首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This study assessed the symptoms that developed when 114 Botryosphaeriaceae isolates from grapevine nursery plant materials were used to inoculate excised green shoots and 1‐year‐old rooted canes of Sauvignon blanc. The experiments showed that all isolates and species were able to produce lesions. Overall, the Neofusicoccum species were shown to be highly pathogenic in both tissue types while the Diplodia species were highly pathogenic on canes but not on green shoots. Isolates of the most prevalent species, N. luteum and N. parvum, showed varying lesion lengths on excised green shoots and canes. An evaluation of the factors associated with lengths of lesions showed that they were significantly affected by experimental batch which reflected inherent host and environmental factors over time. Reisolation from inoculated canes also indicated that most isolates of all species except D. seriata were able to spread internally beyond the lesions. Genetic variability analysis using UP‐PCR showed that N. luteum isolates were genetically diverse but no association was observed between the phylogenetic group and degree of pathogenicity caused by the isolates. This study demonstrated that all Botryosphaeriaceae species from grapevine nurseries were pathogenic to grapevines and that the lesion lengths varied between species, among isolates within a species and among nursery sources, and was affected by the test method.  相似文献   

2.
Eucalyptus globulus, a non-native species, is currently the most abundant forest species in Portugal. This economically important forest tree is exploited mainly for the production of pulp for the paper industry. The community of Botryosphaeriaceae species occurring on diseased and healthy E. globulus trees was studied on plantations throughout the country. Nine species from three different genera were identified, namely Botryosphaeria (B. dothidea), Diplodia (D. corticola and D. seriata) and Neofusicoccum (N. australe, N. algeriense, N. eucalyptorum, N. kwambonambiense, N. parvum and Neofusicoccum sp.). Of these, N. algeriense, D. corticola and D. seriata are reported for the first time on E. globulus, while N. algeriense, N. eucalyptorum and N. kwambonambiense correspond to first reports in Portugal. The genus Neofusicoccum was clearly dominant with N. australe and N. eucalyptorum being the most abundant species on both diseased and healthy trees. In artificial inoculation trials representative isolates from all nine species were shown to be pathogenic to E. globulus but there were marked differences in aggressiveness between them. Thus, D. corticola and N. kwambonambiense were the most aggressive while B. dothidea and D. seriata were the least aggressive of the species studied.  相似文献   

3.
Pistachio represents an emerging nut crop across the Mediterranean basin. In Spain, pistachio has been traditionally cultivated in marginal-dry areas with unfavourable climatic conditions for plant diseases. Consequently, little attention has been given to research on pistachio diseases until recently. Symptoms of branch dieback and cankers, and shoot and panicle blight have been recently observed in commercial pistachio orchards across southern Spain. In this study, 10 commercial pistachio orchards showing disease symptoms were surveyed between 2017 and 2018. Botryosphaeriaceae fungi were consistently isolated from affected shoots, among other fungal families with minor relevance. Representative isolates of each family were characterized based on colony and conidial morphology, optimum growth temperature, and the comparison of DNA sequence data (ITS, LSU, EF, TUB2, and ACT genomic regions). Detached and attached shoots, and attached panicles of pistachio cv. Kerman were inoculated with mycelial plugs or conidial suspensions to demonstrate the pathogenicity of the selected isolates. Botryosphaeria dothidea, Lasiodiplodia pseudotheobromae, Neofusicoccum mediterraneum, N. parvum, Diaporthe neotheicola, Diaporthe sp., Eutypa lata, Eutypa sp., Cytospora sp., and Phaeoacremonium minimum were identified. P. minimum had the highest optimum growth temperature (29.6 °C) and Cytospora sp. the lowest (21–22 °C). Botryosphaeriaceae isolates showed the largest lesions on inoculated shoots, with L. pseudotheobromae being the most aggressive, followed by Neofusicoccum species. Panicles inoculated with N. mediterraneum showed blight symptoms and canker formation 6 weeks after inoculation, without significant differences in aggressiveness between isolates. This work reports relevant information about this emerging disease in the novel Spanish pistachio-growing areas.  相似文献   

4.
Several species of Botryosphaeriaceae and Phaeomoniella chlamydospora are common agents of grapevine decline worldwide. Currently, the use of culture independent PCR based techniques for detection of Botryosphaeriaceae within grapevine tissues has been limited to Botryosphaeria dothidea. In the present study, two Botryosphaeriaceae specific nested PCR assays were developed. One with a narrow target range, to detect Neofusicoccum parvum and the closely related species complex (Neofusicoccum parvum/N. ribis sensu Pavlic et al. Molecular Phylogenetics and Evolution 51:259–268, 2009) and another, with a wider range, to detect all 17 species of Botryosphaeriaceae which have been reported as potential wood pathogens of grapevine. The effectiveness of these assays was validated in vivo on naturally infected wood samples collected from standing vines and dormant grafted rooted cuttings commercialized in Italy by different nurseries in different years. All samples were also screened by means of a previously published nested PCR assay specific for Phaeomoniella chlamydospora. It was found that: 1) propagation material may play an important role as source of primary inoculum, not only of Phaeomoniella chlamydospora, as previously reported, but also for members of the Botryosphaeriaceae, among which Neofusicoccum parvum, Botryosphaeria dothidea and Diplodia seriata are the most common, and 2) multiple infections by different species belonging to Botryosphaeriaceae and/or Phaeomoniella chlamydospora occur frequently both in standing vines and propagation material. This last finding supports the hypothesis that at least some of the non-specific symptoms of grapevine decline may be due to the presence of different pathogens within host tissues.  相似文献   

5.
The Botryosphaeriaceae is a species‐rich family that includes pathogens of a wide variety of trees, including Eucalyptus species. Symptoms typical of infection by the Botryosphaeriaceae have recently been observed in Eucalyptus plantations in South China. The aim of this study was to identify the Botryosphaeriaceae associated with these symptoms. Isolates were collected from branch cankers and senescent twigs of different Eucalyptus spp. All isolates resembling Botryosphaeriaceae were separated into groups based on conidial morphology. Initial identifications were made using PCR‐RFLP fingerprinting, by digesting the ITS region of the rDNA operon with the restriction enzymes CfoI and KspI. Furthermore, to distinguish isolates in the Neofusicoccum parvum/N. ribis complex, a locus (BotF15) previously shown to define these species, was amplified and restricted with CfoI. Selected isolates were then identified using comparisons of DNA sequence data for the ITS rDNA and translation elongation factor 1‐alpha (TEF‐1α) gene regions. Based on anamorph morphology and DNA sequence comparisons, five species were identified: Lasiodiplodia pseudotheobromae, L. theobromae, Neofusicoccum parvum, N. ribis sensu lato and one undescribed taxon, for which the name Fusicoccum fabicercianum sp. nov. is provided. Isolates of all species gave rise to lesions on the stems of an E. grandis clone in a glasshouse inoculation trial and on the stems of five Eucalyptus genotypes inoculated in the field, where L. pseudotheobromae and L. theobromae were most pathogenic. The five Eucalyptus genotypes differed in their susceptibility to the Botryosphaeriaceae species suggesting that breeding and selection offers opportunity for disease avoidance in the future.  相似文献   

6.
Brown rot, caused by fungi belonging to the genus Monilinia, is one of the most important diseases of stone and pome trees in the world. During the summers of 2010 and 2011, a total of 670 Monilinia spp. isolates were obtained from infected fruits. They were collected from different commercial stone and pome fruit orchards, located in northern, southern and central Poland. All isolates were identified using multiplex PCR. Twenty isolates obtained from plum, peach and apple fruits were identified as M. polystroma and 5 isolates from plums as M. fructicola. The remaining isolates were identified as M. fructigena or M. laxa. The identification of the isolates was also confirmed on the basis of growth characteristics in culture according to the EPPO standard PM 7/18. A comparison of morphological features of four Monilinia spp. growing on two selective growth media, APDA-F500 and CHA, indicated significant differences between these species. In artificial inoculation of fruits, all the examined Monilinia spp. isolates were pathogenic. The species affiliation of M. polystroma and M. fructicola isolates collected from orchards in Poland was confirmed on the base of phylogenetic and sequence analysis of the internal transcribed spacer (ITS1/5.8S rDNA/ITS2) region of ribosomal DNA.  相似文献   

7.
Sampling at blueberry farms found Botryosphaeriaceae fungi in five of seven farms sampled; overall incidence was 41.4%, with Neofusicoccum australe (79.0%), N. luteum (8.0%), N. ribis (8.0%) and N. parvum (5.0%). Sampling of nursery plants found infections in all four nurseries with 45% incidence in mainly asymptomatic plants, which were infected with N. australe (66.0%), N. parvum (31.5%) and N. ribis (2.5%). Asymptomatic propagation cuttings from one nursery were found to have external contamination of Botryosphaeriaceae DNA (90.0%) and internal infection (65.0%) by the four main species found in the blueberry farms and nurseries. For propagation media nested PCR showed that out of the 98 samples received, 43 samples were positive for the presence of Botryosphaeriaceae DNA (44.0%). Results from the SSCP indicated that N. australe, N. luteum, N. parvum/ N. ribis and Diplodia mutila were present in the propagation media received. Isolates of the four main species recovered from farms and nurseries were pathogenic on blueberry stems but pathogenicity differed significantly between species and isolates within a species, with N. ribis being the most pathogenic, then N. parvum, N. luteum and N. australe. Overall, the high rate of infection in nursery plants indicated that nurseries can be a major source of infection for blueberry farms. Since propagating cuttings are the likely sources of infection for nurseries, these should be targeted in the control strategies.  相似文献   

8.
Species of Botryosphaeria and Neofusicoccum are well known as pathogens of woody hosts. In this study the species that occur on rotting olive drupes in the main production areas of southern Italy were studied. Species were identified from the morphology of their conidial states in culture and from sequence data of the ITS rDNA operon and partial sequence of the translation elongation factor 1‐α gene. Botryosphaeria and Neofusicoccum species were isolated from more than 60% of the affected drupes, suggesting that they are the main contributors to this disease. The most common species was B. dothidea, which was isolated from 34% of the drupes. However, N. australe and N. vitifusiforme were also common and were isolated from 16 and 12%, respectively. Two other species (N. parvum and N. mediterraneum) were uncommon and occurred on less than 1% of the drupes. All five species were pathogenic on the two cultivars of olive tested. The most aggressive species was N. vitifusiforme, followed by N. australe and B. dothidea. The two olive cultivars differed in their susceptibility to the pathogens. The results show that B. dothidea, N. vitifusiforme and N. australe are important pathogens of olives.  相似文献   

9.
In Brazil, the Annonaceae species Annona muricata, A. squamosa, A. cherimola and atemoya (a hybrid of A. cherimola and A. squamosa) are cultivated in several regions, and produce fruits that are highly appreciated by consumers and are of great economic importance. Among the several diseases that can affect these crops, dieback is one of the most important, causing damage and, in the most severe cases, death of the plants. Due to the lack of suitable diagnostic studies up to now, this work aimed to identify the Botryosphaeriaceae species that cause dieback on Annonaceae in Brazil. Based on combined phylogenetic analyses of ITS, TEF-1α, TUB2 and RPB2, eight species of Botryosphaeriaceae were identified, namely Lasiodiplodia brasiliense, Lcrassispora, Lhormozganensis, Liraniensis, Lpseudotheobromae, L. subglobosa, Ltheobromae and Pseudofusicoccum stromaticum. All species found in this study were pathogenic and caused symptoms of necrosis in stems and dieback. Thus, this study confirms species of Botryosphaeriaceae as causal agents of dieback on Annonaceae in Brazil.  相似文献   

10.
11.
Fusarium oxysporum is a ubiquitous soilborne ascomycete responsible for vascular wilt in many plant species worldwide. This species comprises more than 120 putative host-specific formae speciales capable of causing marked economic losses. In summer 2009, wilt symptoms, including chlorosis and poor development of the root system, were observed on cultivars of chicory (Cichorium intybus) in northern Italy. The causal agent isolated from symptomatic tissues in this case was identified as F. oxysporum on the basis of both morphological features and molecular analyses. In this work, we attempted to characterize the isolates of F. oxysporum from C. intybus by both biological and molecular approaches. Pathogenicity trials performed on five species of the Asteraceae family with isolates of F. oxysporum from C. intybus indicated that the pathogen has a unique host range, infecting chicory only. Neither lettuce nor endive, lawn daisy or Paris daisy developed the disease. Five cultivars within C. intybus species were tested, and the cv. ??Clio?? was the most susceptible. Phylogenetic analyses relative to the ribosomal intergenic spacer (IGS) and translation elongation factor 1-alpha (EF1-??) assigned isolates pathogenic to chicory to a single cluster, distinct from other pathogenic F. oxysporum. In light of these findings, we propose to designate this organism as Fusarium oxysporum f.sp. cichorii.  相似文献   

12.
Pectobacterium carotovorum subsp. odoriferum has been generally considered to have a narrow host range and has been isolated most often from chicory. Research was conducted to identify 91 Pectobacterium spp. strains isolated from different vegetables in Europe, North and South America, Asia, and Africa, and to compare their ability to cause disease in chicory and potato. Among the 91 strains, 22 strains from Europe were identified as P. c. subsp. odoriferum. Based on phylogenetic analysis of 16S rDNA, recA, and rpoS gene sequences, strains isolated from stored vegetables clustered together with the type strain of P. c. subsp. odoriferum and clustered separately from the P. c. subsp. carotovorum isolates. Eleven strains previously identified as P. c. subsp. carotovorum were reclassified as P. c. subsp. odoriferum. All P. c. subsp. odoriferum isolates were able to cause soft rot symptoms on chicory and potato. Moreover, the symptoms on potatoes were more severe at temperatures from 15 to 37 °C with P. c. subsp. odoriferum isolates than with P. atrosepticum or P. c. subsp. carotovorum isolates. Tissue maceration by P. c. subsp. odoriferum isolates was highest at 28 °C, and at that temperature tissue maceration was two-times greater for P. c. subsp. odoriferum isolates than for P. c. subsp. carotovorum isolates. Symptoms on inoculated chicory leaves were more severe with P. c. subsp. odoriferum (regardless of origin) than with other subspecies or species. To our knowledge, this is the first report that P. c. subsp. odoriferum occurs on a wide range of vegetables and has the ability to cause soft rot during potato storage.  相似文献   

13.
In order to confirm the pathogen of branch blight on pearl plum and its virulence, 14 samples were collected from Guangxi and Guizhou Province, and 21 isolates were obtained and were identified as Botryosphaeriaceae. The results of colony morphology, conidial observation and molecular identification of internal transcribed spacer region (ITS1-5.8S-ITS2) and the translation elongation factor 1-α (EFl-α) showed that the pathogens of branch blight on pearl plum were Botryosphaeria dothidea (66.67%), Neofusicoccum parvum (19.05%), N. algeriense (9.52%), and Lasiodiplodia pseudotheobromae (4.76%). The pathogenicity of different species of Botryosphaeriaceae was tested by mycelial dishes inoculation, and it was found that typical isolates of the four species were pathogenic, among which L. pseudotheobromae was the most virulent one and B. dothidea was the weakest one. This is the first report that L. pseudotheobromae causes branch blight on pearl plum.  相似文献   

14.
Yellowing disease is one of the most important diseases of black pepper (Piper nigrum L.). To characterize the pathogen(s) responsible for yellowing disease of black pepper in Malaysia, 53 isolates of Fusarium were collected from the roots of diseased black pepper plants and from rhizosphere soils from major growing areas in Sarawak and Johor. A total of 34 isolates of F. solani and 19 isolates of F. proliferatum were obtained and identified based on morphological characteristics and molecular techniques. DNA sequencing of the internal transcribed spacers (ITS1 and ITS2) and 5.8S ribosomal DNA regions was conducted to identify Fusarium species. Nucleotide sequence analysis of the ITS regions revealed that this molecular technique enabled identification of Fusarium at the species level as F. solani and F. proliferatum. In a pathogenicity test on 3-month-old black pepper plants, F. solani was pathogenic, but F. proliferatum was not. On the basis of morphology, DNA sequences and pathogenicity of the fungal isolates from the diseased plants, we showed that yellowing disease on black pepper is caused by F. solani  相似文献   

15.
Lasiodiplodia theobromae (Pat.) Griff. & Maubl, Neofusicoccum parvum Pennycook & Samuels, N. mangiferae Syd. & P. Syd., and Fusicoccum aesculi Corda, all anamorphs of Botryosphaeriaceae species, are the causal agents of mango stem-end rot and fruit rot in Taiwan. Identification of these fungal species based on morphology has not been easy due to their extensive plasticity for some of the morphological characters. To aid reliable identification of Botryosphaeriaceae species associated with mango fruits, four pairs of species-specific primers were designed according to sequences of the ribosomal internal transcribed spacers (ITS), and a rapid method was established based on nested multiplex polymerase chain reaction (PCR) in this study. To perform the analysis, PCR was first run with ITS1 and ITS4 as the primers, followed by a second PCR with the addition of all four sets of species-specific primers. With this method, a low limit of 100?fg-1?pg of purified fungal DNA was detectable. It could also successfully detect L. theobromae, N. parvum, N. mangiferae and F. aesculi in total DNA extracted from inoculated mango fruits. This assay provides a rapid and sensitive method for the identification of Botryosphaeriaceae species and diagnosis of mango fruit rot and stem-end rot as well.  相似文献   

16.
The sweet potato (Ipomoea batatas) is characterized by the production of tuberous roots rich in starch and is one of the most produced and consumed vegetables in Brazil. Botryosphaeriaceae, among other fungi, are known to cause root and stem rot of sweet potato. However, no representative and accurate study has been performed for the correct identification of these fungal species in sweet potato in Brazil. Therefore, this study aimed to identify the Botryosphaeriaceae species associated with root and stem rot of sweet potato and confirm their pathogenicity. Tuberous roots and stems of sweet potato with rot symptoms were collected in production fields and markets and used for fungal isolations. The identification of fungi was based on the morphology of reproductive structures and phylogenetic analyses of the gene regions ITS, tef1-α, and rpb2. The following species were identified: Lasiodiplodia theobromae, L. hormozganensis, Macrophomina phaseolina, M. euphorbiicola, M. pseudophaseolina, and Neoscytalidium dimidiatum. For the pathogenicity test, one representative isolate for each species was inoculated in healthy tuberous roots and in 30-day-old healthy seedlings. Black and necrotic lesions on tuberous roots and stems were observed in all replications and resulted in the death of some seedlings. This is the first report of L. hormozganensis, M. pseudophaseolina, and M. euphorbiicola, as causal agents of the stem and root rot of sweet potato and N. dimidiatum as a causal agent of stem rot worldwide.  相似文献   

17.
Several Phytophthora spp. are known to cause a range of symptoms on citrus, resulting in significant crop losses worldwide. In South Africa, Phytophthora remains a destructive citrus disease, but the species and their distribution have not been well documented. A total of 162 Phytophthora isolates was collected from 60 citrus orchards in seven provinces of South Africa (Eastern Cape, Kwazulu-Natal, Limpopo, Mpumalanga, Northern Cape, North West and Western Cape). Isolates were identified to the species level through PCR-RFLP (restriction fragment length polymorphism) analyses of the internal transcribed spacer region. The identity of a subset of the isolates was confirmed using morphological and sequence analyses. Phytophthora nicotianae was the predominant species (76 % of isolates) and occurred in 80 % of the orchards in all of the provinces, followed by P. citrophthora (22 % of isolates in 28 % of orchards). The P. citrophthora isolates were further subdivided into two previously identified subgroups, G1 and G2, with most (69 %) of the isolates belonging to the G1 subgroup. Other Phytophthora species included P. multivora in the Western Cape Province, and an unknown species in the Eastern Cape Province with high sequence similarity (98 %) to a putative new species submitted to GenBank as Phytophthora taxon Sisuluriver. Phytophthora palmivora, a known citrus pathogen, was not identified. Most of the P. nicotianae isolates (79 %) were of the A1 mating type. The P. citrophthora isolates were mostly sterile (64 %), including most of the G1 isolates (81 %). The remaining G1 isolates (19 %) belonged to the A1 mating type, whereas almost all G2 isolates belonged to the A2 mating type except for one isolate that was sterile.  相似文献   

18.
South Africa holds the greatest diversity of Encephalartos species globally. In recent years several reports have been received of Encephalartos species in the country dying of unknown causes. The aim of this study was to investigate the presence of, and identify the causal agents of, diseases of Encephalartos species in the Gauteng and Limpopo Provinces of South Africa. Plant material with symptoms and insects were collected from diseased plants in private gardens, commercial nurseries and conservation areas in these regions. Insects collected were identified based on morphology, and microbial isolates based on morphology and DNA sequence data. Insect species identified infesting cultivated cycads included the beetle Amorphocerus talpa, and the scale insects Aonidiella aurantii, Aspidiotus capensis, Chrysomphalus aonidum, Lindingaspis rossi, Pseudaulacaspis cockerelli, Pseudaulacaspis pentagona and Pseudococcus longispinus. Fungal species isolated from diseased plants included species of Diaporthe, Epicoccum, Fusarium, Lasiodiplodia, Neofusicoccum, Peyronellaea, Phoma, Pseudocercospora and Toxicocladosporium. The plant pathogen Phytophthora cinnamomi was identified from E. transvenosus plants in the Modjadji Nature Reserve. Artificial inoculation studies fulfilled Koch's postulates, strongly suggesting that P. cinnamomi is responsible for the deaths of these plants under field conditions.  相似文献   

19.
20.
Fusarium wilt, caused by Fusarium oxysporum, is a major disease of jojoba, causing serious economic losses. This study was aimed at characterizing the Fusarium populations associated with jojoba in Israel. Fifty Fusarium isolates used in this study included 23 isolates from the 1990s (“past”) and 27 recently isolated (“recent”). All the isolates were characterized by arbitrarily primed (ap)-PCR and 16 representatives were additionally delineated using multilocus (tef1, rpb1, rpb2) phylogeny and evaluated for their pathogenic potential. Consequently, 88% of the isolates were identified and characterized to the F. oxysporum species complex. The remaining 12% grouped within the F. fujikuroi, F. solani, and F. redolens species complexes. Variations in the infection rate (16.7%–100%), disease symptoms (0.08–1.25, on a scale of 0–3), and fungal colonization index (0.67–2.17, on a scale of 0–4) were observed within the tested isolates, with no significant differences between the past and recent isolates. The representative isolates were assigned to 11 groups based on ap-PCR. Pathogenicity tests showed that isolates from Groups II, IV, and V were the most aggressive, whereas isolates from Groups III, VIII, and IX were the least aggressive. Among the tested isolates, F. oxysporum sensu lato was the most aggressive, followed by F. proliferatum, while F. nygamai was the least aggressive. This study demonstrates the complexity and genetic diversity of Fusarium wilt on jojoba in Israel, indicating possible multiple introductions of infected germplasm into the country.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号