首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 350 毫秒
1.
《Field Crops Research》2005,91(1):91-105
A velvet bean (Mucuna pruriens L.) module for the agricultural production systems simulator (APSIM) was developed in order to assess the nitrogen (N) and yield benefits of velvet bean green manure crops, when grown in rotation with maize in small holder situations in Malawi. The velvet bean module was able to simulate maturity biomass from six contrasting sites in Malawi over an observed range of 847–10,420 kg/ha with a root mean squared deviation (RMSD) of 1562 kg/ha. APSIM was then tested for its ability to simulate the response of maize crops to fertiliser N in two seasons, to previous velvet bean green manure crops in one season, or both in combination in one season. With no previous velvet bean crop, the response to fertiliser N varied across sites from a non-significant increase to an eight-fold increase in maize yield. Where a velvet bean crop was grown in the previous season, the response to applied N varied from non-significant to slight. Simulated yields were within one standard error of the observed in the majority of cases. A sensitivity analysis for key parameters in the velvet bean module highlighted, that those governing the N content of crop root and shoot residues had greatest impact on maize yield response. Parameters controlling production and partitioning of root or shoot biomass were less important.To our knowledge this is the first reported case of a cropping systems simulation model being tested for its ability to simulate the production of a green manure legume followed by a cereal.  相似文献   

2.
Soybean is the main rainfed crop in a wide range of latitudes and sowing dates of the Argentine Pampas. It is sown alone or as a second crop after other winter and summer crops. Modelling approaches have proved to be helpful in the decision making process. The on-farm evaluation of CROPGRO is rather difficult since input data are scarce and frequently of worse quality than those from experimental works. Moreover, CROPGRO simulation of water dynamic processes and their relation with biomass production has not been comprehensively evaluated in soybean crops. The aims of this study were (i) to evaluate the CROPGRO-soybean performance, with emphasis on water demand and supply and biomass production under water limited conditions, (ii) to generate a revised CROPGRO model improving those aspects, and (iii) to compare simulations outputs using the original and the revised CROPGRO models, with on-farm crop data set. In the revised model, we multiplied potential evapotranspiration by 1–1.22 when LAI increased from 0 to ≥4.0. We set a root extension rate of 4.0 cm/thermal day and a maximum rooting depth of 2.5 m. Finally, we included a nonlinear equation to simulate the relationship between relative transpiration and relative gross photosynthesis. The ability of the revised CROPGRO-soybean to simulate water content depletion and biomass production was tested against several experiments with an imposed drought period. We also calibrated cultivar parameters using “ad hoc” tests in a range of environments (combinations of sowing dates and locations). The models were evaluated with data from 155 commercial farms. V (%) (root mean square error as percentage of the observed mean) for the total cycle length, vegetative period, and reproductive phase simulations were 7, 13 and 15%, respectively. The revised CROPGRO was more accurate in simulating crop yield, biomass, harvest index and yield numeric components. V (%) values ranged from 11 to 17% (revised version) and from 13 to 22% (original version). Besides, V (%) values for yield were 16% with the revised model versus 32% with the original one, considering only paddocks with higher water stress level. The robust prediction of phenology, biomass and yield components obtained with the revised model across different environmental conditions, support its use in the decision making process of the soybean crop at the farm scale.  相似文献   

3.
Warm-season grasses are economically important for cattle production in tropical regions, and tools to aid in management and research of these forages would be highly beneficial. Crop simulation models synthesize numerous physiological processes and are important research tools for evaluating production of warm-season grasses. This research was conducted to adapt the perennial CROPGRO Forage model to simulate growth of the tropical species palisadegrass [Brachiaria brizantha (A. Rich.) Stapf. cv. Xaraes] and to describe model adaptation for this species. In order to develop the CROPGRO parameters for this species, we began with values and relationships reported in the literature. Some parameters and relationships were calibrated by comparison with observed growth, development, dry matter accumulation and partitioning during a 2-year experiment with Xaraes palisadegrass in Piracicaba, SP, Brazil. Starting with parameters for the bahiagrass (Paspalum notatum Flugge) perennial forage model, dormancy effects had to be minimized, and partitioning to storage tissue/root decreased, and partitioning to leaf and stem increased to provide for more leaf and stem growth and less root. Parameters affecting specific leaf area (SLA) and senescence of plant tissues were improved. After these changes were made to the model, biomass accumulation was better simulated, mean predicted herbage yield per cycle was 3573 kg ha−1, with a RMSE of 538 kg DM ha−1 (D-Stat = 0.838, simulated/observed ratio = 1.028). The results of the adaptation suggest that the CROPGRO model is an efficient tool to integrate physiological aspects of palisadegrass and can be used to simulate growth.  相似文献   

4.
The faba bean (Vicia faba L.) crop often experiences drought during its growth and development such that soil moisture deficits constrain its production. As droughts are predicted to increase in both frequency and intensity due to climate change, a better understanding of drought response patterns and associated traits is essential for obtaining yield stability in water-limited environments. This review deals with adaptation mechanisms associated with drought avoidance, escape and tolerance, with an emphasis on physiological traits such as stomatal conductance, carbon isotope discrimination and leaf temperature. Leaf temperature is considered an effective surrogate measure for other measures of stomatal characteristics. Drought tolerance through osmotic adjustment has not yet been demonstrated in faba bean although it is found in many other legumes including chickpea and pea. Deeper root growth, leading to uptake of otherwise unavailable water, helps the plant to avoid drought by delaying dehydration, but genetic variation and heritability of the trait are essentially unknown for faba bean. Crop management strategies, such as early planting, and appropriate phenology, are particularly important for drought escape in regions where terminal drought is common. Disease resistance is especially important in drought-prone areas to reduce the need for expensive control measures when yields are uncertain. The relevance of soil fertility status and nutrient availability are also covered. Drought escape and ascochyta blight resistance are important breeding objectives for terminal drought regions. Some form of drought resistance is necessary for the transient droughts experienced in most regions, and drought avoidance can be screened by a combination of leaf temperature or other rapid test of stomatal characteristics followed by carbon isotope discrimination in the most valuable materials. No single trait is adequate to improve yield in drought-prone environments, rather, a combination of characteristics is needed.  相似文献   

5.
《Plant Production Science》2013,16(4):360-366
We examined biomass dry matter and nutrient uptake of live plant parts, leaf area index, and litter of winged bean (Psophocarpus tetragonolobus) and velvet bean (Mucuna pruriens) 12, 18, 24 and 30 weeks after sowing (WAS). The two plants had similar leaf and stem+petiole biomasses. At 30 WAS winged bean had a significantly lower pod yield than velvet bean. Between 18 and 30 WAS, winged bean produced less litter than velvet bean due to differences in growth stages. The total mulch of live parts and litter of winged bean and velvet bean completely covered the ground by 18 and 12 WAS, respectively. Compared to velvet bean, the leaf and stem+petiole of winged bean had a significantly higher N concentration; significantly higher N uptake at 24 and 30 WAS; significantly lower C/N ratio; and significantly higher P, K and Mg concentrations. In winged bean, P uptake was significantly higher in the leaf at 30 WAS and in the stem+petiole at all harvesting times. The total biomass of the leaf, stem+petiole and litter of winged bean was 317–561 g DM m-2, and their N content was 12.3–17.7 g m-2. The total biomass of live parts and litter of winged bean might be sufficient to suppress weeds and increase soil N. Winged bean is an appropriate legume cover crop and green manure due to its longer growing period and superior ground-covering ability and high N input.  相似文献   

6.
《Field Crops Research》1996,47(1):13-19
Wheat (Triticum aestivum L.) is grown in many arid regions using fallow management whereby no crop is grown in alternate cropping seasons. Although fallowing is important in increasing the availability of water and nitrogen to crops in many environments, experiments in Israel revealed that water carryover from the fallow season for wheat production was rare. This paper examines the possibility that improved water use, and improved root and shoot growth, result from soil sanitation of cereal cyst nematode (CCN, Heterodera avenae Woll.) in the fallow season. Pot experiments in controlled environments revealed a dramatic, negative effect of various populations of CCN on wheat root growth. The decrease in root growth was associated with decreased shoot growth and decreased rates of transpiration. Mechanical pruning of roots mimicked the effects of CCN infestation indicating that root pruning is probably the primary damage of CCN. In the field, dry weight yields of wheat were maintained even in continuous wheat management when a soil biocide was used to control CCN. It is proposed that the success of the fallow management is based on the fact that CCN cysts hatch in wet soil during rainy periods of the fallow year but fail to produce a new generation of cysts because no host plants are present.  相似文献   

7.
《Journal of Crop Improvement》2013,27(1-2):217-244
SUMMARY

Since CO2 is a primary input for crop growth, there is interest in how increasing atmospheric CO2 will affect crop productivity and alter cropping system management. Effects of elevated CO2 on grain and residue production will be influenced by crop selection. This field study evaluated soybean [C3; Glycine max(L.) Merr.] and grain sorghum [C4; Sorghum bicolor (L.) Moench.] cropping systems managed under conservation tillage practices and two atmospheric CO2 concentrations (ambient and twice ambient) for three growing seasons. Elevated CO2 increased soybean and sorghum yield by 53% and 17% increase, respectively; reductions in whole plant water use were also greater for soybean than sorghum. These findings suggest that increasing CO2 could improve future food security, especially in soybean production systems. Elevated CO2 increased aboveground residue production by > 35% for both crops; such shifts could complement conservation management by increasing soil surface cover, thereby reducing soil erosion. However, increased residue could negatively impact crop stand establishment and implement effectiveness during tillage operations. Elevated CO2 increased total belowground dry weight for both crops; increased root proliferation may alter soil structural characteristics (e.g., due to increased number and extent of root channels) which could lead to increases in porosity, infiltration rates, and subsequent soil water storage. Nitrate leaching was reduced during the growing season (due to increased N capture by high CO2-grown crops), and also during the fallow period (likely a result of altered decomposition patterns due to increased C:N ratios of the high CO2-grown material). Enhanced crop growth (both above-and be-lowground) under elevated CO2 suggests greater delivery of C to soil, more soil surface residue, and greater percent ground coverage which could reduce soil C losses, increase soil C storage, and help ameliorate the rise in atmospheric CO2. Results from this study suggests that the biodegradability of crop residues and soil C storage may not only be affected by the environment they were produced in but may also be species dependent. To more fully elucidate the relationships between crop productivity, nutrient cycling, and decomposition of plant materials produced in elevated CO2 environments, future studies must address species effects (including use of genetically modified crops) and must also consider other factors such as cover crops, crop rotations, soil series, tillage practices, weed management, and regional climatic differences.  相似文献   

8.
Winged bean, Psophocarpus tetragonolobus (L.) DC., is analogous to soybean in yield and nutritional quality, proving a valuable alternative to soybean in tropical regions of the world. The presence of anti-nutritional factors and high costs associated with indeterminate plant habit have been major concerns in this crop. But occurrence of good genetic variability in germplasm collections offers precious resources for winged bean breeding. However, lack of germplasm characterization is hindering such efforts. From a genomic standpoint, winged bean has been little studied despite rapid advancement in legume genomics in the last decade. Exploiting modern genomics/breeding approaches for genetic resource characterization and the breeding of early maturing, high yielding, determinate varieties which are disease resistant and free of anti-nutritional factors along with developing consumer friendly value-added products of local significance are great challenges and opportunities in the future that would boost cultivation of winged bean in the tropics. We review past efforts and future prospects towards winged bean improvement.  相似文献   

9.
Soybean (Glycine max (L.) Merrill), one of the most important crops in China, has been known to man for over 5000 years. Soybean production in China increased from 7.5 million Mg in 1978 to 26 million Mg in 2005. The largest production areas in China are in the Northeast China's three provinces, where soybean is spring seeded and grown as a full-season crop. Development of research programs and rapid adoption of technologies emerging from agricultural research by producers including a better understanding of the physiological processes of growth and development, improved cultivars and cultural practices, and a higher demand of the soybean processing industry has contributed much to the upward trend in on-farm yield and total production. Research on leaf area index (LAI), light interception and canopy photosynthesis, source–sink relationships, phytohormones, environmental stresses (drought and cold damage), development of cultivar selection, tillage systems, cultivation practices as well as weeds, insects and diseases during the last half century in Northeast China were reviewed. The intent is to document a summary of the understanding of soybean physiology and culture for high yields mainly from Chinese scientists’ perspective.  相似文献   

10.
Crop growth and development as well as yield are the result of the efficiency of the chosen agricultural management system within the boundaries of the agro-ecological environment. End-of-season yield results do not permit the evaluation of within-season management interactions with the production environment and do not allow for full understanding of the management practice applied. Crop growth and development were measured during the 2004, 2006 and 2008 crop cycles with an optical handheld NDVI sensor for all plots of the different management treatments of a long-term (since 1991) sustainability trial in the highlands of Mexico. Cropping systems varying in (1) tillage (conventional vs. zero tillage); (2) residue management (retention vs. removal); (3) rotation (monocropping vs. a maize [Zea mays L.]/wheat [Triticum aestivum L.] rotation) were compared. The NDVI-handheld sensor was evaluated as a tool to monitor crop growth and development and was found to be an excellent tool for this purpose. There was a strong relation between NDVI and biomass accumulation of maize and wheat. The measurement with the handheld sensor was non-destructive and fast so that a representative plot area could be measured easily and time-efficiently. Zero tillage induced different crop growth dynamics over time compared to conventional tillage. Zero tillage with residue retention is characterized by a slower initial crop growth, compensated for by an increased growth in the later stages, positively influencing final grain yield. Also crop rotation influenced early crop growth, with lower NDVI values for crops sown after wheat than crops after maize. Zero tillage with residue removal had low NDVI values throughout the growing season. Zero tillage with retention of crop residues results in time efficient use of resources, as opposed to conventional tillage, regardless of residue management, and zero tillage with residue removal. The results indicated that different tillage, rotation and residue management practices influence crop growth and development. It is important to monitor and understand crop growth under different management systems to select the right varieties and adjust timing and practice of input supply (fertilizer, irrigation etc.) in a holistic way in each cropping system.  相似文献   

11.
《Field Crops Research》2001,70(2):139-151
The effects of various crop rotations on the biomass and yield of barley (Hordeum vulgare L.), faba bean (Vicia faba L.), and pea (Pisum sativum L.) grown under Mediterranean conditions were studied during three growing seasons in the semiarid Spanish Central Plateau. The treatments comprised six crop sequences: barley monoculture, fallow–barley (currently used in the area), faba bean–barley, pea–barley, fallow–barley–faba bean, and fallow–barley–pea. The fallow was of 16-month duration. The site is representative of cultivated areas of the Plateau, and the soil has a loam texture. Results concentrate on barley as the main crop. Season distribution of rainfall restricted the effectiveness of the management practices and in consequence there were few differences between rotations. Barley had greater biomass and yield after fallow than after other crops but significant differences were dependent on year. Legumes, an alternative to fallow, increased land use, permitted alternative weed control measures, and reduced the need for fertiliser. The intensification of the fallow–barley cropping system is best achieved by reducing the frequency of fallow and including other crops of relatively small biomass production, thereby minimising the impact on yield of the succeeding barley crop.  相似文献   

12.
《Field Crops Research》1999,63(2):99-112
Field experiments were conducted at Gatton and Dalby in southeastern Queensland to determine parameters associated with radiation interception and biomass and nitrogen (N) accumulation for the ley legume species, phasey bean (Macroptilum lathyroides (L.) Urban) and vigna, (Vigna trilobata (L.) Verdc.). Sesbania (Sesbania cannabina Retz.), a native legume species, and soybean (Glycine max (L.) Merrill)) were included in the study for comparison. The most important differences between species related to differences in radiation interception, radiation-use efficiency (RUE), N-accumulation efficiency and the partitioning of N to plant parts. During early growth, soybean intercepted more radiation than the other species, primarily because of its greater leaf area index (LAI). Sesbania had the highest RUE (1.08 g MJ−1) followed by phasey bean (0.94 g MJ−1), soybean (0.89 g MJ−1) and vigna (0.77 g MJ−1). The efficiency of N-accumulation was greater in soybean (0.028 g N g−1) and phasey bean (0.030 g N g−1) than in vigna (0.022 g N g−1) and sesbania (0.021 g N g−1). In all species, the proportion of N allocated to leaves declined throughout the experimental period, being more rapid in soybean than in sesbania and phasey bean. Despite this decline in total N partitioned to the leaves, both soybean and phasey bean maintained a relatively stable specific leaf nitrogen (SPLN) throughout the experimental periods although sesbania and vigna displayed rapid decreases in SPLN. The large variation between species in RUE and N-accumulation efficiency indicates that the development of ley legume cultivars with a combination of traits for more efficient legume production, water use and soil N-accumulation in the water-limited environments of the grain belt of eastern Australia may be possible. The sensitivity of forage production, water use and soil N-accumulation to variation in RUE and N-accumulation efficiency needs to be quantified using modeling techniques prior to embarking on screening programs to select appropriate germplasm for evaluation studies.  相似文献   

13.
Potato cropping systems in Maine include both continuous potatoes and short-term potato rotations with small grains. Producers recognize the benefits of increased rotations, but the economics of producing a high-valued crop such as potatoes (Solanm tuberosum L.) create incentives for continuous potato production. Research at the USDA-ARS research site in Newport, ME, is evaluating the agronomic and economic impacts of five crops in two-year rotations on potato production and whole-farm profitability. The rotation crops are barley (Hordeum vulgare L.), sweet corn (Zea mays L.) green bean (Phaseolus vulgares L.), soybean (Glycine max L., Mer.), and canola (Brassica napus L.). Enterprise budgets for the five crops were developed. The budgets and historical prices and yields were used as inputs to a Monte Carlo simulation. The simulation was conducted to determine the impact of rotation crops on whole-farm profitability and income risk, as measured by income variability. The net incomes of the five rotation sequences were compared against continuous potatoes. Two rotation crops, sweet corn and green beans, resulted in an increase in net income relative to continuous potatoes. AU of the rotation crops were found to greatly reduce income risk and chance of economic losses. In the case of green beans and sweet corn, the analysis was rerun using data from the research trials on the following potato crop yields. Depending on whether the rotation effect was negative or positive, net income either fell or rose when compared to fist analysis. However, even when the rotation crop led to decreased yields in the following potato crop, income variability and likelihood of economic loss was still superior to the continuous potato rotation. These findings provide support for including rotation crops as a method to improve potato production and sustainability, increase wholefarm profitability, and reduce income risk.  相似文献   

14.
Soilborne potato diseases are persistent problems in potato production. Use of disease-suppressive rotation crops, such as Brassica spp. (mustards, rapeseed) and sudangrass, has shown potential for management of soilborne diseases and enhanced yield in various crop production systems. However, how to best implement these crops into productive potato cropping systems has not yet been determined. In this research, potential disease-suppressive crops were evaluated under four different types of production management (as a cover crop, green manure, harvested crop-residue incorporated, and harvested crop-residue not incorporated) in potato rotation field trials, and their effects on disease, yield, and economic viability determined. Mustard blend, sudangrass, and rapeseed rotations reduced the tuber disease black scurf (by 16–27 %) and increased yield (by 6–11 %) relative to a barley rotation control, but only mustard blend consistently reduced common scab (by 11 %). All rotation crops managed as green manures produced lower disease (by 15–26 %) and higher yields (by 6–13 %) than other management practices. Overall, the combination of mustard blend managed as a green manure was most effective, reducing scurf by 54 % and increasing yield by 25 % relative to a soybean cover crop. The use of mustard or rapeseed as a harvested crop with incorporation provided the best economic return, increasing net income by more than $860/ha relative to the standard barley rotation, but mustard blend grown as a green manure or non-incorporated harvest crop also substantially increased net income ($600 to $780/ha).  相似文献   

15.
Intercropping of grain legumes with cereals may offer several advantages over sole crops for forage production and is commonly used, particularly in low‐input agriculture. Faba bean (Vicia faba L.), oat (Avena sativa L.) and triticale (×Triticosecale Wittmack) sole crops as well as the intercrops of faba bean with each of the above cereals, in three seeding ratios (75:25, 50:50 and 25:75), were compared for dry‐matter (DM) yield, nitrogen (N) concentration, chlorophyll content, growth rate and plant height in a 2‐year field experiment. Triticale sole crop and faba bean intercrops with triticale provided higher DM yield than faba bean sole crop and the intercrops of faba bean with oat. Growth rates of faba bean, oat and triticale in mixtures were lower than those in sole crops. Faba bean plants were taller in the intercrops than in the sole crop at 3 weeks after tillering (WAT), whereas at 6 WAT, the trend was different as faba bean plants in the sole crop were taller than in the intercrops. N concentration was higher for the cereals when faba bean was included in the mixture. Crude protein (CP) concentration was the highest in faba bean sole crop followed by the faba bean intercrops with oat. However, triticale sole crop and faba bean mixtures with triticale provided higher CP yield than all other crops because of their highest DM yield. Thus, mixtures of faba beans with triticale could be a promising alternative for increased forage production because of their capacity for high DM and protein yields.  相似文献   

16.
对大豆、黑豆、绿豆、褪皮绿豆、红豆、腰豆6种不同种类的豆子进行发酵,检测不同原料对纳豆品质的影响,包括纳豆口味的感官评价、有机营养成分(蛋白质、总氨基酸、粘多糖)、水分含量的测量和纳豆芽孢杆菌的生长曲线测定。结果表明:6种豆类制成的纳豆中,大豆和褪皮绿豆的口味最佳。其中大豆制品在水分、粘多糖和营养物质方面综合品质最佳,而褪皮绿豆的粘多糖成分的含量最高,可作为新一代的纳豆后备材料。  相似文献   

17.
A simple model for chickpea development, growth and yield   总被引:1,自引:0,他引:1  
Chickpea (Cicer arietinum L.) yield is unstable and low in major producer countries. A robust crop model can assist in evaluation of possible genetic improvements and cultural management practices to improve yield. The objectives of this study were to develop and test a chickpea simulation model that could be used across a wide range of environments. This model simulates phenological development, leaf development and senescence, mass partitioning, plant nitrogen balance, yield formation and soil water balance. Responses of crop processes to environmental factors of solar radiation, photoperiod, temperature, nitrogen and water availability, and genotype differences were included in the model. The model uses a daily time step and readily available weather and soil information. The model was tested using independent data from a wide range of growth and environmental conditions. In most cases, simulated grain yield were similar to observed yield (ranging from 20 to 379 g m−2) with a root mean square root of 26 g m−2 (15% of average measured yield). It was concluded that the model generality, i.e., constant parameters for genotypes across locations, and applicability to a wide range of environmental conditions factors made this model especially useful.  相似文献   

18.
Sunflower (Helianthus annuus L.) is a crop native to North America for which there are no genetically modified commercial varieties. Some of the transgenic traits incorporated in other crops have already been subjected to research and experimentation in sunflower. Several new traits have also been noted, with the most relevant of these being the aim to increase latex production. GM sunflower release would modify crop management through improved mineral nutrition, weed control, insect and disease resistance, and product quality. In this research, the traits investigated were reviewed and analyzed in connection with main crop constraints. These characters could potentially influence agro-ecosystem components and produce a significant environmental impact. In regions where sunflower coexists with wild relatives this situation could affect germplasm resources, with this being especially important at the centre of origin and where Helianthus populations established in Africa, Asia, and Europe.  相似文献   

19.
《Field Crops Research》1996,47(1):33-41
Wheat (Triticum aestivum L.) production in some dryland regions is severely limited by the cereal cyst nematode (Heterodera avenae Woll.). Conventional fallow management during a wet period has been shown to allow hatching of the cysts during the fallow season and thereby sanitize the soil for the subsequent wheat crop. Recently a straw mulch (SM) management has been introduced into a long-term experiment in the Negev region of Israel. This management ameliorated the nematode damage and allowed continuous wheat production. Only three seasons of successful experimentation exist with the SM system so questions remain about its performance over seasons with differing weather conditions. A simple, mechanistic, wheat model was extended to simulate wheat development and growth when the crop is grown on nematode-infested soils. Incorporating statements describing inhibition of rooting depth as a result of nematode activity resulted in good agreement between simulations and 16 seasons of yield observations on continuous wheat. The effect of SM was simulated simply by decreasing soil evaporation and this resulted in higher levels of soil water and decreased nematode inhibition of rooting. Good agreement was obtained between the three seasons of experimental data and simulations of the SM system, with predicted grain yield within 10% of observations. Over 16 seasons, simulations of the SM system indicated substantial grain yield increases over continuous wheat in all but the highest-yielding season. Simulations in 14 seasons with conventional fallow management revealed that annual yields of SM were equivalent to biennial yields of the fallow system, resulting in a predicted doubling of wheat production for this dryland region of the Negev.  相似文献   

20.
Atmospheric nitrogen fixation as a result of the symbiosis between bacteria and legume species, can result in major advantages in providing host plants with organic nitrogen. The objective of the present study was to evaluate the physiological potential during early seedling development for initiation of nodulation and nitrogen fixation activity of four grain legumes species: soybean [Glycine max (L.)], cowpea [Vigna unguiculate (L.) Walp], common bean [Phaseolus vulgaris (L.)], and peanut [Arachis hypogaea (L.)]. Seedlings were grown on a hydroponic solution so that nodule development could be readily observed until about 3 weeks after germination. Nodules developed in all cases. Acetylene reduction activity (ARA) by soybean and cowpea was also found early in seedling development. In contrast, peanut and common bean showed little or no development of ARA during seedling development. The results provided insight into differences in physiological potential among grain legumes in establishing symbiotic nitrogen fixation during crop establishment. These results indicate those species/cultivars that are candidates for readily establishing nitrogen fixation activity during the seedling stage of plant development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号