首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 545 毫秒
1.
Gap-associated spruce (Picea abies (L.) Karst.) regeneration in Sphagnum-Myrtillus stands of south taiga forests (Central Forest Biosphere reserve, Tver region, Russia) was studied to evaluate the role of different disturbances in spruce dynamics. Sampled gaps (n=70) ranged from 40 m2 to 1.7 ha in size, and from 1 to 70 years since disturbance moment. Formation of gaps lead to increase in the number of stems per ha in all gap size classes (small: 40–200 m2, medium: 200–3000 m2, and large: >3000 m2 gaps). Spruce was the most important species in gap refilling, although its role was not the same in different gap classes. The highest values of relative abundance (compared to other species) were recorded in small gaps, and much lower values – in middle and large gaps. However, as refilling of gaps proceeded, spruce showed rather active regeneration in middle and large gaps and partly regained its abundance in middle-age disturbances. In general, all types of gaps studied supported spruce regeneration into the forest canopy. Almost perfect correlation between predicted outcome of spruce dynamics in gaps and its current role in the canopy of Sphagnum-Myrtillus stands suggests a good adaptation of this species to the current disturbance regime and a steady state of the these forests.  相似文献   

2.
3.
We experimentally investigated interacting effects of canopy gaps, understory vegetation and leaf litter on recruitment and mortality of tree seedlings at the community level in a 20-year-old lowland forest in Costa Rica, and tested several predictions based on results of previous studies. We predicted that experimental canopy gaps would greatly enhance tree seedling recruitment, and that leaf litter removal would further enhance recruitment of small-seeded, shade-intolerant seedlings in gaps. We created a large (320–540 m2) gap in the center of 5 out of 10 40 m × 40 m experimental plots, and applied the following treatments bimonthly over a 14-month-period in a factorial, split–split plot design: clipping of understory vegetation (cut, uncut), and leaf litter manipulations (removal, addition, control). As expected, experimental gaps dramatically increased tree seedling recruitment, but gap effects varied among litter treatments. Litter addition reduced recruitment in gaps, but enhanced recruitment under intact canopy. Species composition of recruits also differed markedly between gap treatments: several small-seeded pioneer and long-lived pioneer species recruited almost exclusively in gaps. In contrast, a few medium-to-large-seeded shade-tolerant species recruited predominantly under intact canopy. Leaf litter represents a major barrier for seedling emergence and establishment of small-seeded, shade-intolerant species, but enhances emergence and establishment of large-seeded, shade-tolerant species, possibly through increased humidity and reduced detection by predators. Periodic clipping of the understory vegetation marginally reduced tree seedling mortality, but only in experimental gaps, where understory vegetation cover was greatly enhanced compared to intact canopy conditions. Successful regeneration of commercially valuable long-lived pioneer trees that dominate the forest canopy may require clear-cutting, as well as weeding and site preparation (litter removal) treatments in felling clearings. Management systems that mimic natural canopy gaps (reduced-impact selective logging) could favor the regeneration of shade-tolerant tree species, potentially accelerating convergence to old-growth forest composition. In contrast, systems that produce large canopy openings (clear-cutting) may re-initiate succession, potentially leading to less diverse but perhaps more easily managed “natural plantations” of long-lived pioneer tree species.  相似文献   

4.
In the coastal temperate rainforests of southeast Alaska, much progress has been made in describing landscape-level natural disturbances and formulating management systems that emulate those disturbances. Little is known, however, concerning canopy gaps, the dominant form of natural disturbance in the region. During June–August, 1991–1993, we characterized canopy gap patterns and dynamics at three sites in the western hemlock/blueberry/shield fern plant association in the northern portion of the Tongass National Forest.Forest area in canopy gaps ranged from 5.8 to 12.6% and averaged 8.7%. The proportion of forest area in expanded gaps ranged from 18.1 to 43.9% and averaged 27.4%. Gap and gapmaker (tree whose death or crown displacement results in the creation or expansion of a canopy gap) characteristics were generally similar among sites. The majority of canopy gaps were <50 m2 in area, had a D/H ratio <0.50, were created from the death of one or two gapmakers, and had experienced gap expansion. The majority of expanded gap areas were <200 m2. Gapmakers were usually snapped, had recently died (<20 years ago), and tended to be larger in diameter than surrounding overstory trees. Species composition of gapmakers was similar to surrounding overstory trees. A substantial amount of gap infilling takes place between 20 and 80 years following tree death, but gaps, or portions of gaps, can persist for >80 years. Forest turnover time was estimated to range from 230 to 920 years, and average 575 years. Canopy residence time was estimated to range between 210 and 840 years, and averaged 525 years.To emulate canopy gap dynamics in the plant association studied, forest managers should: (1) maintain a small proportion of a stand in openings within an otherwise undisturbed canopy; (2) use a combination of single tree selection and small group selection systems; (3) re-enter stands every 20–80 years; (4) select larger than average diameter crop trees in proportion to the species composition of the stand; (5) minimize soil disturbance and (6) select crop trees during re-entry so that the creation of new gaps and the expansion of old gaps is accomplished in approximately equal proportions.  相似文献   

5.
Spatial variation in tree-regeneration density is attributed to the specialization of tree species to light availability for germination and growth. Light availability,in turn, varies across the gap-understorey mosaic. Canopy gaps provide an important habitat for the regeneration of tree species that would otherwise be suppressed in the understory. In subtropical forests, there is still a knowledge-gap relating to how canopy disturbances influence tree-regeneration patterns at local scale, and if they disproportionately favor regeneration of certain species. We aim to analyze whether canopy gaps promote tree regeneration, and tree species are specialized to gaps or understory for germination and growth. We sampled vegetation in 128 plots(0.01 ha), equally distributed in gaps and below canopy, in two subtropical Shorea robusta Gaertn.(Sal) forests in Nepal, recording the number of tree seedlings and saplings in each plot. We compared the regeneration density of seedlings and saplings separately between gaps and the understorey. The mean densities of seedlings and saplings were higher in the gaps at both sites;although there was no difference in the seedling density of the majority of the species between the habitats. No species were confined to either gap or understorey at the seedling stage. We conclude that gaps are not critical for the germination of tree species in Sal forests but these are an important habitat for enabling seedlings to survive into saplings. The classification of trees into regeneration guilds mainly based on germination does not apply to the majority of tree species in subtropical Sal forests. Our results reaffirm that gap creation promotes tree regeneration by favouring seedling survival and growth and can influence forest management for conservation, as well as for plantations.  相似文献   

6.
Regeneration of tree species associated with canopy gaps in broad-leaved Korean pine forests was investigated. Species diversity in gaps and under closed canopy was compared, the relationship between biodiversity and gap structure was analyzed. Results indicate that there were significant differences between tree species diversity in gaps and that under canopy (p<0.01). In terms of Shannon-Wiener index, evenness index, and abundance index, the biodiversity in gap community were higher than those under forest canopy in regeneration layer. In terms of Simpson’s dominance index, the dominance of certain species in the regeneration layer increased from gaps to closed canopy (p<0.01). In contrast, trends of biodiversity changes of succession layer in gaps and under closed canopy were opposite. Tree species diversity of different layers reacted directly to the change of gap size class. For example, Shannon-Wiener index and abundance index is higher and Simpson’s dominance index is the lowest in succession layer of medium-size gap (100–250 m2) in the broad-leaved Korean pine forest of Changbai Mountains. Shannon-Wiener index reached the highest in a size of ≥250 m2 and <100 m2, reached the lowest in a size of 200–250 m2 in the regeneration layer. Simpson’s dominance index reached its maximum when the gap size was between 200 and 250 m2. Generally, species of different layers reacted differently to the changes of gap size classes. The gap size class with more seedlings did not correspond to size class containing more medium-size trees. Tree species diversity indices in the two layers behaved reciprocally during the development process of forest gaps. __________ Translated from Chinese Journal of Applied Ecology, 2005, 16(12): 2,236–2,240 [译自: 应用生态学报, 2005, 16(12): 2,236–2,240]  相似文献   

7.
Interactions between forest canopy characteristics and plants in the forest understory are important determinants of forest community structure and dynamics. In the highlands of southwestern, China the dwarf bamboo Bashania fangiana Yi is an understory dominant beneath a mixed canopy of the evergreen Abies faxoniana (Rheder & Wilson) and the deciduous Betula utilis (D. Don). The goal of this study was to better understand the role of bamboo dominance, canopy characteristics, and periodic bamboo dieback on forest development. To achieve this goal, we measured tree seedling, tree saplings, and trees, forest canopy characteristics, and bamboo cover in permanent forest (n = 4) and gap plots (n = 31) in a mixed A. faxoniana and B. utilis forest in Sichuan, China. Dwarf bamboos died off in 1983 in the gap plots, and in three of the four forest plots. Forest development was assessed for the period 1984–1996. The seedling bank in forest and gap plots increased after bamboo die-off. A. faxoniana seedlings increased more than B. utilis in forest plots; the opposite pattern characterized gap plots. The proportion of seedlings on raised micro-sites on the forest floor also changed and new seedling were more abundant on the forest floor. By 1996, bamboo seedling cover and biomass had recovered to ca. 45% or their pre-flowering values. Rates of bamboo seedling recovery were faster beneath canopy gaps and deciduous trees than beneath forest or evergreen trees. Tree mortality exceeded recruitment in plots with dense bamboo; the opposite pattern was found in the plot with little bamboo. The mortality rate for B. utilis trees (2.4% year−1) was higher than that for A. faxoniana (0.8% year−1) and forests with dense bamboos became more open over the census period. Tree mortality was size-dependent and intermediate sized trees had the lowest rates of mortality. Stand basal area increased mainly due to greater basal area gain than loss for A. faxoniana. Interactions between tree species life history, canopy type, and bamboo life-cycles create heterogeneous conditions that influence tree and bamboo regeneration and contribute to the coexistence of A. faxoniana and B. utilis in old-growth forests in southwestern China.  相似文献   

8.
This study examined the variation in the development of naturally regenerated and planted seedlings of Sitka spruce (Picea sitchensis (Bong.) Carr.) within gaps cut in a 32-year-old stand of the same species. The circular gaps were 20 m in diameter and designed to allow sunlight into only half of the gap floor at midsummer given the latitude of 56°45′N. Eight plots (8 m × 3 m) were laid out along a north–south transect through each gap (four within the gap and two each under the closed canopy north and south of the gap). Each plot was sub-divided and seedlings were planted into one part and the other part was left to naturally regenerate. In subsequent seasons, plots were further subdivided into ‘weed free’ and ‘vegetation left untouched’. Results showed that while the two central plots within the gaps had the highest value of canopy openness, the highest accumulated temperature and lowest soil moisture were recorded in plots that received direct sunlight. However, level of germination was significantly higher in the shaded area of the gap than in the part that received direct sunshine suggesting that higher moisture levels in shaded areas are important to successful germination. Minimal germination was recorded in the plots beneath the canopy. Seedling survival was significantly influenced by the influx of competing vegetation, but only in the part of the gaps that received direct sunlight. The success of Sitka spruce regeneration within gaps appears to depend on sufficient moisture and light to support regeneration and early growth, but not too much light to encourage the development of competing vegetation. The permanently shaded areas of the gaps appeared to offer ground conditions with sufficient moisture and light to ensure successful germination and early growth of seedlings, but without excessive competition from other vegetation.  相似文献   

9.
Changes in tree species distributions are a potential impact of climate change on forest ecosystems. The examination of tree species shifts in forests of the eastern United States largely has been limited to simulation activities due to a lack of consistent, long-term forest inventory datasets. The goal of this study was to compare current geographic distributions of tree seedlings (trees with a diameter at breast height ≤2.5 cm) with biomass (trees with a diameter at breast height > 2.5 cm) for sets of northern, southern, and general tree species in the eastern United States using a spatially balanced, region-wide forest inventory. Compared to mean latitude of tree biomass, mean latitude of seedlings was significantly farther north (>20 km) for the northern study species, while southern species had no shift, and general species demonstrated southern expansion. Density of seedlings relative to tree biomass of northern tree species was nearly 10 times higher in northern latitudes compared to southern latitudes. For forest inventory plots between 44° and 47° north latitude where southern tree species were identified, their biomass averaged 0.46 tonnes/ha while their seedling counts averaged 2600 ha−1. It is hypothesized that as northern and southern tree species together move northward due to greater regeneration success at higher latitudes, general species may fill their vacated niches in southern locations. The results of this study suggest that the process of northward tree migration in the eastern United States is currently underway with rates approaching 100 km/century for many species.  相似文献   

10.
Virgin beech Fagus orientalis forests in northern Iran provide a unique opportunity to study the disturbance regimes of forest ecosystems without human influence. The aim of this research was to describe characteristics of natural canopy gaps and gap area fraction as an environmental influence on the success of beech seedling establishment in mature beech stands. All canopy gaps and related forest parameters were measured within three 25 ha areas within the Gorazbon compartment of the University of Tehran’s Kheyrud Experimental Forest. An average of 3 gaps/ha occurred in the forest and gap sizes ranged from 19 to 1250 m2 in size. The most frequent (58%) canopy gaps were <200 m2. In total, canopy gaps covered 9.3% of the forest area. Gaps <400 m2 in size were irregular in shape, but larger gaps did not differ significantly in shape from a circle. Most gaps (41%) were formed by a single tree-fall event and beech made up 63% of gap makers and 93% of gap fillers. Frequency and diversity of tree seedlings were not significantly correlated with gap size. The minimum gap size that contained at least one beech gap-filling sapling (<1.3 m tall) was 23.7 m2. The median gap size containing at least one beech gap-filling sapling was 206 m2 and the maximum size was 1808 m2. The management implications from our study suggest that the creation of small and medium sized gaps in mixed beech forest should mimic natural disturbance regimes and provide suitable conditions for successful beech regeneration.  相似文献   

11.
  • ? In mixed-species forest stands, large losses in tree species diversity often occur during the regeneration phase. In a former coppice-with-standards, we investigated whether the limiting stage in the recruitment process of advance regeneration is the immediate seedling response to canopy release. Experimental canopy gaps were opened and the survival and growth of advance seedlings (Fagus sylvatica, Acer pseudoplatanus, Acer campestre, Acer platanoides) growing in the gaps or under closed canopy were monitored for three years.
  • ? All species responded positively and rapidly to canopy release. Survival was not affected by gap opening. Diameter increment after gap opening was similar across species, and height increment was greater for Acer platanoides and for Acer pseudoplatanus. Post-release diameter and height growth were mainly determined by pre-release seedling size. Competition from neighbouring seedlings did not affect growth in the three years following canopy opening.
  • ? In the recruitment process of F. sylvatica and Acer sp. advance regeneration, the recovery from canopy release did not appear as a limiting step that would filter against some species. Pre-release size was the main factor accounting for post-release growth and is probably a major determinant of long-term seedling dominance.
  •   相似文献   

    12.
    Canopy gaps play a significant role in maintaining structure and composition of tropical forests. This study was carried out in tropical evergreen forests of central Western Ghats in India to understand the influence of canopy gap size and the relationship of gap regime attributes to diversity measures and regeneration. The average gap size in the study area was found to be 396 m2 and around half of gaps were 4–8 years old. Gaps created by natural single tree fall were smaller in size but significantly higher in number. Diversity and regeneration of woody species were compared with canopy gaps and intact vegetation. Species richness and diversity was higher in gaps than in intact vegetation. Macaranga peltata, a shade intolerant species dominated gaps while intact vegetation was dominated by shade tolerant Kingiodendron pinnatum.Gap size significantly influenced species diversity and regeneration. Gap area and age were significantly and negatively correlated with diversity measures but positively correlated with regeneration. Among all the attributes of gaps, regeneration was significantly positively correlated with light intensity. Gaps maintained species diversity and favored regeneration of woody species. In addition to gap size and age, other gap ecological attributes also affected species diversity and regeneration.  相似文献   

    13.
    雪灾干扰下林窗对木荷幼苗更新的影响   总被引:2,自引:1,他引:1       下载免费PDF全文
    林窗干扰是维持森林生态系统的重要驱动力之一,对种子萌发、幼苗等自然更新过程、森林物种组成和动态、森林生物多样性的维持具有重要作用。本研究以2008年雪灾干扰后的浙江江郎山木荷林为研究对象,对木荷林窗大小结构、幼苗更新、生长等进行调查研究,结果表明:扩展林窗以50 100 m2的林窗个数最多(占总数的45.45%),各等级林窗中以50 100 m2的林窗占总面积比例最大(占总面积的30.31%)。林窗中木荷幼苗的平均高度和地径较对照林分分别高1.44 cm和0.61 mm,幼树在林窗中的平均高度和地径则比对照林分中分别高45.37 cm和5.00 mm且差异显著;林窗大小对木荷幼苗、幼树的高度和地径生长影响显著,中林窗中幼苗的高度和地径均高于小林窗和大林窗中的幼苗且差异均显著(F=4.893,P=0.007;F=5.203,P=0.004;n=357);幼树的地径在不同大小林窗中差异显著(F=3.569,P=0.037;n=43)。林窗幼苗的更新密度随着林窗面积的增大而增大,在林窗面积达到76 m2时,更新密度达到最大值,而后随着林窗面积的增大下降;中林窗和小林窗中更新苗木以低矮植株(1级、2级)为主,面积100 m2大林窗中,木荷幼苗生长较快。与他人研究的森林天然林窗相比,雪灾干扰后改变了林窗的大小分布结构和面积,50 100 m2的林窗比例较大,一定程度上更利于幼苗更新,具有相对较大的林窗幼苗更新密度;不论林窗大小,林窗内的更新幼苗都比林内多,郁闭度较大的林内或大面积的空地上都不利于更新幼苗的生长。因此,从受灾木荷林窗大小结构、幼苗更新、生长等来看,中林窗是幼苗适宜更新的面积,为木荷灾后恢复与重建提供了科学依据。  相似文献   

    14.
    Diversity and regeneration of woody species were investigated in two ecological niches viz. gap and intact vegetation in old-growth seasonally dry Shorea robusta (Gaertn. f.) forests in Nepal. We also related varieties of diversity measures and regeneration attributes to gap characteristics. Stem density of tree and shrub components is higher in the gap than in the intact vegetation. Seedling densities of S. robusta and Terminalia alata (B. Heyne ex Roth.) are higher in the gap than in the intact vegetation, while contrary result is observed for T. bellirica (Gaertn. ex Roxb.) and Syzigium cumini (L. Skeels) in term of seedling density. The complement of Simpson index, Evenness index, and species-individual ratio in the seedling layer are lower in the gap than the intact vegetation. Gap size can explain species richness and species establishment rate. Gaps created by multiple tree falls in different years have higher seedling density of S. robusta than gaps created by single and/or multiple tree falls in the same year. In conclusion, gaps maintain species diversity by increasing seedling density, and favor regeneration of Sal forests. In addition to gap size, other gap attributes also affect species diversity and regeneration. Foundation Project: The study was supported by Swedish International Development Cooperation Agency (SIDA).  相似文献   

    15.
    本文调查了尼泊尔季节性干旱的娑罗双树原始林两种生态位(间隙和全郁闭)下树种多样性及苗木再生情况,并对物种多样性指标和苗木再生属性与林分间隙特征进行了相关性分析。结果表明,间隙生态位下乔木和灌木立木度高于全郁闭。间隙生态位下娑罗双树和榄仁树的幼苗密度也高于全郁闭,但是油榄仁和海南蒲桃的比较结果恰好相反。在幼苗层物种多样性指标(complement of Simpson index,Evenness index,and species-individual ratio)在间隙生态位要低于全郁闭条件。间隙大小能够解释物种丰富度和物种建立速率。多年多样伐木形成的林分间隙下娑罗双树幼苗密度要高于同一年内单一或多样伐木。结论:林分间隙的物种多样性通过增加幼苗密度来维持,并且适于娑罗双树再生。此外,林分间隙的其它属性也会影响物种多样性和苗木再生。  相似文献   

    16.
    Tree plantations are often used to compensate for the destruction and conversion of natural forests in the tropics. An important question is whether these plantations allow for the regeneration of indigenous tree species and are expected to transform into more natural forests in the future. To evaluate the potential of differently managed forest types for seedling recruitment of indigenous tree species we studied structural characteristics as well as tree and seedling communities in stands of natural forest, different types of tree plantations and secondary forest in Kakamega Forest, western Kenya. Forest types differed considerably in structural characteristics and tree composition with stands of natural forest significantly differing from all other forest types in vertical foliage height diversity and number of late-successional tree species. By contrast, total seedling species richness and number did not differ among the forest types. Yet, number of seedlings of late-successional species decreased from natural forest and plantations of a mixture of indigenous tree species towards monocultures and secondary forests while number of seedlings of early-successional species increased in the same order. A joint Principal Component Analysis (PCA) corroborated higher similarity among seedling communities than among tree communities. Our results indicate a convergence of recruiting seedling communities in different forest management types suggesting that tree plantations might buffer forest loss to a certain extent and may have the potential to develop into more natural forest over time.  相似文献   

    17.
    A review of the roles of forest canopy gaps   总被引:5,自引:0,他引:5  
    Treefall gap, canopy opening caused by the death of one or more trees, is the dominant form of disturbance in many forest systems worldwide. Gaps play an important role in forest ecology helping to pre- serve bio- and pedo-diversity, influencing nutrient cycles, and maintain- ing the complex structure of the late-successional forests. Over the last 30 years, numerous reviews have been written describing gap dynamics. Here we synthesize current understanding on gap dynamics relating to tree regeneration with particular emphasis on gap characteristics consid- ered critical to develop ecologically sustainable forest management sys- tems and to conserve native biodiversity. Specifically, we addressed the question: how do gaps influence forest structure? From the literature re- viewed, the size of gaps induces important changes in factors such as light intensity, soil humidity and soil biological properties that influence tree species regeneration and differ in gaps of different sizes. Shade- tolerant species can colonize small gaps; shade-intolerant species need large gaps for successful regeneration. Additionally, gap dynamics differ between temperate, boreal, and tropical forests, showing the importance of climate differences in driving forest regeneration. This review summa- rizes information of use to forest managers who design cutting regimes that mimic natural disturbances and who must consider forest structure, forest climate, and the role of natural disturbance in their designs.  相似文献   

    18.
    Eastern white pine (Pinus strobus L.) is a moderately shade-tolerant species that co-occurs with hardwood tree species in many forests of the eastern United States, as well as in pure stands. The species is valued for its timber, as well as for wildlife and recreation. Regeneration of this species is somewhat unpredictable and often occurs in patches of similarly-aged cohorts. We described the regeneration patterns of this species and examined their relation to environmental variables within hardwood forests of southwestern Virginia, USA. An average of 5.3 white pine patches per ha were observed in this study. The majority of patches consisted of saplings (85%), with 9% of patches in pole size classes, and 6% in seedling size classes. The average density of patches was 43.5 stems with an average age of 20 years. The size of patches averaged 80.6 m2. The total density of seedlings and the number of regeneration patches of all sizes of regeneration (seedlings, saplings, and poles) in plots was related to the surrounding density of large white pine trees (potential seed trees). The density of seedlings or patches was not significantly related to current vegetation cover or soil surface cover variables, but more than half of regeneration patches were located in or adjacent to old canopy gaps, most of which were old logging gaps. While seedling regeneration may occur within the understory of these forests near seed trees, advancement to the sapling and pole stage appears to be associated with canopy gap formation.  相似文献   

    19.
    The structure of eight Quercus gambelii (Gambel's oak) communities in the Lincoln National Forest, New Mexico, USA were examined. Belt transects were used to estimate the density and basal area of the trees and the density of juvenile woody plants. In addition, diameter size-class distributions of Q. gambelii were examined to determine community development. The communities were estimated to be 109–137 years old and mid to late-successional. Total tree density was 3586–6480 plants/ha, with Q. gambelii having a relative density of 94–100%. Total basal area was 20.1–42.0 m2/ha, with Q. gambelii relative basal area 82–100%. The density and basal area of all other species present was low. Quercus gambelii juvenile density ranged from 1760 to 9160 plants/ha. Juveniles of all other species found were zero to 847 plants/ha. Based on Weibull analyses, all of the diameter size-class distributions of Q. gambelii were unimodal. There were few or no individuals in the smallest (1–5 cm) diameter size-classes, suggesting that recruitment of small Q. gambelii plants into the adult population may be below the replacement rate for these stands. Pooled size-class distributions for the other species were non-normal with most individuals in the smallest diameter size-classes. Low light levels below the canopy, a lack of canopy gaps, or browsing by Cervus elaphus (elk = red deer) may be the primary causes of poor recruitment because there were large numbers of Q. gambelii juveniles, but these individuals are not entering the small-tree size-class in any of the communities.  相似文献   

    20.
    This article reports the regeneration dynamics of a temperate Abies–Tsuga forest in Kirishima Yaku National Park, southwestern Japan, and examines the influence of species coexistence mediated by gap disturbances on biomass production. All trees taller than 2 m in a 1-ha plot were monitored over four growing seasons. Three growth-form groups occupied different vertical layers. Evergreen conifers and deciduous broad-leaved trees tended to be spatially segregated from evergreen broad-leaved trees, which formed thickets in the understorey. The regeneration of understorey evergreen broad-leaved trees was affected by canopy gaps. The recruitment of conifers and deciduous broad-leaved species was not observed during the four growing seasons. This suggests that regeneration is sporadic and the present environmental conditions are not favorable for these canopy species. The mortality and unsuccessful recruitment of conifers and deciduous trees appeared to cause fluctuations in the productivity of the stand. However, an abundance of canopy gaps accelerates the regrowth of shorter species, and the fluctuation of productivity resulting from the population dynamics of canopy species would be partly mitigated by the regeneration of evergreen understorey species. The horizontal and vertical heterogeneity of the temperate mixed forest was a result of the patch structures of the three growth-form groups. The different regeneration patterns among the three groups, which were driven by interactions of species-specific regeneration niches and disturbance regimes, might be an important factor in maintaining the aboveground productivity in a transitional mixed forest between warm-temperate and cool-temperate zones.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号