapia. Lipid retention (LR) was negatively correlated with dietary lipid concentration of both fish. Viscerosomatic index (VSI), hepatosomatic index (HSI), intraperitoneal fat ratio (IPF) and whole‐body and liver lipid content positively correlated with dietary lipid concentration of both fish. Plasma parameters and liver enzymes activities were also positively correlated with dietary lipid concentration of both fish. Liver lipid contents were higher and enzymes activities were lower in grass carp when compared with tilapia. These data suggested that there was no evidence of a protein‐sparing effect of dietary lipids in grass carp. Tilapia has relatively higher capacity to endure high dietary lipid level compared to grass carp.  相似文献   

5.
To evaluate isolated pea protein as feed ingredient for tilapia (Oreochromis niloticus) juveniles, triplicate groups were fed with four isonitrogenous [crude protein: 421.1–427.5 g kg−1 in dry matter (d.m.)] and isoenergetic (gross energy: 20.46–21.06 MJ kg−1 d.m.) diets with varying protein sources for 8 weeks. Fish meal-based protein content of diets was substituted with 0% (diet 100/0=control group), 30% (diet 70/30), 45% (diet 55/45) and 60% (diet 40/60) isolated pea protein. Tilapia juveniles with an initial body weight of 2.23–2.27 g were fed in average at a level of 5% of their body weight per day. Highest individual weight gain (WG: 21.39 g) and specific growth rate (SGR: 4.21% day−1) and best feed conversion ratio (FCR: 0.90) were observed in tilapia fed diet 100/0, followed by fish-fed diet 70/30 (WG: 19.09 g; SGR: 4.03% day−1; FCR: 0.98), diet 55/45 (WG: 16.69 g; SGR: 3.80% day−1; FCR: 1.06) and diet 40/60 (WG: 16.18 g; SGR: 3.74% day−1; FCR: 1.06). Although fish fed diet 100/0 showed the best performance, inclusion of 30% protein derived from pea protein isolate resulted in a growth performance (in terms of WG and SGR) that did not differ significantly from diet 100/0 in contrast to fish fed diet 55/45 and 40/60. Crude ash content in the final body composition of the experimental fish decreased with increasing dietary pea protein content, while crude protein and lipid content remained equal between the groups. Significant decreasing growth performance and body ash incorporation of tilapia at higher inclusion levels seem to be mainly related to the dietary amino acid profile and phytic acid contents.  相似文献   

6.
Due to lack of information on the use of non‐protein energy sources in diets for pacu (Piaractus mesopotamicus), a 2 × 2 × 3 factorial experiment was conducted to evaluate the performance and digestibility of 12 diets containing approximately two crude protein (CP; 220 and 250 g kg−1), two lipid (40 and 80 g kg−1) and three carbohydrate levels (410, 460 and 500 g kg−1). The pacu juveniles‐fed diets containing 220 g kg−1 CP did not respond (P > 0.05) to increased dietary lipid and carbohydrate levels, but the fish‐fed diets containing 250 g kg−1 CP showed a better feed conversion ratio. There were interactions in weight gain (WG), specific growth rate (SGR), crude protein intake (CPI) and feed conversion rate (FCR) dependent on dietary carbohydrate and lipid levels, showing positive effects of increasing carbohydrate levels only for fish‐fed diets containing 80 g kg−1 lipid level. However, when the diets contained 40 g kg−1 lipid, the best energy productive value (EPV) results were obtained at 460 g kg−1 carbohydrate. A higher usage of lipids (80 g kg−1) reduced CPI and was detrimental to protein [apparent digestibility coefficient (ADC)CP] and energy (ADCGE), but did not affect growth. The ADCGE improved proportionally as dietary carbohydrate levels increased (P < 0.05), increasing the concentration of digestible energy. In addition, the WG, CPI, ADCGE results showed best use of the energy from carbohydrates when dietary protein level was 250 g kg−1 CP. The utilization of 250 g kg−1 CP in feeds for juvenile pacu for optimal growth is suggested. Therefore, the optimum dietary lipid and carbohydrate levels depend on their combinations. It can be stated that pacu uses carbohydrates as effectively as lipids in the maximization of protein usage, as long as it is not lower than 250 g kg−1 CP or approximately 230 g kg−1 digestible protein.  相似文献   

7.
An 8‐week feeding test was conducted to quantify the dietary arginine requirement of juvenile largemouth bass (LMB) (25 ± 0.4 g). Six isonitrogenous and isolipidic (459 g crude protein and 122 g crude lipid kg?1 dry diet) diets were formulated to contain graded levels of arginine (17.0–30.1 g kg?1 dry diet). Zein‐coated crystalline amino acid mixtures were supplemented to simulate, except for arginine, the amino acid profile of the muscle protein of LMB. Each diet was randomly assigned to quadruplicate tanks of 35 fish reared in a flow‐through system. Fish were fed to apparent satiation twice daily. Weight gain (WG) was significantly affected by dietary arginine level. Nitrogen retention was significantly lower in fish fed D17.0. Arginine retention significantly decreased with dietary arginine increased. Threonine, leucine and lysine concentrations in whole body were significantly affected by dietary arginine level. Serum lysozyme activity, serum protein and respiratory burst of head kidney leucocytes were significantly affected, while complement activity (CH50) showed no difference among treatments. Based on broken‐line analysis for WG against dietary digestible arginine level, the arginine requirement of LMB was 19.1 g kg?1 of dry diet (41.6 g kg?1 of crude protein).  相似文献   

8.
Triplicate groups of pike perch (Sander lucioperca) juveniles were fed six experimental diets containing protein levels varying from 263 to 619 g kg−1 dry matter (d.m.) for 56 days. Dietary protein was supplied by graded amounts of fish meal (with 720 g kg−1 crude protein). Crude lipid and gross energy content of 101–107 g kg−1 and 19.9–20.6 MJ kg−1 remained constant between experimental diets. Pike perch with an initial body weight of 1.05 ± 0.05 g were randomly distributed in 18 tanks of two similar recirculation systems and fed on gradually decreasing feeding rates of 10 to 6% of their body weight per day. Growth performance and feed conversion increased with dietary protein level from 263 to 549 g kg−1 d.m. but did not decline at highest dietary protein level. Protein efficiency ratio declined linearly with increasing dietary protein. Survival ranged between 89.7 and 93.9% and was not affected by dietary composition. Dry matter and crude lipid content of pike perch fingerlings decreased with increasing dietary protein supply and significantly the lowest dry matter and crude lipid levels were observed in fish fed diets containing 619 g kg−1 of crude protein. The dietary protein requirement for pike perch fingerlings calculated by broken‐line and second‐order polynomial regression ranged between 529 and 577 g kg−1, respectively.  相似文献   

9.
A growth experiment was conducted to determine the optimal carbohydrate‐to‐lipid (CHO: L) ratio for juvenile yellowfin seabream cultured in 340‐L indoor recirculating tanks. Seven isonitrogenous (450 g kg−1 dietary protein) and isoenergetic (14.1 MJ kg−1) diets with increasing CHO: L ratios (0.03–5.09 g: g) were fed to triplicate groups of 30 fish with an initial weight of 4.91 g for 56 days. Fish were fed to satiation twice a day and the water temperature ranged between 28 and 31.7 °C during the experimental period. Survival was high in all the groups and was not affected by dietary treatments. Best weight gain (WG) and specific growth rate (SGR) were observed in fish fed diets with CHO: L ratios of 0.29 and 0.72, which were not significantly different from that of 0.03, 1.26 and 1.92, but apparently higher than that of 3.22 and 5.09. Feed efficiency (FE), protein efficiency ratio (PER) and protein production value (PPV) followed the same general pattern as WG and SGR. Highest level of energy production value (EPV) was found in fish fed diets with CHO: L ratio of 0.72. Proximate compositions of fish whole body and tissues were markedly affected by dietary CHO: L ratios. Whole body, muscle and liver lipid increased as CHO: L ratios decreased, whereas moisture contents were reduced. Dietary CHO: L ratios had no significant effect on protein content in whole body and muscle. Plasma total cholesterol levels of fish fed diets with CHO: L ratios less than 0.72 were significantly higher than those of the other groups. Triacylglyceride levels decreased linearly as dietary CHO: L ratios increased. Viscerosomatic index (VSI) significantly increased as dietary CHO: L ratios decreased. Intraperitoneal fat ratio (IPF) of fish fed diets with CHO: L ratios less than 1.92 were significantly higher than those fed CHO: L ratios of 3.22 and 5.09. Hepatosomatic index (HSI) did not vary between the test diets. Based on second‐order polynomial regression analysis of WG against dietary carbohydrate and lipid levels, 84.1 g kg−1 of carbohydrate and 136.3 g kg−1 of lipid, corresponding to a CHO: L ratio of 0.62, in a diet holding 450 g kg−1 of crude protein and 14 KJ g−1 of metabolizable energy, proved to be optimal for juvenile yellowfin seabream.  相似文献   

10.
《Aquaculture Research》2017,48(4):1767-1777
A feeding trial was conducted to evaluate the effects of replacing soybean meal (SBM) with rubber seed meal (RSM) on digestive enzyme activity, nutrient digestibility and retention in juvenile tilapia (Oreochromis niloticus × Oreochromis aureus). Five isonitrogenous and isoenergetic diets were formulated with 0 (control), 100, 200, 300 and 400 g kg−1 RSM replacing graded levels of SBM respectively. Each diet was randomly assigned to triplicate groups of 30 fish (initial average weight 5.2 g) per aquarium in a rearing system maintained at 29 ± 1°C for 8 weeks. The hepatic protease and lipase activities gradually decreased with increasing dietary RSM level, but no significant differences were observed among the low inclusion level (0–200 g kg−1) groups. The apparent digestibility coefficients of dry matter, crude protein, crude lipid and ash showed a similar trend as the hepatic protease and lipase activities. The retentions of protein and individual essential amino acid (except lysine, threonine and leucine) in fish fed diet with 200 g kg−1 RSM were similar to those in fish fed the control diet. These results indicate that dietary RSM inclusion level up to 200 g kg−1 did not markedly affect the digestive enzyme activity, nutrient digestibility and retention in tilapia, whereas these were depressed by the inclusion of 400 g kg−1 RSM.  相似文献   

11.
To verify the potential of lipids and carbohydrates to spare dietary protein and to understand the intermediary metabolism of interaction of these nutrients in pacu juveniles, an experiment was carried out to evaluate pacu physiological and performance parameters. The experimental design was completely randomized with 12 treatments in a 2 × 2 × 3 factorial arrangement, consisting of diets containing two digestible protein levels (200 and 230 g kg−1 PD), two lipid levels (40 and 80 g kg−1) and three carbohydrate levels (410, 460 and 500 g kg−1). Fish‐fed 230 g kg−1 digestable protein (DP) showed increased glycaemia, decreased hepatic glycogen, as well as a smaller intake index and better feed conversion ratio. The higher dietary lipid level (80 g kg−1) reduced protein intake and serum protein concentration, increased liver and body fat content, but did not affect growth. At a lipid level of 80 g kg−1, the increase in dietary carbohydrate levels promoted greater weight gain (WG), crude protein intake (CPI) and better feed conversion ratio (FCR). For fish fed diets containing 40 g kg−1 lipid, the best energy‐productive values (EPV) were obtained at 460 g kg−1 carbohydrate. Increased levels of the main nutrients in the diets reduced the levels of serum triglycerides, while the increase in energy concentration increased the hepatosomatic (HSI) and glycaemia index values. Pacu used lipids as effectively as carbohydrates in the maximization of protein usage, as long as dietary protein was at a level of 230 g kg−1 DP. The physiological parameters indicated that the best balance between the DP, dietary lipid and carbohydrate levels within the ranged this trial was obtained at 230, 40 and 460 g kg−1, respectively, without lower growth.  相似文献   

12.
A study was conducted to determine optimum dietary digestible protein (DP) and digestible energy (DE) levels and DP DE−1 ratio for growth of greater amberjack Seriola dumerili fingerlings. A 3 × 3 factorial design with duplication was used in this study. Nine experimental diets were formulated to contain three levels of crude protein (CP; 420, 470 and 530 g kg−1) and three levels of crude lipid (CL; 130, 180 and 230 g kg−1). Nine groups of fingerling (initial weight 51.8 g) were fed each experimental diet for 40 days. Final body weight, feed efficiency, specific growth rate and energy efficiency were significantly affected by dietary protein and lipid level. These parameters tended to improve with increasing dietary protein level. Conversely, an increase of lipid level negatively affected these parameters. High growth rate and feed efficiency were obtained from fish fed the diet containing 393 g kg−1 DP and 14.2 MJ kg−1 DE (27.7 g MJ−1 DP DE−1). The high DP DE−1 (27.7 g MJ−1) indicates that greater amberjack fingerling are highly dependent on dietary protein as an energy source.  相似文献   

13.
The present study was conducted to investigate the effects of dietary lipid, carbohydrate and their interactions on growth performance, feed utilization, body composition and non‐specific immunity of large yellow croaker (Larimichthys crocea). The experimental fish were fed the diets with graded levels of dietary crude lipid (80, 110 and 140 g/kg diet) and dietary carbohydrate (60, 90 and 120 g/kg diet) for 7 weeks. Results showed that the specific growth rate decreased significantly as dietary carbohydrate increased, which partly resulted from the progressively reduced feed intake and protein efficiency ratio. Meanwhile, the result of postprandial glucose content confirmed glucose intolerance of the croaker. However, the specific growth rate was not significantly altered by dietary lipid, but the feed intake was remarkably reduced. The different growth performance and feed utilization of croaker in response to dietary lipid and carbohydrate resulted in the variation of body composition. In addition, the activity of lysozyme and classical complement pathway was significantly improved in croaker fed the diet with 110 g/kg lipid. In above, dietary carbohydrate and lipid of large yellow croaker should be maintained at 60 and 110 g/kg diet, respectively, based on the above indices.  相似文献   

14.
An experiment was conducted to investigate the effect of dietary chromium picolinate supplement on growth and haematology parameters of grass carp, Ctenopharyngodon idellus. Six diets with increasing dietary chromium picolinate levels 0, 0.2, 0.4, 0.8, 1.6 and 3.2 mg kg−1 were fed to triplicate groups of 20 fish (initial weight of 12.78 ± 1.16 g, mean ± SD) in a flow water system for 10 weeks. Fish fed the diet supplemented with 0.8 mg Cr kg−1 had significantly improved weight gain (WG), feed efficiency ratio (FER), protein efficiency ratio (PER) and protein retention (PR). Fish fed high-chromium diets exhibited lower whole-body crude lipid contents than fish fed low-chromium diets. Liver glycogen concentrations for fish fed the diet with 0.2 mg Cr kg−1 was the highest (77.67 mg g−1). Fish fed the diet supplemented with 1.6 and 3.2 mg Cr kg−1 had significantly lower liver glycogen concentrations than other groups (P < 0.05). The highest serum insulin concentrations were observed in fish fed the diet supplemented with 0.8 mg Cr kg−1, but serum insulin concentrations decreased (P < 0.05) when dietary supplementation of chromium was higher than 0.8 mg Cr kg−1. Cholesterol concentrations decreased in direct proportion to dietary chromium level and achieved the lowest level when the fish were fed the 0.8 mg Cr kg−1 diet, but increased when the fish were fed the diet with more than 0.8 mg Cr kg−1 (P < 0.05). Fish fed the diet supplemented with 0.8 mg Cr kg−1 had higher triglyceride and high-density lipoprotein cholesterol (HDL-C) concentrations compared to other treatments. The results of the present study suggested that chromium picolinate could modify serum carbohydrate and lipid metabolism profile, and that the optimal dietary chromium level was 0.8 mg kg−1 for grass carp according to growth.  相似文献   

15.
A 9‐week feeding experiment was conducted to determine the effect of dietary biotin levels on growth performance and non‐specific immune response of large yellow croaker. Fish (6.16 ± 0.09 g) were fed twice daily to apparent satiation with diets containing 0.00 (as the basal diet), 0.01, 0.05, 0.25, 1.24 and 6.22 mg biotin kg?1 diet. Results showed that fish fed the basal diet had the lowest survival rate, and fish fed 0.05 mg kg?1 dietary biotin achieved significantly higher final weight and weight gain. Dietary biotin levels had no significant influence on carcass crude lipid, moisture and ash content, but significantly influenced the carcass crude protein. Liver biotin concentration significantly increased with the supplementation of biotin, but no tissue saturation was found within the supplementation scope of biotin. Broken‐line regression analysis of weight gain showed that juvenile large yellow croaker requires a minimum dietary biotin of 0.039 mg kg?1 for maximal growth. The analyses of serum parameters showed that the moderate‐ (0.05 mg kg?1) and high‐dose (6.22 mg kg?1) dietary biotin significantly improved both lysozyme and alternative complement pathway activities, indicating dietary biotin within a certain range could improve the non‐specific immune response of large yellow croaker.  相似文献   

16.
Six isonitrogenous (390 g kg?1) and isoenergetic (16.2 kJ g?1) diets with varying carbohydrate : lipid (CHO : L) ratios (202.5–1.74), were fed to triplicate groups of 25 fish in indoor recirculation system. Over 8‐week‐growth trial, best weight gain (WG), specific growth rate, feed conversion ratio, protein efficiency ratio and protein production value (P < 0.05) were observed in fish‐fed diets with CHO : L ratio of 7.5. Fish fed either the lowest (1.7) or highest (202.5) CHO : L ratio tended to produce lower (P < 0.05) growth and feed conversion efficiencies. The values of viscerosomatic index, hepatosomatic index and intraperitoneal fat ratio increased as dietary CHO : L ratios decreased. There were no significant differences in whole body and liver crude protein among dietary treatments. Whole body and liver lipid increased as CHO : L ratios decreased. Plasma cholesterol and triacylglyceride levels increased linearly as dietary CHO : L ratios decreased. Activities of glucokinase and pyruvate kinase were stimulated by elevated levels of dietary carbohydrate; however, activities of lipase (LPS) and alkaline phosphatase were stimulated by elevated levels of dietary lipid. Based on a second‐order polynomial regression analysis of WG against dietary carbohydrate and lipid levels, 275 g kg?1 of carbohydrate and 59 g kg?1 of lipid, corresponding to a CHO : L ratio of 4.7, in a diet holding 390 g kg?1 of crude protein and 16.3 kJ g?1 of gross energy, proved to be optimal for grass carp. These results indicated that utilization of dietary lipid and carbohydrate was moderate in grass carp, but the fish were a little more capable of utilizing lipid compared with carbohydrate.  相似文献   

17.
An 8‐week feeding trial was conducted to determine the effects of dietary methionine level on juvenile black sea bream Sparus macrocephalus. Fish (initial body weight: 14.21 ± 0.24 g) were reared in eighteen 350‐L indoors flow‐through circular fibreglass tanks (20 fish per tank). Isoenergetic and isonitrogenous diets contained six levels of L‐methionine ranging from 7.5 to 23.5 g kg−1 of dry diet in 3.0 g kg−1 increments at a constant dietary cystine level of 3.1 g kg−1. Growth performance and feed utilization were significantly influenced by dietary methionine levels (P < 0.05). Maximum weight gain (WG), specific growth rate (SGR), feed efficiency ratio, protein efficiency ratio and protein productive value (PPV) occurred at 17.2 g methionine kg−1 diet, beyond which they showed declining tendency. Protein contents in whole fish body and dorsal muscle were positively correlated with dietary methionine level, while muscle lipid content was negatively correlated with it. Apparent digestibility coefficients (ADCs) of dietary nutrients were significantly affected by dietary treatments except for ADCs of crude lipid. Fish fed the grade level of methionine demonstrated a significant improvement in whole‐body methionine content, total essential amino acids (∑EAA), total non‐essential amino acids (∑NEAAs) and ∑EAA/∑NEAA ratio (P < 0.05). Regarding serum characteristics, significant differences were observed in total cholesterol, glucose and free methionine concentration (P > 0.05), while total protein level and triacylglycerol concentration kept relatively constant among treatments (P < 0.05). Analysis of dose response with second‐order polynomial regression on the basis of either SGR or PPV, the optimum dietary methionine requirements of juvenile black sea bream were estimated to be 17.1 g kg−1 of diet (45.0 g kg−1 methionine of protein) and 17.2 g kg−1 of diet (45.3 g kg−1 methionine of protein) in the presence of 3.1 g kg−1 cystine, respectively.  相似文献   

18.
In this study, we examined the effects of the following eight experimental diets, which varied in fructo oligosaccharides (FOS), mannan oligosaccharides (MOS) and Bacillus clausii concentrations, on the Japanese flounder: control diet (no FOS, MOS and B. clausii), diet F (5 g kg−1 FOS), diet M (5 g kg−1 MOS), diet FM (2.5 g kg−1 FOS + 2.5 g kg−1 MOS), diet B (107 cells g−1B. clausii), diet FB (5 g kg−1 FOS + 107 cells g−1B. clausii), diet MB (5 g kg−1 MOS + 107 cells g−1B. clausii) and diet FMB (2.5 g kg−1 FOS + 2.5 g kg−1 MOS + 107 cells g−1B. clausii). Japanese flounder, initially weighing an average of 21 g, were distributed into 24 net cages at a stocking density of 20 fish per cage. Each diet was hand‐fed to three groups of fish twice daily for 56 days. The weight gain rate (WGR) in fish fed diets B, MB and FMB were significantly higher than in fish fed the control diet, where the fish fed diet FMB had the highest WGR. Fish fed any of the diets, except diets F and B, exhibited better feed conversion ratio than those fed the control diet. Diets MB and FMB significantly elevated intestinal protease activity compared with the control diet, but only the diet FMB promoted amylase activity. Feeding diets FB and FMB increased body protein deposition; additionally, feeding diets B, MB and FMB significantly reduced body lipid deposition. Lysozyme (LSZ) activity was significantly higher in fish fed diets B, FB, MB and FMB than in fish fed the control diet. All diets, except diet M, decreased triglyceride (TG) levels compared to the control diet. Low‐density lipoprotein cholesterol levels in fish fed diets F, FB and FMB were significantly lower than in fish fed the control diet. Without exception, no diets affected feeding rate, condition factor, body moisture, ash contents, phagocytic activity of leucocytes or cholesterol or high‐density lipoprotein cholesterol levels. Our results suggest that diets supplemented with FOS, MOS and B. clausii improved growth performance and health benefits of the Japanese flounder more than other diets or the control diet.  相似文献   

19.
A 17‐week feeding trial was carried out to evaluate the effects of dietary L‐carnitine level in beluga, Huso huso. A total of fish averaging 1247 ± 15.6 g (mean ± SD) were randomly distributed into 18 fibreglass tanks, and each tank holding 10 fish was then randomly assigned to one of three replicates of six diets with 50, 150, 350, 650, 950 and 1250 mg L‐carnitine kg?1 diet. At the end of 17 weeks of feeding trial, average weight gain (WG), feed efficiency (FE), protein efficiency ratio (PER) and condition factor (CF) of fish fed 350 mg kg?1 diet were significantly (P < 0.05) higher than those of fish fed 50, 150, 950 and 1250 mg kg?1 diets. WG, FE, PER and CF of beluga fed 650 mg kg?1 diet were also significantly higher than those of fish fed 50, 950 and 1250 mg kg?1 diets. Whole body and muscle protein were significantly improved by the elevation of dietary L‐carnitine level up to 350 mg kg?1. Liver superoxide dismutase and glutathione peroxidase activities of fish fed 350 and 650 mg kg?1 diets were significantly higher than those of fish fed 50, 950 and 1250 mg kg?1 diets. The dietary L‐carnitine level of 350–650 mg kg?1 diet could improve growth performance, feed utilization, protein‐sparing effects of lipid, antioxidant defence system and reproductive success. Polynomial regression of WG suggested that the optimum dietary L‐carnitine level was 480 mg kg?1 diet. Therefore, these results may indicate that the optimum dietary L‐carnitine could be higher than 350 but <650 mg kg?1 diet in beluga reared in intensive culture conditions.  相似文献   

20.
An 8‐week experiment was designed to determine the optimum dietary iron requirement of juvenile cobia Rachycentron canadum (mean initial weight, 15.89 ± 0.84 g) with iron sulphate (FeSO4•7H2O) and iron methionine (FeMet) as iron sources, using a semi‐purified diet based on casein and white fish meal as the protein sources. The basal diet was supplemented with 0, 30, 60, 120, 240 and 480 mg iron kg−1 dry diet from either FeSO4 or FeMet, respectively. Survival was not significantly affected by the all dietary treatment. Weight gain (WG), feed efficiency (FE), serum catalase activity (SCAT), and haemoglobin were significantly affected by any of the dietary treatments from both of two iron sources. Based on broken‐line regression analysis of WG, FE and SCAT, a minimum requirement for dietary iron was recommended to be 80.5–94.7 mg kg−1 from FeSO4 and 71.3–75.1 mg kg−1 from FeMet. Iron supplement to the basal diet had no significant effect on haematocrit, erythrocyte count, iron concentration in whole body and fillet. Our experiment also showed that the bioavailability of FeMet and FeSO4 to juvenile cobia was similar for WG and FE, and the relative bioavailability of FeMet and FeSO4 to juvenile cobia was 275% for maximum SCAT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号