首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
A. Thiele    E. Schumann    A. Peil  W. E. Weber 《Plant Breeding》2002,121(1):29-35
In wheat, eyespot caused by PseudoCercosporella herpotrichoides, is one of the main foot‐rot diseases. Yield losses up to 40% occur in some years. Plant protection by fungicide application is possible, but a better way is through resistance breeding. Two resistance sources are currently used: Aegilops ventricosa and the old French variety ‘Cappelle Desprez’. A new source of resistance has been found in the accession AE120 of Ae. kotschyi from the Gatersleben gene bank with the genome constitution UUSvSv. This accession has been crossed and backcrossed twice to susceptible wheat varieties, and in each generation, plants with a relatively high level of resistance have been selected. From this material, lines have been developed and tested in F6 to F8. Finally, several lines could be classified as moderately resistant, such as the French variety ‘Cappelle Desprez’ after resistance determination during milk ripeness (DC75). No line reached the high resistance level achieved with Pch‐1 from Ae. ventricosa. The yield of these lines under infection conditions was higher compared with ‘Cappelle Desprez’. The line 6018‐96‐3 showed a high yield of 64.3 dt/ha compared with 59.6 dt/ha, on the average, in combination with the best expression of eyespot resistance in the adult growth stage over 3 years.  相似文献   

2.
Marker-based selection of Ep-D1b has been used successfully to incorporate Pch1, the gene for eyespot resistance on chromosome 7D, into commercial wheat. However, attempts to transfer resistance conferred by Pch1 (on chromosome 7A) through selection for Ep-A1b have not always been successful. Linkage relations among eyespot resistance gene Pch2, a gene encoding for an isozyme of endopeptidase, Ep-A1b, and RFLP marker Xpsr121 on chromosome 7A were determined using 80 homozygous recombinant substitution lines. The recombinant lines were derived from eyespot susceptible ‘Chinese Spring’ hybridized with a resistant disomic substitution line of ‘Cappelle Desprez’ that has chromosome 7A substituted into ‘Chinese Spring’. Segregations of Pch2, Ep-A1b and Xpsr121 fit an expected 1:1 single-locus ratios based on χ2 tests. Linkage analysis revealed that Pch2 was not tightly linked to Ep-Alb (15% recombination). However, close linkage (3.8% recombination) existed between Ep-A1b and Xpsr121. The order of these loci is Pch2-Xpsr121-Ep-A1b. Unlike Pch1 and Ep-D1b, where little or no recombination is found, Pch1 and Ep-A1b showed considerable recombination and therefore linkage cannot be utilized efficiently in marker-based selection.  相似文献   

3.
V. Lind 《Plant Breeding》2000,119(6):449-453
Two diallels were analysed for general combining ability (GCA) and specific combining ability (SCA) to study the resistance of crosses‐between wheat genotypes, advanced to the F5 generation, to Pseudocer‐cosporella herpotrichoides. The parents either carried the resistance‐gene Pch‐1 or had different levels of quantitative resistance, one genotype was susceptible. At medium milk‐ripening, significant effects were‐found for GCA and SCA. GCA effects were the more important. Diallel crosses between genotypes, all carrying Pch‐1, revealed interactions‐of the gene with the genotypic background. Some combinations had a‐higher level of resistance than the best parent. In these populations'CH‐75417’ was involved as a parent. Both ‘CH‐75417’ and ‘F–210.13.4.42’ had significant GCA effects. Crosses between quantitatively resistant parents yielded populations that transgressed both parents. The increased resistance level was associated with ‘Cappelle‐Desprez’, distinguished by its high GCA. In some crosses SCA contributed significantly to an increase in resistance level. Selection for resistance within the best advanced populations is recommended since it‐takes advantage of additive gene action and the high heritability estimates based on ELISA values in plant progenies.  相似文献   

4.
Amplified fragment length polymorphism (AFLP) markers linked to the Aegilops ventricosa‐derived chromosome segment in ‘VPM1’ on which the eyespot resistance gene, Pch1, and the endopeptidase gene, Ep‐D1b, occur were identified. One marker was isolated from the gel, cloned and sequenced. Sequence analysis revealed a microsatellite repeat motif. Sequence‐specific primers were designed to amplify a product containing the repeat motif, and the microsatellite marker was tested for cosegregation with the Ep‐D1b allele. Distinct alleles were produced by the Pch1 sources, normal wheat and wheat containing the Lr19 translocation. A recombination frequency of 0.02 was calculated between the microsatellite marker and Ep‐D1.  相似文献   

5.
H. Wallwork  R. Johnson 《Euphytica》1984,33(1):123-132
Summary Crosses were made between wheat varieties Joss Cambier, Nord Desprez and Maris Bilbo, all classified as susceptible to yellow rust in field tests, and between Cappelle Desprez and Maris Huntsman, both classified as moderately and durably resistant. Selection for resistance to yellow rust among the progeny was carried out using races of Puccinia striiformis able to overcome all the known race-specific components of resistance in both parents of each cross. Lines with greater resistance than in both parents were obtained from each cross, those with greatest resistance being obtained from the cross between the moderately resistant parents. Three lines selected for resistance from the cross of Joss Cambier with Nord Desprez and one from the cross of Cappelle Desprez with Maris Huntsman, together with the parents, were tested in the field with 12 races of P. striiformis. Nord Desprez possessed a previously undetected race-specific component. The selected lines also displayed race-specific resistance, some of which was clearly related to race-specificity of the parents, and a component of resistance, greater than in both parents, that was effective against all 12 races. The possible origin and potential durability of this transgressive level of resistance is discussed. It is suggested that such transgressive resistance is more likely to be durable if it is derived from parents that have shown durable resistance.  相似文献   

6.
Chromosome 7D of the wheat line VPM1 derived from a cross of Aegilops ventricosa with wheat confers resistance to the facultative fungal parasite Pseudocercosporella herpotrichoides. To determine the number of genes responsible fur this resistance, homozygous recombinant lines were developed from an F1 between the wheat variety ‘Hobbit sib’ and a substitution line carrying chromosome 7D of VPM1 in a ‘Hobbit sib’ background. Resistance to Pseudocercosporella herpotrichoides is shown to be determined by a single gene located distally on the long arm of chromosome 7D. EpD1b, a unique allele of a gene encoding the readily detectable isoenzyme — endopeptidase, maps without recombination to Pch1 suggesting for two separate genes a maximum recombination value of 0.03 (P 0.05). Resistance to Pherpotrichoides could alter-natively be a product of Ep-D1b. Pch1 is also mapped against a gene for adult plant resistance to brown rust (Puccinia recondita), to Rc3 which confers coleoptile colour, and to α-Amy-D2, an isozyme that encodes α-amylase production.  相似文献   

7.
QEet.ocs‐5A.1, a quantitative trait locus controlling ear emergence time, has been detected on wheat chromosome 5AL using single chromosome recombinant lines (SCRs) developed from a cross between ‘Chinese Spring’ (CS) (‘Cappelle‐Desprez’ 5A) and CS (Triticum spelta 5A). This locus has little influence on grain yield and its components, and thus has breeding potential for changing ear emergence time without yield reduction. To characterize the phenotypic expression of QEet.ocs.1 and to test its interaction with the Vrn‐A1 gene for vernalization response, six near‐isogenic SCRs differing for these two gene regions were grown together with the parental controls under different vernalization and photoperiod regimes. The T. spelta allele of QEet.ocs.1 accelerated heading time when vernalization and photoperiod were satisfied, demonstrating that the function of this QTL is earliness per se. There was no interaction between Vrn‐A1 and QEet.ocs.1.  相似文献   

8.
The blackleg fungus, Leptosphaeria maculans, interacts with canola (Brassica napus) in a gene‐for‐gene manner. These major resistance genes are well characterized in the seedling stage of development, but not in other plant organs. Cotyledons, leaves, pods and stems of plants of two cultivars of B. napus, each harbouring a different major resistance gene (Rlm1 and Rlm4), were inoculated with two individual L. maculans isolates with different alleles of the corresponding avirulence genes (AvrLm1, avrLm4 and avrLm1, AvrLm4), and the disease phenotype in terms of lesion development was determined. Major gene resistance was expressed in cotyledons, all leaves and during pod set, but not in the stems of the adult plant. This is the first time major gene resistance has been shown to be effective in B. napus pods.  相似文献   

9.
Breeding for adult plant resistance (APR) is currently impeded by the low frequency of annual field‐based testing and variable environmental conditions. We developed and implemented a greenhouse‐based methodology for the rapid phenotyping of APR to leaf rust in barley to improve the efficacy of gene discovery and cloning. We assessed the effects of temperature (18 and 23°C) and growth stage (1–5 weeks) on the expression of APR in the greenhouse using 28 barley genotypes with both known and uncharacterized APR. All lines were susceptible in week 1, while lines carrying Rph20 and several with uncharacterized resistance expressed resistance as early as week 2. In contrast, lines lacking Rph20 and carrying either Rph23 and/or Rph24 expressed resistance from week 4. Resistant phenotypes were clearest at 18°C. A subset of 16 of the 28 lines were assessed for leaf rust across multiple national and international field sites. The greenhouse screening data reported in this study were highly correlated to most of the field sites, indicating that they provide comparable data on APR phenotypes for screening purposes.  相似文献   

10.
法国小麦种质VPM抗性系统的分子标记检测   总被引:1,自引:1,他引:0  
为了从引进的法国小麦种质中筛选出含有Lr37-Yr17-Sr38基因簇和Pch1基因的种质材料,本研究利用标记引物VENTRIUP-LN2和标记引物XustSSR2001-7DL分别对118份法国小麦种质进行了分子检测,从中筛选出了8份含有Lr37-Yr17-Sr38基因簇的种质和5份含有Pch1基因的种质材料,其中NSA98-1417这一材料同时含有Lr37-Yr17-Sr38基因簇和Pch1基因。这些材料的检出为实现VPM抗性系统向国内小麦种质的转入奠定了材料基础。  相似文献   

11.
A study was conducted to investigate the expression of four components of partial resistance to Sphaerotheca fuliginea race 1 in selected melon (Cucumis melo L.) lines viz. infection frequency, latent period, spore production, and disease-severity score. Those components were evaluated at two developmental stages of the host: the cotyledon stage and the stage of the first two true leaves. Detached plant parts (disks of cotyledons and true leaves) were inoculated using a vacuum-operated settling tower. All four components showed significant variation among genotypes, and correlations between components at both developmental stages were large and significant. The line ‘CNPH 83–095’ (without any major resistance gene to powdery mildew) presented the highest level of partial resistance in both vegetative stages for almost all components evaluated. The lines ‘W-6’ (Pm1Pm1, Pm2Pm2), ‘Cinco’ (Pm1Pm1, Pm2Pm2), and CNPH ‘84–147’ (Pm1Pm1), even though carrying the major gene Pm1 for complete resistance to race 1 of the fungus, showed slight but significant differences for quantitative components of partial resistance at the cotyledonal stage. Different levels of partial resistance may be expressed, even in lines with a major race-specific resistance gene to powdery mildew, in specific developmental stages of the melon plants.  相似文献   

12.
K. Kato    R. Sonokawa    H. Miura  S. Sawada 《Plant Breeding》2003,122(6):489-492
A dwarfing effect of the 44.1 cM chromosomal region between the threshability gene Q and Xfba068 on the long arm of hexaploid wheat chromosome 5A has been reported. To clarify whether Q or its adjacent region is responsible for regulating culm elongation, two precise genetic stocks of near‐isogenic lines (NIL), a single chromosome substitution line, ‘Chinese Spring’ (CS; ‘Cappelle‐Desprez’ 5A) (NIL‐Q) and a single chromosome recombinant substitution line (NIL‐q) were used. The target segment of NIL‐q included the q allele and QEet.ocs‐5A.1, an earlinessper se gene, from spelt wheat in the CS genetic background. They were grown under 16‐h day length with and/ or without vernalization treatment. Being independent of heading date, NIL‐Q showed shorter elongation in lower internodes and decreased internode differentiation in comparison with NIL‐q. The culm‐length reduction associated with Q was confirmed in the recombinant F5 population derived from the cross between NIL‐Q and NIL‐q. Vernalization promotion had a tendency to reduce this dwarfing effect.  相似文献   

13.
D. K. Santra    C. Watt    L. Little    K. K. Kidwell    K. G. Campbell 《Plant Breeding》2006,125(1):13-18
The endopeptidase marker Ep‐D1b and Sequence Tag Site (STS) marker XustSSR2001–7DL were reported to be closely associated with the most effective resistance gene (Pch1) in wheat (Triticum aestivum L.) for strawbreaker foot rot [Pseudocercosporella herpotrichoides (Fron) Deighton]. Our objectives were to: (i) develop an efficient assay method for Ep‐D1b in wheat; (ii) correlate endopeptidase zymograms to strawbreaker foot rot reactions of various wheat genotypes; and (iii) compare the utility of Ep‐D1b and XustSSR2001–7DL for predicting disease response. An improved method of assaying for the Ep‐D1b marker using roots from a single seedling was developed, which is a 2.5‐fold improvement over the previous method. Thirty‐eight wheat genotypes with known reactions to strawbreaker foot rot were analysed for Ep‐D1b and the STS marker. Six distinct endopeptidase zymograms were identified among these 38 genotypes tested, and three of these patterns were novel. The endopeptidase marker was 100% accurate for predicting strawbreaker foot rot disease response, whereas the STS marker predicted the correct phenotype with approximately 90% accuracy. The endopeptidase marker Ep‐D1b was more effective and was more economical for use in marker‐assisted selection strategies for Pch1 in our laboratory compared with the STS marker.  相似文献   

14.
Stem rust of wheat (caused by Puccinia graminis f.sp. tritici) gained high international attention in the last two decades, but does not occur regularly in Germany. Motivated by a regional epidemic in 2013, we analysed 15 spring and 82 winter wheat cultivars registered in Germany for their resistance to stem rust at the seedling stage and tested 79 of these winter wheat cultivars at the adult‐plant stage. A total of five seedling stem rust resistance genes were postulated: Sr38 occurred most frequently (n = 29), followed by Sr31 (n = 11) and Sr24 (n = 8). Sr7a and Sr8a occurred only in two spring wheat genotypes each. Four cultivars had effective seedling resistance to all races evaluated that could only be explained by postulating additional resistance genes (‘Hyland’, ‘Pilgrim PZO’, ‘Tybalt’) or unidentified gene(s) (‘Memory’). The three winter wheat cultivars (‘Hyland’ ‘Memory’ and ‘Pilgrim PZO’) were also highly resistant at the adult‐plant stage; ‘Tybalt’ was not tested. Resistance genes Sr24 and Sr31 highly protected winter wheat cultivars from stem rust at the adult‐plant stage in the field. Disease responses of cultivars carrying Sr38 varied. Mean field stem rust severity of cultivars without postulated seedling resistance genes ranged from 2.71% to 41.51%, nine of which were significantly less diseased than the most susceptible cultivar. This suggests adult‐plant resistance to stem rust may be present in German wheat cultivars.  相似文献   

15.
Y. Bougot    J. Lemoine    M.T. Pavoine    H. Guyomar'ch    V. Gautier    H. Muranty    D. Barloy 《Plant Breeding》2006,125(6):550-556
Powdery mildew is one of the major diseases of wheat in regions with a maritime or semi‐continental climate which can strongly affect grain yield. The objective of the study was to identify and compare quantitative resistance to powdery mildew of line RE9001 at the adult plant and vernalized seedling stages. RE9001 has no known Pm gene and shows a high level of adult plant resistance in the field. Using 104 recombinant inbred lines (RILs) of an RE9001 × ‘Courtot’ F8 population, a genetic map was developed with 363 markers distributed over 26 linkage groups and covering 3825 cM. The global map density was 1 locus/10.3 cM. RILs were assessed under field and tunnel greenhouse conditions for 2 years in two locations. Eleven quantitative trait loci (QTL) were detected at the adult stage and they explained 63% of the variation, depending on the environment. Three QTLs were found, at least, in the two environments. One QTL from RE9001, mapped on chromosome 2B, was stable in each environment. This QTL, QPm.inra.2B, explained 10.3–36.6% of the variation and could be mapped in the vicinity of the Pm6 gene. At the vernalized seedling stage, one QTL detected by the isolate 93‐27 could be an allele of the Pm3g gene present in ‘Courtot’. No residual effect of the Pm3g gene was detected at either stage. Markers flanking the QTL 2B could be useful tools to combine resistance to powdery mildew in wheat cultivars.  相似文献   

16.
Resistance to Pseudocercosporella herpotrichoides in five wheat cultivars, accession W6 7283 of Dasypyrum villosum, and ‘Chinese Spring’ disomic addition lines of the D. villosum chromosomes IV, 2V, 4V, 5V, 6V and 7V, was evaluated in seedlings by measuring disease progress 6 weeks after inoculation with a β—glucuronidase—transformed strain of the pathogen and by visual estimates of disease severity. D. villosum and the disomic addition line of chromosome 4V were as resistant as wheat cultivars ‘VPM—1’ and ‘Cappelle Desprez’, but less resistant than ‘Rendezvous’. Resistance of the chromosome 4V disomic addition line was equivalent to that of D. villosum.‘Chinese Spring’ and disomic addition lines of IV, 2V, 5V, 6V and 7V were all susceptible. These results confirm Sparaguee's (1936) report of resistance in D. villosum to P. herpotrichoides and establish the chromosomal location for the genes controlling resistance. The presence of chromosome 4V in the addition line and its homocology to chromosome 4 in wheat were confirmed by Southern analysis of genomic DNA using chromosome group 4-specific clones. This genetic locus is not homoeologous with other known genes for resistance to P. herpotrichoides located on chromosome group 7, and thus represents a new source of resistance to this pathogen.  相似文献   

17.
V. Lind 《Plant Breeding》1999,118(4):281-287
The effect of the gene Pch-1 on the resistance of wheat to Pseudocercosporella herpotrichoides was studied at four growth stages. The germplasm used consisted of adapted cultivars, genotypes provided by European plant breeders, near-homozygous lines and double haploid lines developed from our own breeding projects. The resistance was measured by ELISA. At all growth stages, genotypes carrying Pch-1 differed significantly in resistance. At early growth stages, there was a strong effect of the gene in most genotypes, but later the effect decreased and significant genotypes-environment interactions appeared. In addition, minor genes became more important and determined the level of adult plant resistance that proved to be inherited quantitatively. Pch-1 was of minor importance for this type of resistance. It is concluded that a high and long-lasting resistance level could be attained if the two genetically different sources of resistance were combined (resistance at juvenile stages, induced by Pch-1, and quantitative resistance at adult stages).  相似文献   

18.
V. Lind 《Plant Breeding》1992,108(3):202-209
From the total soluble protein of Pseudocercosporella herpotrichoides (Fron) Deighton, specific proteins were isolated and used as antigens. One antiserum proved to be highly sensitive and was used for quantitative determination of eyespot severity in 16 wheat cultivars. The detection limit in ELISA was calculated as 2.2 μg total fungus protein per ml plant sap. From anthesis, genotypes showed the most characteristic and reliable differentiation for a longer period of time, viz. at growth stages 60 and 75. These quantitative differences could be more successfully demonstrated with ELISA than with eye-spot scoring. There was, however, a close correlation between both traits. The most resistant genotypes carried the gene Pch-1 with the resistance originating from ‘Capelle Desprez’. Some genotypes originating from this cultivar showed rather low levels of susceptibility, which might be explained by additional effects of the genotypic background.  相似文献   

19.
为鉴定小麦-偃麦草杂种后代以及我国小麦品种和育种中间品系对纹枯病的抗性,并且解析偃麦草染色体与纹枯病抗性的关系,在徐州和南京两个试点,采用田间病圃法对321份普通小麦品种或品系和56份小麦-偃麦草杂种后代材料进行了纹枯病抗性鉴定。在徐州试点没有发现高抗纹枯病的种质,但是有52份材料表现中抗反应型,包括34份普通小麦材料,其中萧农8506-1、小偃81、冀植4001、农大195、徐州8913和京东3066A-3的相对抗病指数高于0.7。在南京试点,全部普通小麦材料都不抗纹枯病,只有5份小麦-偃麦草种质表现中抗反应型。部分小麦-偃麦草种质的病情指数不但显著低于感病对照品种苏麦3号和扬麦158,而且还低于抗病对照品种安农8455和宁麦9号,如小麦-中间偃麦草4Ai#2或4Ai#2S附加系、代换系和易位系材料TA3513、TA3516、TA3517和TA3519及小麦-长穗偃麦草第4部分同源群染色体代换系SS767,说明中间偃麦草4Ai#2染色体和长穗偃麦草4J染色体可能与纹枯病病情指数降低有关。基因组原位杂交分析结果表明,4Ai#2染色体属中间偃麦草的Js基因组,而长穗偃麦草与纹枯病抗性相关的第4部分同源群染色体属J基因组。虽然纹枯病与眼斑病的发病部位和症状非常相似,但抗眼斑病基因Pch1 (Madsen)和Pch2 (Cappelle-Desprez)对纹枯病无效。  相似文献   

20.
Substitution analysis of drought tolerance in wheat (Triticum aestivum L.)   总被引:4,自引:0,他引:4  
E. Farshadfar    B. Köszegi    T. Tischner  J. Sutka 《Plant Breeding》1995,114(6):542-544
Chromosome substitution lines of the wheat variety ‘Cappelle Desprez’ into ‘Chinese Spring’ were tested for drought tolerance in growth chambers in the Martonvásár phytotron. Three different moisture regimes were created: E1, fully irrigated control; E2, mid-season water stress (preanthesis); and E3, terminal water-stress during grain filling. Data were analysed to estimate the chromosomal location of the genes controlling relative water-content (RWC), relative water-loss (RWL), drought-susceptibility index (DSI) and phenotypic stability in each substitution line. Simultaneous consideration indicated that most of the genes controlling these characters are located on chromosomes 1A, 5A, 7A,4B, 5B, 1D, 3D and 5D.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号