首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
施氮量对晋麦84号产量及土壤硝态氮、铵态氮的影响   总被引:3,自引:2,他引:1  
以晋麦84号为材料进行大田试验,研究施氮量对小麦产量、氮肥利用效率以及土壤中硝态氮、铵态氮含量分布的影响。结果表明,小麦籽粒产量与施氮量呈二次曲线关系,适宜施氮量(N 180 kg/hm~2)可以显著提高小麦的穗数、穗粒数,产量比对照提高34.7%,穗粒数、穗数与产量呈极显著的正相关,千粒质量与产量呈负相关,但差异不显著;施氮量在120~180 kg/hm~2时,有利于提高氮肥的利用效率。各处理麦收后,1 m土壤中硝态氮累积量随施氮量增加而增加,当施氮量在240 kg/hm~2以下时,麦收后土壤硝态氮主要集中在耕土层,且含量随着土层深度增加而减少;当施氮量在240 kg/hm~2以上时,硝态氮主要积累在60 cm以上土层,最高峰值在30 cm,淋失的风险增大。施肥处理的土壤铵态氮含量在不同土层均显著高于不施氮处理,表层土壤的铵态氮积累量最高,随着土层深度的增加铵态氮含量逐渐降低。因此,在晋南生产水平和管理方式下,综合考虑产量、经济和生态效益,主栽品种晋麦84号的氮素用量为180 kg/hm~2,其相应的产量水平为7 680 kg/hm~2。  相似文献   

2.
【目的】研究不同施氮量对夏玉米收获后0~200cm土层硝态氮分布、累积及土壤氮素平衡的影响。【方法】2009年在位于陕西关中西部地区的户县、周至2县分别设置了6个田间试验,测定了不同施氮量处理下夏玉米收获后土壤剖面硝态氮的含量,计算了土壤氮素平衡值。【结果】夏玉米收获后,在0~200cm土层,随着土层深度的增加,土壤硝态氮含量呈下降后升高的趋势。随着氮肥用量的提高,夏玉米收获后0~200cm土层土壤硝态氮累积量明显增加,二者呈显著正相关关系。随着施氮量的增加,土壤氮素平衡值逐渐增大,其中,当施氮量为90~150kg/hm2时,土壤氮素基本达到平衡;当施氮量达270~450kg/hm2时,土壤氮素有明显盈余。土壤氮素平衡值与0~200cm土层土壤硝态氮累积量之间呈极显著正相关关系,土壤氮素平衡值每增加100kg/hm2,0~200cm土层土壤硝态氮累积量增加约48kg/hm2。【结论】在夏玉米生长季,土壤氮素平衡决定了土壤剖面中硝酸盐的累积状况。  相似文献   

3.
在设施栽培条件下,采用田间小区试验,以番茄为指示植物,研究了不同氮肥用量:农民习惯施氮量(N1,尿素,纯氮1 000kg·hm-2)、70%农民习惯施氮量(N2、尿素,纯氮700 kg·hm-2)、70%农民习惯施氮量结合调节土壤C/N(N3,尿素,纯氮700 kg·hm-2)、50%农民习惯施氮量结合调节土壤C/N和采用滴灌(N4,尿素,纯氮500 kg·hm-2)对设施番茄产量、品质和土壤硝态氮累积的影响.结果表明,与农民习惯施用氮肥相比,减施氮肥处理(N2、N3和N4)的番茄产量没有降低.N4处理产量最高,比N1增产9.7%.N2和N4处理氮肥的农学效率和肥料的产投比均显著高于N1处理(P<0.05),其中N4处理最高,为28.9 kg·kg-1和12.6,施肥效益最高.不同施氮肥处理间果实Vc含量虽没有显著差异,但N4处理是N1处理的1.2倍.番笳果实的硝酸盐含量随氮肥施用量的增加而增加,两者旱显著的正相关关系(R2=0.8307,P<0.05),N3和N4处理果实硝酸盐含量均显著低于Nl处理(P<0.05).0~100 cm土层累积的硝态氮随氮肥施用量的增加而增加,N1处理土层累积的硝态氮含量最高,减施氮肥处理均降低了土壤对硝态氮的累积.土壤硝态氮多累积在0~40 cm土层,硝态氮的相对累积量约为50%,这部分残留的氮素可被下季作物吸收利用.果实硝酸盐含量与土壤累积的硝态氮存在显著的相关关系(R2=0.800 3,P<0.05),说明土壤硝态氮含量过高能够增加果实对氮素的吸收和积累.在寿光设施蔬菜生产条件下,在农民习惯施氮量基础上减氮30%~50%既町以保证较高产量和较好的果实品质,同时降低土壤中硝态氮累积.从产量、肥料效益和土壤可持续利用角度来看,N4处理更具优势,具有较好应用价值.  相似文献   

4.
【目的】针对马铃薯生产中存在的氮肥过量施用问题,探索氮素在土壤中的残留情况和马铃薯最佳施氮量,为科学施用氮肥提供参考.【方法】通过田间试验,研究不同氮肥水平(0,75,150,225,300,375Nkg/hm2)对水浇地覆膜马铃薯‘青薯9号’各生育期土壤0~20cm和20~40cm土层矿质氮(铵态氮+硝态氮)含量及马铃薯产量的影响.【结果】随施氮量的增加,土壤铵态氮含量变化较小,但0~20cm和20~40cm土层硝态氮的含量随施氮量增加显著增加,不同氮肥用量T2、T3、T4、T5和T6处理的0~20cm土层中硝态氮含量至收获期时高达57.53,88.53,149.86,185.10mg/kg和240.42mg/kg,比播前增加了40~200mg/kg;20~40cm土层硝态氮含量至收获期时分别为63.90,88.11,156.70,192.13mg/kg和244.51mg/kg,比播前增加了30~200mg/kg;过量施氮(T5和T6)和氮肥施用不足(T1、T2和T3)均降低了马铃薯的块茎产量.【结论】试验条件下,马铃薯的经济最佳施氮量和最高产量施氮量分别为180.99kg/hm2和231.07kg/hm2.不同氮水平主要通过影响‘青薯9号’的平均单株薯质量而影响块茎产量.  相似文献   

5.
本研究以‘新饲玉13号’为材料,研究在滴灌春小麦-青贮玉米一年两作体系下的复播青贮玉米适宜的氮肥施用量。在滴灌条件下设置5个施氮水平(N1:104.4 kg/hm~2,N2:174.0 kg/hm~2,N3:243.6 kg/hm~2,N4:313.2 kg/hm~2,N5:382.8 kg/hm~2),以未施氮为对照(CK),分析施氮量对复播青贮玉米鲜草产量、氮素吸收利用和土壤硝态氮含量的影响。结果表明,随施氮量的增加,青贮玉米的植株干物质重、氮含量、氮累积量和鲜草产量呈增加趋势,而青贮玉米的氮肥当季回收利用率、氮肥农学效率和氮肥生产效率呈下降趋势;收获期在0~100 cm土层内,不同施氮处理的土壤硝态氮含量均表现为随土层加深逐渐降低,但施氮量大于243.6 kg/hm~2时,土层深度100 cm处硝态氮大量积累,有向下淋洗的风险。利用一元二次方程拟合产量与施氮量之间的关系,明确了在该试验土壤肥力条件下青贮玉米鲜草最高产量的施氮量为244 kg/hm~2,经济施氮量为238 kg/hm~2。  相似文献   

6.
为了提高氮肥增产效益,减少对环境的污染,通过田间试验研究了施氮量对春玉米产量、氮肥效率及土壤矿质氮的影响。结果表明,施氮量较低时,春玉米籽粒产量随施氮量增加显著增加,当施氮量高于180 kg·hm-2时,产量保持不变或有减少趋势。氮肥农学利用率、氮素吸收效率、氮素偏生产力和氮收获指数均随着施氮量增加显著降低,氮肥表观利用率和氮肥生理利用率均先增加后降低。从苗期到收获期,施氮处理0~60 cm土层硝态氮含量呈现"上升-下降-上升-下降-稳定"的变化趋势,而60~120 cm土层硝态氮在春玉米生长后期有增加的趋势。随着土层加深,土壤硝态氮含量呈波浪式下降,施氮量240 kg·hm-2和300 kg·hm-2处理在60~100 cm土层硝态氮含量均显著高于其他处理。随着施氮量增加,0~120 cm土层硝态氮累积量显著增加,当施氮量超过240kg·hm-2时,土层中累积的硝态氮存在着较大的淋溶风险。综合考虑产量、氮肥效率和环境效应,179~209 kg N·hm-2是本试验条件下春玉米的合理施氮量。  相似文献   

7.
施磷对夏玉米土壤硝态氮、吸氮特性及产量的影响   总被引:2,自引:0,他引:2  
【目的】研究不同施磷水平对夏玉米生长期土壤硝态氮时空分布、累积量及玉米籽粒产量的影响,为夏玉米合理施肥提供参考依据。【方法】采用田间小区试验,在施磷水平分别为0,60,120和180 kg/hm2时,研究施磷对夏玉米产量及土壤氮素吸收累积的影响。【结果】在0~110 cm土层,随土壤剖面深度的增加,土壤硝态氮含量逐渐降低,0~30 cm土层明显高于30~110 cm土层且变幅较大,施磷肥能显著降低土壤硝态氮含量。随夏玉米生育期推进,0~110 cm土层硝态氮累积量呈先降低后升高的趋势,于灌浆期达到最低值;当施磷水平为120 kg/hm2时,成熟期0~110 cm土层硝态氮累积量低于施磷60和180 kg/hm2的处理;施磷肥能显著增加玉米籽粒产量、籽粒吸氮量及氮收获指数,均以施磷水平为120 kg/hm2时最高。【结论】在施氮基础上施用磷肥,有利于提高玉米籽粒产量,促进作物对氮素的吸收累积,减少土壤中硝态氮的累积及向更深土层中的运移量。  相似文献   

8.
日光温室白萝卜生产系统的氮素利用与平衡研究   总被引:3,自引:2,他引:1  
在日光温室条件下,研究了不同氮素供应水平对白萝卜(Rajphanus sativus L.)氮素利用和土壤硝态氮累积动态,并对土壤-作物体系的氮素表观平衡进行了评估.结果表明,随氮肥用量的增加,白萝卜产量和干物质累积量均没有显著升高,但根块内富集的硝酸盐含量显著增加.增施氮肥对白萝卜维生素C(Vc),可溶性糖和可溶性蛋白含量没有显著影响;随施氮量增加白萝卜根块氮素吸收量显著增加,当季氮肥利用率降低;当氮肥用量低于推荐施氮量(有机肥+200 kg urea-N·hm-2)时,整个白萝卜生长期,根层(0~60 cm)土壤硝态氮均处于耗竭状态.当施氮量高于推荐施氮量时,根层硝态氮下降幅度减小,并在播种30d以后呈上升趋势;土壤-作物体系中播前无机氮(Nmin)和氮肥投入是主要输入项,输出项中以土壤无机氮残留和作物吸收为主.随施氮量的增加,氮素表观平衡值和土壤残留Nmin明显增加.系统氮素盈余量随施氮量的增加而增加.结合当地地力条件,在有机肥和磷钾肥配施的基础上,秋冬季白萝卜施氮量应控制在200 kg·hm-2以内.  相似文献   

9.
为通过控制施氮量来实现高肥力条件下小麦的高产、高效、安全生产提供依据,以冬小麦品种‘藁8901’为材料,研究了高肥力条件下不同施氮水平对小麦氮素吸收利用、籽粒产量和土壤中硝态氮含量的影响。试验结果表明:在高肥力条件下,随着施氮量的增加,冬小麦的籽粒产量和植株吸氮量均是先增加后降低,籽粒产量和植株吸氮量均以N150最高,氮素生产力则以N0最高。在冬小麦的拔节期和成熟期,土壤NO3-N含量均随着施氮量的增加而增加,减少氮肥施入量能降低冬小麦拔节期和成熟期土壤0-100 cm土层中的硝态氮含量。施用氮肥能提高小麦拔节期和成熟期植株全氮积累量和土壤NO3-N积累量,但两者并非同步增加,土壤NO3-N积累量增加的幅度远远大于植株全氮积累量的增长幅度。在施氮量0-180 kg/hm2范围内时,植株全氮积累量有所增加,且土壤中硝态氮的积累量增加较为缓和;而在施氮量180 kg/hm2的基础上继续提高氮素用量,植株全氮积累量下降,而土壤硝态氮积累量却开始大幅度增加。据此综合考虑,冬小麦‘藁8901’的适宜施氮量应控制在150 kg/hm2左右。  相似文献   

10.
通过田间试验研究不同施氮量对芹菜产量、硝酸盐含量和维生素C含量的影响。结果表明,施氮量为360.0kg/hm2时产量最高,施氮量为480.0kg/hm2时,产量反而下降。施氮量0.0~240.0kg/hm2时,芹菜维生素C含量随施氮量提高而升高,施氮量240.0~480.0kg/hm2,芹菜维生素C含量随施氮量提高呈下降趋势,硝酸盐含量与施氮量的回归统计分析呈显著的线性正相关。在本试验条件下,芹菜氮肥试用量为360.0kg/hm2左右为宜。  相似文献   

11.
芹菜生产中的有机无机肥最佳配比研究   总被引:2,自引:0,他引:2  
[目的]研究有机无机肥配比对芹菜产量和NO3^- -N含量的影响,为绿色蔬菜生产中的有机无机肥配合施用提供科学依据。[方法]温室条件下,以芹菜为蔬菜代表,设计了鸡粪与尿素5个配比处理,3次重复的田间试验,对试验结果进行数据统计分析。[结果]随施用无机氮质量百分数增加,NO3^- -N含量呈明显增加趋势;生产NO3^- -N量≤785mg/kg的绿色蔬菜标准芹菜,无机氮百分数应≤35.6%;最高产量的有机无机肥配比是29.2%:70.8%;产量相对较高,经济效益最佳的有机无机肥配比为64.4%:35.6%,此时的产量为76528kg/hm^2,相当于最高产量的95.8%,纯收益为97606元/hm^2,比纯用化肥增加收益28.6%,比纯用有机肥增加收益16.2%,比最高产量时增加收益25.2%。[结论]增加有机肥投入量,降低化肥比例,实现绿色蔬菜生产、达到增产增收是可行的,绿色芹菜生产中的经济效益最佳的有机无机肥配比为64.4%:35.6%。  相似文献   

12.
番茄3414试验研究   总被引:1,自引:0,他引:1  
本文以日光温室内采用滴灌的番茄为研究对象,对不同施肥量对其产量的影响进行了初步研究。试验结果表明:不同施肥量对番茄产量有较明显的影响。当氮磷钾配比为氮18kg/667m2、五氧化二磷10~15kg/667m2、氧化钾6~12kg/667m2时,番茄的产量、经济效益最高和肥料生产效率也较高。在实际生产中可以根据不同土壤肥力状况和种植条件对施肥量进行适当调整。  相似文献   

13.
施氮量和花后控水对小麦水分生产效率及产量的影响   总被引:2,自引:0,他引:2  
在防雨池栽条件下,采用施纯氮10kg/667m2、15kg/667m2、20kg/667m2(分别用N1、N2、N3表示)和40%~50%、60%~70%、80%~90%(分别用W1、W2、W3表示)3种土壤含水量进行处理,研究了氮肥和花后土壤含水量对小麦水分生产效率和产量的影响。结果表明:在同一施氮量条件下,表现为花后土壤含水量过高(80%~90%)或过低(40%~50%)导致穗粒数减少,千粒重降低,最终使产量降低。水分生产效率,则随着土壤含水量的增加而降低。在同一土壤含水量下,表现为增加施氮量有利于提高穗粒数,但过多(20kg/667m2)或过少(10kg/667m2)施氮均不利于穗粒数和千粒重的提高,而导致减产。而对于水分生产效率,表现为增加施氮量提高水分生产效率,而施氮量过高(20kg/667m2)造成小麦贪青晚熟,导致水分生产效率下降。因此,小麦生产中可以通过施用氮肥和控制花后土壤水分含量技术,调控小麦水分生产效率和产量,实现高产高效。  相似文献   

14.
试验设5个处理,3次重复。处理1(T1):不施有机肥,不施氮肥,此处理为对照处理;处理2(T2):有机肥每667 m2 1000kg,不施用氮肥;处理3(T3):有机肥每667 m2 1000kg,氮肥全生育期施用纯量每667 m2 9kg ;处理4(T4):有机肥每667 m2 1000kg,氮肥全生育期施用纯量每667 m2 18kg;处理5(T5):有机肥每667 m2 1000kg,氮肥全生育期施用纯量每667 m2 27kg;不施用有机肥和氮肥的情况下,生菜产量较低,品质下降。施用有机肥后,能够增加生菜产量,提高生菜品质。处理4生菜经济产量处理最高,为每667 m2 2582.59kg,与处理5、处理3差异不显著,处理5生菜硝酸盐及总酸含量最高,分别为202.55mg·kg-1、0.062%;处理4 Vc和可溶性固形物含量最高,分别为4.19g·100g-1、3.5%。不施用有机肥和氮肥的情况下,土壤养分有机质及碱解氮含量较种植前相比,有所降低,有效磷及速效钾含量也低于其他处理,处理2和处理3的土壤养分含量高于其他处理。结合目前生菜种植普遍施用有机肥施的情况下,全生育期氮肥用量纯量每667 m2 18kg,是目前结球生菜种植较为适宜的量。  相似文献   

15.
为探明蕹菜高产、优质的合理氮肥施用量,采用盆栽试验与^15N标记示踪技术,分析了氮肥施用量与蕹菜产量、品质及氮肥利用率的关系.结果表明,将每1kg的氮肥施用量x(g)与每盆的产量y(g)拟合成回归方程为y=14.81+1208.60x-2959.52x^2(F=46.85),表明产量随氮肥施用量的增加呈先增加后下降的变化趋势;每1kg土的合理氮肥施用量为0.140-0.170g;氮肥利用率y(%)和每1k土氮肥用量x(g)之间的一元一次方程为:y=48.93x+45.88(r=0.984).适宜的氮肥用量能提高可食部分维生素C,可溶性糖和蛋白质含量,降低蕹菜可食部分硝酸盐含量.  相似文献   

16.
氮、磷、钾配施对油葵产量与品质的影响   总被引:8,自引:0,他引:8  
采用"3414"最有饱和设计方案,以氮(N)、磷(P2O5)、钾(K2O)肥为探讨因子进行田间试验。建立氮、磷、钾3因素与油葵杂交种F60的籽粒产量、籽粒粗脂肪含量、粗脂肪产量、籽粒粗蛋白含量和粗蛋白产量的施肥模型。通过分析发现,在供试条件下,氮、磷、钾单因子对油葵籽粒产量和粗脂肪产量的影响是一致的,表现为P﹥N﹥K;对粗蛋白产量的影响是K﹥N﹥P;增施氮肥降低粗脂肪含量,增加粗蛋白含量;增施磷肥增加粗脂肪含量,对粗蛋白含量的影响不明显;增施钾肥增加粗脂肪含量,降低粗蛋白含量。施肥模型的寻优结果表明:施N=9.9 kg/667m2,P2O5=6.3 kg/667m2,K2O=8.8 kg/667m2,可获得最高籽粒产量为217.5 kg/667m2;施N=8.5 kg/667m2,P2O5=6.6 kg/667m2,K2O=8.5 kg/667m2,可获得最高粗脂肪产量为90.9 kg/667m2;施N=9.6 kg/667m2,P2O5=6.6 kg/667m2,K2O=10.2 g/667m2,可获得最高粗蛋白产量为35.5 kg/667m2。  相似文献   

17.
以烤烟品种NC102为试材,通过"3414"肥效试验研究氮磷钾施肥对烤烟产量、叶绿素含量及净光合速率的影响。结果表明:各处理产量均比对照有显著提高。当每667 m2纯氮用量5.22kg、纯磷用量4.26kg、纯钾用量22.50kg时,烤烟可获得最高产量197.92kg。单一元素对产量的影响为氮肥最大,磷肥次之,钾肥最小。氮素、磷素与成熟期叶片叶绿素含量和净光合速率密切相关,控制氮肥施用及适量增施磷肥有利于烟叶正常落黄;适量增施氮肥和钾肥有利于成熟期上部叶片的光合作用,促进上部叶片开片。钾素对成熟期叶片叶绿素含量及净光合速率的影响不大。  相似文献   

18.
Application of nitrogen (N) fertilizer is one of the most important measures to increase grain yield and protein content in winter wheat (Triticum aestivum L.) production. However, misuse of N Tertilizer will not only affect gram yield and quality, but also cause the decline of economic benefits and related negative environmental effects. It is essential to study reasonable N application regimes for profitable yields, efficient N utilization and reduction in possible environmental pollution. The objective of this study was to determine the N uptake and translocation in wheat plants by using 15N isotope tracers in PVC cylinders (2.05 m long, ϕ 0.2 m, without bottom) in seven treatments: without N fertilizer application (N0); N application rate of 168 kg/hm2 (0.527 g/pot), with ratios of base fertilizer to topdressing of 1:1 (N1), 1:2 (N2) and 0:1 (N3); N application rate of 240 kg/hm2 (0.753 g/pot), with ratios of base fertilizer to topdressing of 1:1 (N4), 1:2 (N5) and 0:1 (N6). The 15N tracer experiment showed that the main basal N absorbed by plant from sowing to jointing stage accounted for 78.04%–89.67%; fertilizer N use efficiency (FNUE, N fertilizer accumulation in plant/N supplied) of topdressing was significantly higher than that of basal N; reducing basal N amount and increasing topdressing N amount could appropriately promote the plant’s absorption of more N fertilizer and enhance FNUE, of which treatment N2 had the highest values. Under the high-yield condition, when N fertilizer rate was increased from 168 to 240 kg/hm2, there were no significant differences in the amount of N accumulation in plants and in grains between treatments with the same ratio of base fertilizer to topdressing; by reducing basal N amount and increasing topdressing N amount accordingly, the translocation efficiency (TE, accumulation amount from vegetative organs to gram/N accumulation in vegetative organs during anthesis) increased, and the amount of N assimilation to grains after anthesis and its contribution proportion (the amount of N assimilation to grains after anthesis/N accumulation in grain) also increased. In other words, grain N accumulation amount increased with increasing amount of topdressing N at the same N fertilizer rate. There were no significant differences among treatments N2, N3, N5 and N6 in grain N accumulation. Appropriate N fertilizer rate with a reduction in basal N amount and an increase in topdressing N amount such as in N2, N5 and N6 increased grain yield and protein content. In conclusion, under conditions used in this experiment, as far as grain yield, protein content and FNUE are concerned, the recommended appropriate N fertilizer application regime is treatment N2, with a N fertilizer rate of 168 kg/hm2 and a ratio of base fertilizer to topdressing of 1:2. Translated from Journal of Acta Agronomica Sinica, 2006, 32(12): 1860–1866 [译自: 作物学报]  相似文献   

19.
氮肥用量对小麦开花后根际土壤特性和产量的影响   总被引:7,自引:1,他引:6  
【目的】明确小麦开花后根际土壤特性动态特征及其与产量和籽粒氮素积累量之间的关系,能够为生产上合理施肥、提高氮肥利用效率和减轻环境污染提供理论依据。【方法】2014—2015和2015—2016年在小麦季设置4个氮肥水平(0,CK;150 kg N·hm~(-2),N150;240 kg N·hm~(-2),N240和300 kg N·hm~(-2),N300)并于小麦开花期、灌浆中期和成熟期分层(0—20 cm和20—40 cm)测定小麦根际和非根际土壤铵态氮、硝态氮、蔗糖酶、脲酶,同时测定根、茎、叶和穗生物量及其氮素含量;重点分析根际土壤特性与小麦籽粒产量和氮素积累量之间的关系。【结果】(1)与CK相比,N150、N240和N300处理2年小麦籽粒产量的平均值分别增加99%、130%和107%,且处理之间差异显著。随施氮量的增加小麦根、茎、叶、穗生物量和地上部氮素积累量均呈增加趋势;氮肥回收率呈下降趋势,且处理之间差异显著。(2)从开花到成熟期,0—20 cm和20—40 cm土层小麦根际和非根际土壤铵态氮、硝态氮含量、土壤蔗糖酶和脲酶(0—20 cm除外)活性均呈下降趋势。处理CK、N150、N240和N300根际土壤铵态氮和硝态氮含量显著低于非根际土壤。4个处理2年0—20 cm根际土壤铵态氮含量平均值比非根际土壤降低29%,硝态氮含量降低22%;20—40 cm根际土壤铵态氮含量比非根际土降低34%,硝态氮含量降低14%。而根际土壤蔗糖酶和脲酶活性显著高于非根际土。4个处理2年0—20 cm根际土壤蔗糖酶活性比非根际土壤提高29%,脲酶活性提高15%;20—40 cm根际土壤蔗糖酶活性比非根际土壤提高33%,脲酶活性提高13%。(3)相关分析结果表明,小麦籽粒产量和籽粒氮素积累量均与0—20 cm和20—40 cm根际和非根际土壤无机氮(铵态氮+硝态氮)、脲酶和蔗糖酶(2016年籽粒氮素积累量除外)呈显著正相关。【结论】小麦根际土壤可利用性氮素含量小于非根际土壤,而酶活性高于非根际土;根际和非根际土壤与籽粒产量和籽粒氮素积累量呈显著正相关。根际和非根际土壤特性显著影响小麦籽粒产量。  相似文献   

20.
不同肥料类型和处理对水稻氮肥农学利用率的影响   总被引:1,自引:0,他引:1  
选用当前我省大面积种植的5个水稻品种,在7种不同施肥处理下进行裂区试验,探讨不同施肥类型与水稻产量和农学利用率的关系.结果表明:尿素+控失剂+饼肥配合施肥处理可以显著提高水稻的产量,平均较对照增产51.7%;该施肥处理还可以明显提高水稻的氮肥农学利用率,较尿素+饼肥施肥处理平均增加了20.1%;品种K优52和协优52在不同施肥处理下的平均产量和平均氮肥农学利用率均高于其它试验品种,分别为6.06 kg/667m2、10.3kg稻谷/kg N与6.10 kg/667m2、11.8kg稻谷/kg N.因此,控失剂的配合辅助施用可以提高水稻产量和农学利用率;K优52和协优52的平均氮素农学利用效率高于其它品种.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号