首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
《土壤通报》2019,(6):1463-1470
为了研究添加不同稳定分散剂的纳米零价铁(nZⅥ)对土壤中Cr(Ⅵ)的去除效果,分别进行水、土壤静态实验,研究了羧甲基纤维素钠(CMC)、丙烯酸(AA)、氧化硫硫杆菌(T.t)和氧化亚铁硫杆菌(T.f)混合菌液与纳米零价铁(nZⅥ)组合以及不添加nZⅥ多种稳定分散体系,对土壤中Cr(Ⅵ)的去除效果。结果表明:加入混合菌液构成的生物复合nZⅥ反应体系提高了nZⅥ去除土壤中Cr(Ⅵ)的效果。反应进行到1 h时,CMC+AA+T.t+T.f+nZⅥ反应体系总Cr去除率最高,达到84.8%,这可能是添加稳定剂使nZⅥ颗粒分散性增强所致。  相似文献   

2.
以废弃的马尾松针为原材料,制备了易回收的成型马尾松针,并用于含铬(Cr)废水的吸附。通过磷酸与羧甲基纤维素钠反应将废弃马尾松针成型化,以重铬酸钾溶液作为模拟含铬废水,研究吸附剂投加量、pH、初始浓度等对成型马尾松针吸附Cr(Ⅵ)的影响。结果表明:成型马尾松针对水中Cr(Ⅵ)具有良好的去除效果,质量浓度为10 mg·L~(-1)的Cr(Ⅵ)溶液,吸附剂投加量为10.0 g·L~(-1)时,Cr(Ⅵ)去除率达到99%;成型马尾松针对Cr(Ⅵ)的吸附是一个先快速吸附、后缓慢达到平衡的过程,对于10 mg·L~(-1)的Cr(Ⅵ)溶液,最终吸附平衡时间为6 h。马尾松针对Cr(Ⅵ)的去除率随着pH的升高而降低,在pH 1~4时,去除率超过90%;成型马尾松针对Cr(Ⅵ)的吸附符合Freundlich模型,吸附过程可以由准一级动力学模型描述;成型马尾松针去除Cr(Ⅵ)的主要机制是静电吸附、氧化还原和络合作用。研究表明,成型马尾松针在去除Cr(Ⅵ)方面具有良好的潜力,可实现废弃生物质资源的循环利用和废水中有毒重金属去除的双重目标。  相似文献   

3.
随着铬盐生产、金属加工、电镀、皮革等工业活动以及污水灌溉和施用污泥等农业活动的进行,六价铬(Cr(Ⅵ))不断进入土壤中,严重污染土壤环境。纳米零价铁由于其比表面积大、反应活性高及还原能力强等优点,已日渐用于Cr(Ⅵ)污染土壤的修复中。本文概述了纳米零价铁修复Cr(Ⅵ)污染土壤的最新研究进展,总结了主要修复机理及影响因素,最后指出了纳米零价铁修复Cr(Ⅵ)污染土壤的发展前景及研究方向。  相似文献   

4.
不同土壤对Cr吸附的动力学特征   总被引:11,自引:1,他引:10  
该文采用振荡平衡法比较了来自中国15个省区16种土壤对Cr(Ⅵ)的吸附及其动力学特性,并探讨了土壤pH值、阳离了交换量、黏粒含量和有机质对Cr(Ⅵ)吸附及其动力学参数的影响.结果表明:具有较低土壤pH值和较高物理黏粒含量的土壤对Cr(Ⅵ)具有较人的表观吸附量,而土壤阳离子交换量和有机质因素对土壤Cr(Ⅵ)的表观吸附量影响较小.酸性土壤对Cr(Ⅵ)吸附能力较强,可以采用一级动力学方程和抛物线方程描述Cr(Ⅵ)在酸性土壤中的动力学行为,且土壤的表观吸附速率和平衡时的吸附量与土壤的pH值呈显著(p<0.05)负相关关系,而与物理黏粒含量旱显著(p<0.01)正相关关系;而碱性土壤对Cr(Ⅵ)吸附能力较小,很难用动力学方程描述其吸附动力学特性.可见,土壤pH值不仅影响土壤对Cr(Ⅵ)的表观吸附量,并且对Cr(Ⅵ)表观吸附动力学特征产生了较大影响.  相似文献   

5.
以核桃壳粉为吸附剂,通过批试验探讨了体系初始pH值、吸附剂用量、温度等因素对水溶液中Cr(Ⅵ)吸附的影响,并讨论了吸附过程中Cr的化学形态变化和吸附过程的热力学特征。结果表明,核桃壳粉对Cr(Ⅵ)的吸附最佳pH为1.0。向50mL50mg·L^-1的Cr(Ⅵ)溶液中加入0.5g核桃壳粉,对溶液中Cr(Ⅵ)的去除可达95.39%,吸附过程伴随着氧化还原反应的发生;随着体系温度的升高,核桃壳粉对Cr(Ⅵ)的吸附量增加,吸附过程符合二级动力学过程,Langmuir模型能较好地反映吸附过程特征。对吸附热力学参数ΔG^0,ΔH°和△S°计算表明,吸附过程是吸热的自发过程,升高温度有利核桃壳粉对Cr(Ⅵ)的吸附,在301、308和318K条件下的最大吸附量分别为20.54、26.00和29.53g·kg^-1。试验结合FTIR和SEM手段,对核桃壳粉进行了分析,发现核桃壳粉对Cr(Ⅵ)的吸附是一个包含氧化还原的极其复杂的反应过程,核桃壳粉是具有吸附污水中铬的能力和潜在利用价值的生物质吸附剂。  相似文献   

6.
以玉米秸秆为原料,在300、450℃和600℃下裂解得到3种生物炭,通过批处理实验讨论了溶液初始pH值和裂解温度对玉米秸秆及其生物炭吸附Cr(Ⅵ)的影响,并用吸附动力学模型和等温吸附模型对实验结果进行拟合。结果表明:对于同种吸附材料而言,溶液初始pH值越低,玉米秸秆及其生物炭对Cr(Ⅵ)的吸附量越大;当溶液初始pH值为3或5时,对Cr(Ⅵ)的吸附性能大小顺序为:玉米秸秆生物炭300℃生物炭450℃生物炭600℃;当溶液初始pH=1时,对Cr(Ⅵ)的吸附性能大小顺序为:生物炭300℃玉米秸秆生物炭450℃生物炭600℃,且生物炭300℃对Cr(Ⅵ)的最大吸附量约为141.24 mg·g~(-1)。可见,溶液初始pH值越低,生物炭的裂解温度越低,越有利于生物炭对Cr(Ⅵ)的吸附。  相似文献   

7.
以重金属Cr(Ⅵ)为目标污染物,在两种实验条件下(实验柱Ⅰ为模拟污染水样,实验柱Ⅱ为实际污染水样)考察了壳聚糖稳定纳米铁对Cr(Ⅵ)的去除能力。实验柱Ⅰ和实验柱Ⅱ分别在第160PV和127PV时发生了击穿效应。与实验柱Ⅰ相比,实验柱Ⅱ中壳聚糖稳定纳米铁对Cr(VI)的去除能力降低了25%。SEM表征显示,实验柱Ⅱ中壳聚糖稳定纳米铁的表面形成了许多葡萄状晶体,它们的存在导致实验柱Ⅱ中纳米铁的去除能力明显低于实验柱Ⅰ。XPS表征显示,由于Ca和Mg的氢氧化物替代了部分铁氢氧化物,导致实验柱Ⅱ中壳聚糖稳定纳米铁表面Fe原子的相对含量低于实验柱Ⅰ。Cr元素高分辨率XPS能谱分析显示,在实验柱Ⅰ的条件下CKVI)被还原得更充分,而且在两种实验条件下都有部分Cr(VI)被吸附在纳米铁表面最终没有被零价铁所还原。  相似文献   

8.
腐植酸吸附土壤Cr(Ⅵ)条件优化   总被引:1,自引:0,他引:1  
在单因素试验基础上,采用二次回归正交旋转组合设计对腐植酸去除土壤中Cr(Ⅵ)进行了优化,建立了土壤Cr(Ⅵ)潜在去除率与HA浓度(x1)、pH(x2)、反应接触时间(x3)和反应温度(x4)四个因素间的正交回归模型:Y=60.27012-2.22158X1+2.92002X3-4.29138X21-2.53068X22-2.00566X24-2.35375X1X2+3.68250X1X3-1.99875X1X4-1.99875X2X3+3.68250X2X4-2.35375X3X4。从模型推知,当HA浓度为1.86 g/L、pH值5.5、振荡时间为8.6h和反应温度25.2℃时,土壤中Cr(Ⅵ)潜在去除率最大,达80.0%。验证结果与模型值相符。  相似文献   

9.
为探究利用废弃农业生物质制备两性吸附材料处理含Pb2+和As5+废水方法,该文通过醚化反应将2种具有"钳形"|结构的改性剂(阳离子改性剂IA和阴离子改性剂IM)接枝到小麦秸秆的纤维素上,制备高效两性吸附材料WS-IAIM。利用扫描电镜、红外光谱、X射线光电子能谱对其结构进行表征。通过批量处理试验,研究了该材料对水中Pb2+和As5+的去除能力和可能的吸附机理,探讨了其吸附动力学和热力学。结果表明:随着溶液pH值的增加,吸附剂对Pb2+的吸附量增大,对As5+的吸附量减少,吸附行为符合Langmuir吸附等温模型和拟二级动力学模型。根据Langmuir模型,在313 K时,对Pb2+和As5+的理论最大吸附量分别180.12和27.48 mg/g。吸附热力学和动力学结果表明,该吸附是一个自发的化学吸热过程。WS-IAIM对Pb2+和As5+的吸附过程吸附机理以离子交换和络合作用为主。该吸附材料重复使用5次后,对2种重金属离子的吸附量仍然可达159.3和19.8 mg/g。研究结果可为农作物秸秆的源化利用和水体环境中复杂重金属净化提供理论依据。  相似文献   

10.
徐海蓉  洪志能  徐仁扣  俞元春 《土壤》2023,55(6):1306-1315
以高岭石、蒙脱土、针铁矿和三水铝石四种单一典型土壤矿物以及针铁矿-蒙脱石和三水铝石-蒙脱石(质量比为1:1)两种代表性土壤矿物复合体为吸附材料,采用吸附平衡实验、能谱分析((EDS)、红外光谱、扫描电镜、酸碱滴定和zeta电位测定等方法,研究了铁铝氧化物与层状硅酸盐矿物之间的相互作用对Cr(Ⅵ)和As(Ⅴ)吸附的影响及其机制。吸附平衡实验和EDS实验结果表明,两种复合体对Cr(Ⅵ)和As(Ⅴ)的吸附容量均小于其两种组成矿物单一体系吸附量的平均值,即铁铝氧化物与蒙脱石的互作降低了这些氧化物对Cr(Ⅵ)和As(Ⅴ)的吸附能力。表面性质表征结果表明,与蒙脱石复合后,针铁矿与三水铝石表面的正电荷均被完全中和,电荷符号发生反转。与理论值相比,三水铝石-蒙脱石复合体的表面位点总浓度无明显变化,比表面积减小。针铁矿-蒙脱石复合体的比表面积与理论值无明显差异,但矿物表面位点浓度减小,表面羟基红外吸收峰强度减弱。氧化物与层状硅酸盐矿物互作改变了矿物表面性质,这可能是导致氧化物对Cr(Ⅵ)和As(Ⅴ)的吸附能力降低的主要原因。当评估污染元素在土壤中有效性时应当考虑土壤固相组分间的互作对离子吸附的影响。  相似文献   

11.
The present study deals with the synthesis and subsequent application of Fe3O4@n-SiO2 nanoparticles for the removal of Cr(VI) from aqueous solutions. Rice husk, an agrowaste material, was used as a precursor for the synthesis of nanoparticles of silica. Synthesized nanoparticles were characterized by XRD and SEM to investigate their specific characteristics. Fe3O4@n-SiO2 nanoparticles were used as adsorbent for the removal of Cr(VI) from their aqueous solutions. The effects of various important parameters, such as initial Cr(VI) concentration, adsorbent dose, temperature, and pH, on the removal of Cr(VI) were analyzed and studied. A pH of 2.0 was found to be optimum for the higher removal of Cr(VI) ions. It was observed that removal (%) decreased by increasing initial Cr(VI) concentration from 1.36?×?10-2 to 2.4?×?10-2 M. The process of removal was found to be endothermic, and the removal increased with the rise in temperature from 25 to 45 °C. The kinetic data was better fitted in pseudo-second-order model in comparison to pseudo-first-order model. Langmuir and Freundlich adsorption capacities were determined and found to be 3.78 and 1.89 mg/g, respectively, at optimum conditions. The values of ΔG 0 were found to be negative at all temperatures, which confirm the feasibility of the process, while a positive value of ΔH 0 indicates the endothermic nature of the adsorption process. The present study revealed that Fe3O4@n-SiO2 nanoparticles can be used as an alternate for the costly adsorbents, and the outcome of this study may be helpful in designing treatment plants for treatment of Cr(VI)-rich effluents.  相似文献   

12.
A 9-month-long continuous flow column study was carried out to investigate Cr(VI) removal by Fe0 with the presence of humic acid. The study focused on the influences of humic acid promoted dissolved iron release and humic acid aggregation in Fe0 columns receiving synthetic Cr(VI) contaminated groundwater containing various components such as bicarbonate and Ca. The effects of humic acid varied significantly depending on the presence of Ca. In Ca-free columns, the presence of humic acid promoted the release of dissolved iron in the forms of soluble Fe-humic acid complexes and stabilized fine Fe (hydr)oxide colloids. As a result, the precipitation of iron corrosion products was suppressed and the accumulation of secondary minerals on Fe0 surfaces was diminished, and a slight increase in Cr(VI) removal capacity by 18% was record compared with that of humic acid-free column. In contrast, in the presence of Ca, as evidenced by the SEM and FTIR results, humic acid greatly co-aggregated with Fe (hydr)oxides and deposited on Fe0 surfaces. This largely inhibited electron transfer from Fe0 surfaces to Cr(VI) and reduced the drainable porosity of the Fe0 matrix, resulting in a significant decrease in Cr(VI) removal capacity of Fe0. The Cr(VI) removal capacity was decreased by 24.4% and 42.7% in humic acid and Ca receiving columns, with and without bicarbonate respectively, compared with that of Ca and humic acid-free column. This study yields new considerations for the performance prediction and design of Fe0 PRBs in the environments rich in natural organic matter (NOM).  相似文献   

13.
ABSTRACT

Modification of biochar using chitosan and hematite made the biochar product more effective for hexavalent chromium (Cr (VI)) reduction in contaminated soils. Release experiment was conducted to examine Cr (VI) reduction in different treatments (control, unmodified biochar and two modified biochars with chitosan or hematite). The results indicated that the application of all treatments significantly decreased the release rate of Cr in comparison to the control treatment. Chitosan-modified biochar application increased Cr (VI) reduction from 28.53% (biochar) to 46.23%. In the case of hematite-modified biochar, it increased Cr (VI) reduction from 28.55% (biochar) to 38.95%. Two kinetic equations including pseudo-first-order and pseudo-second-order models employed to describe the time-dependent Cr release data. Between the kinetic equations estimated, the pseudo-second order best fitted to experimental data. In the presence of Pseudomonas putida, cumulative Cr release rate decreased by 2.38 mg kg?1 (50.29%) in hematite–biochar and 1.768 mg kg?1 (39.73%) in unmodified biochar as compared with control (4.43 mg kg?1). According to results reported herein, modification of biochar with chitosan or hematite is promising since made biochar more effective in removing Cr from Cr-polluted calcareous soils.  相似文献   

14.
The sorption of chromium (Cr) species to soil has become the focus of research as it dictates the bioavailability and also the magnitude of toxicity of Cr. The sorption of two environmentally important Cr species [Cr(III) and Cr(VI)] was examined using batch sorption, and the data were fitted to Langmuir and Freundlich adsorption isotherms. The effects of soil properties such as pH, CEC, organic matter (OM), clay, water-extractable SO4 2– and PO4 3–, surface charge, and different iron (Fe) fractions of 12 different Australian representative soils on the sorption, and mobility of Cr(III) and Cr(VI) were examined. The amount of sorption as shown by K f was higher for Cr(III) than Cr(VI) in all tested soils. Further, the amount of Cr(III) sorbed increased with an increase in pH, CEC, clay, and OM of soils. Conversely, the chemical properties of soil such as positive charge and Fe (crystalline) had a noticeable influence on the sorption of Cr(VI). Desorption of Cr(VI) occurred rapidly and was greater than desorption of Cr(III) in soils. The mobility of Cr species as estimated by the retardation factor was higher for Cr(VI) than for Cr(III) in all tested soils. These results concurred with the results from leaching experiments which showed higher leaching of Cr(VI) than Cr(III) in both acidic and alkaline soils indicating the higher mobility of Cr(VI) in a wide range of soils. This study demonstrated that Cr(VI) is more mobile and will be bioavailable in soils regardless of soil properties and if not remediated may eventually pose a severe threat to biota.  相似文献   

15.
Abstract

Chromium (Cr) appears in two stable forms in nature as Cr(III) and Cr(VI). Hexavalent chromium (CrO4 2‐; Cr2O7 2‐) is very toxic and carcinogenic, while inorganic Cr(III), however, is essential for mammals. Only two methods, atomic absorption and inductively coupled plasma atomic emission (ICP) spectrometry, provide information on the total amount of Cr in a test solution. This is the reason that several efforts have been made with regard to Cr speciation. Either an acidic or a basic activated aluminum oxide and a reversed phase C‐18 column or an ion exchanger column are used for the separation of chromium(III) from chromium(VI) in FIA and HPLC analyses. In our experiments, acidic‐activated aluminum oxide was used for separation. This alumina was placed into a silicon tube and connected to an ICP spectrometer between the nebulizer and peristaltic pump. The average grain size of the alumina was large enough that the solution could be pumped through the micro column. Acidic‐activated aluminum oxide in the 2.0 to 8.0 pH range adsorbs the chromate anion but not the Cr(III) cation. During this stage, the Cr(III) content of a sample is measurable. The adsorbed chromate can be eluted with a strong acid. The height or area of the elution peak can be used for the calibration of Cr(VI). Detection limits of 4 μg/kg and 0.5 μg/kg were obtained for Cr(III) and Cr(VI), respectively. The effects of sulphate and phosphate anions on the surface of the alumina on chromate adsorption were also evaluated. This method was used for the measurement of Cr(VI) concentration by 0.01M CaCl2 extraction of soil.  相似文献   

16.
皇竹草生物炭的结构特征及其对()的吸附性能   总被引:1,自引:0,他引:1  
以皇竹草茎秆为原料,在限氧控温(300、500、700℃)条件下制备生物炭,研究该生物炭的结构特征及其对Cr(Ⅵ)的吸附行为。结果发现,随着热解温度的升高,皇竹草生物炭的产率下降,而灰分、pH呈上升趋势;电镜扫描(SEM)观察可见不同热解温度下所制备的生物炭结构相似,均具多孔和管状结构,但在700℃条件下所制备的生物炭相对300℃下制备的生物炭孔壁变薄,且孔壁有附着物,切面有突起结构。三种温度下制备的皇竹草生物炭对溶液中的Cr(Ⅵ)都具有较好的吸附作用,且500、700℃下制备的生物炭比300℃下制备的生物炭具有更好的吸附效果。在0~1 h之间,三种热解温度下制备的生物炭对铬的吸附量均随着时间的延长而快速增加,当吸附至1h时,基本达到饱和状态,随后吸附量无明显变化。  相似文献   

17.
The goal of this study was to compare the performances of strong base anion (SBA) exchange and activated carbon adsorption in the removal of hexavalent chromium, Cr(VI), from a real groundwater matrix exploited for drinking purposes. Two SBA resins and three granular activated carbons (GAC) were tested by batch experiments for kinetics and equilibrium isotherm determination. SBA resins showed higher affinity toward Cr(VI) (present in raw water at about 20 μg L?1) with respect to the GACs, with faster kinetics and higher equilibrium adsorption capacities. Among GACs, vegetal-based carbons showed higher Cr(VI) removal efficiencies than the mineral-based carbon, which can be related to the more developed textural properties. SBA resins also displayed relevant removal capacities towards nitrate and sulfate (present at mg L?1 concentration levels), while boron (present at about 60 μg L?1) was effectively removed by GACs. Batch experiment results were elaborated to estimate the chromium throughputs for the studied materials, to preliminary compare their performances in a real-scale application. The monitoring of a real-scale GAC adsorption stage permitted to validate throughputs estimation and confirmed that, despite being effective toward synthetic organics, GAC adsorption is a not feasible solution for Cr(VI) removal, with extremely early breakthrough. SBA exchange process resulted to be the most suitable solution, providing the best sorbent usage rates. However, SBA resin usage rates can strongly increase when considering the removal of nitrate and sulfate ions, requiring much shorter cycle times.  相似文献   

18.
Hexavalent chromium (Cr(VI)), which has been classified as a Group A human carcinogens list by the United States Environmental Protection Agency, possesses stronger biological toxicity, and its discharge into farmland has become a pressing environmental problems. To screen the cost-efficient Cr(VI)-contaminated soil in situ amended materials, the effects of ordinary zero-valent iron (ZVI), nanoscale zero-valent iron (nZVI), biochar (B), biochar/zero-valent iron (BZVI), and biochar/nanoscale zero-valent iron (BnZVI) on the immobilization of Cr(VI) in spiked soil (Cr(VI) = 325 mg kg?1, Crtotal = 640 mg kg?1) were compared in this paper. After 15 days remediation by those materials, toxicity characteristic leaching procedure and physiological-based extraction test showed that the Cr(VI) leachability and bioaccessibility were reduced by 14–92% and 4.3–92% respectively, and the order of immobilization was found to be nZVI > BnZVI > BZVI > ZVI > B. Moreover, sequential extraction procedure indicated that all materials can increase the proportion of the residual Cr, and nZVI had the most significant effect. Plant seedling growth test proved that the nanoscale zero-valent iron was able to reduce the toxicity of chromium in plants greatly in a short time, while BnZVI treatment is more favorable to the growth of plants. To sum up, the nano zero-valent iron and biochar combined treatment not only removed Cr(VI) and immobilized total chromium efficiently but also enabled plant growth in relative high chromium-containing soil.  相似文献   

19.
The sorption of Pb(II), Cr(III) and Cr(VI) from aqueous solution using alum-derived water treatment sludge was investigated using the batch adsorption technique. Samples of sludge from two separate water treatment plants were used (one where alum was used alone and one where it was used in combination with activated C). The sorption characteristics of the two samples were generally very similar. Sorption isotherm data for all three ions fitted equally well to both Freundlich and Langmuir equations. Maximum sorption capacity and indices of sorption intensity both followed the order: Cr(III)?>?Pb(II)?>?Cr(VI). Kinetic data correlated well with a pseudo-second-order kinetic model suggesting the process involved was chemisorption. Sorption was pH-dependant with percentage sorption of Cr(III) and Pb(II) increasing from <30% to 100% between pH?3 and 6 whilst that of Cr(VI) declined greatly between pH?5 and 8. HNO3 at a concentration of 0.1?M was effective at removing sorbed Cr(III) and Pb(II) from the sludge surfaces and regeneration was successful for eight sorption/removal cycles. It was concluded that water treatment sludge is a suitable material from which to develop a low-cost adsorbent for removal of Cr and Pb from wastewater streams.  相似文献   

20.
The release of heavy metals in aquatic systems due to the discharge of industrial wastewaters is a matter of environmental concern. Heat-inactivated cells of a flocculent strain of Saccharomyces cerevisiae were used in the bioremediation, in a batch mode, of a real electroplating effluent containing Cu, Ni, and Cr. In this approach, no previous reduction of Cr(VI) to Cr(III) was required. Cr(VI) was selectively removed (98%) by yeast biomass at pH 2.3. At this pH, Cr(VI) is mainly in the form of HCrO 4 ? and yeast surface is surrounded by H+ ions, which enhance the Cr(VI) interaction with biomass binding sites by electrostatic forces. Subsequently, pH of the effluent was raised up to 6.0; this pH maximizes the efficiency of cations removal since at this pH the main binding groups of yeast cells are totally or partially deprotonated. The passage of effluent through a series of sequential batches, at pH 6.0, allowed, after the third batch, the removal of Cu(II), Ni (II), Cr total, and Cr(VI) in the effluent to values below the legal limit of discharge. The strategy proposed in the present work can be used in plants for the treatment of heavy metals rich industrial effluents containing simultaneously Cr(VI) and Cr(III).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号