首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Durum or macaroni wheat (Triticum turgidum L., 2n = 4x = 28; AABB) is an allotetraploid with two related genomes, AA and BB, each with seven pairs of homologous chromosomes. Although the corresponding chromosomes of the two genomes are potentially capable of pairing with one another, the Ph1 (Pairing homoeologous) gene in the long arm of chromosome 5B permits pairing only between homologous partners. As a result of this Ph1-exercised disciplinary control, durum wheat and its successor, bread wheat (Triticum aestivum L., 2n = 6x = 42; AABBDD) show diploid-like chromosome pairing and hence disomic inheritance. The Ph mutants in the form of deletions are available in bread wheat (ph1b) and durum wheat (ph1c). Thus, ph1b-haploids of bread wheat and ph1c-haploids of durum wheat show extensive homoeologous pairing that has been shown by us and several others. Here we study the effect of ph1b allele of bread wheat on chromosome pairing in durum haploids, whereas we studied earlier the effect of ph1c allele in durum haploids that we synthesized. In durum wheat, the ph1b-haploids show much higher (49.4% of complement) pairing than the ph1c-haploids (38.6% of complement). Mention of a trademark or proprietary product does not constitute a guarantee or warranty of the product by the USDA or imply approval to the exclusion of other products that also may be suitable.  相似文献   

2.
Tetraploid wheatgrass, Thinopyrum junceiforme(2n = 4x = 28; J1J1J2J2), a wild relative of wheat, is an excellent source of resistance to Fusarium head blight. Intergeneric F1 hybrids (2n = 4x = 28; ABJ1J2) between durum wheat (Triticum turgidum; 2n = 4x = 28; AABB) cultivars Lloyd or Langdon and Th. junceiforme were synthesized. Most of the pairing in F1 hybrids was between the J1- and J2-genome chromosomes. Some pairing occurred between wheat chromosomes and alien chromosomes, resulting in segmental exchange that was confirmed by fluorescent in situ hybridization (FISH). The F1hybrids were largely male-sterile and were backcrossed, as the female parent, to the respective durum cultivar. Backcrosses from Lloyd × Th. junceiforme hybrids yielded fertile partial amphiploids (2n = 6x = 42; AABBJ1J2) as a result of functioning of unreduced female gametes of the hybrid. Lloyd proved to be a more useful durum parent than Langdon in crosses with Th. junceiforme designed to transfer scab resistance genes. Pairing in the amphiploids was characterized by preferential pairing,which resulted in bivalent formation. However, some intergeneric pairing also occurred. Several fertile hybrid derivatives were produced by further backcrossing and selfing. The introduction of alien chromatin into the durum complement was confirmed by FISH. Hybrid derivative lines had significantly lower mean infection scores (p = 0.01), the best showing 10.93% infection, whereas the parental durum cultivars had 70.34% to 89.46% infection. Hybridization with wild relatives may offer an excellent means of introducing scab resistance into durum wheat. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
Prem P. Jauhar 《Euphytica》2003,133(1):81-94
Allopolyploidy, resulting from interspecific and intergeneric hybridization accompanied by sexual doubling of chromosomes, has played a major role in the evolution of crop plants that sustain humankind. The allopolyploid species, including durum wheat, bread wheat, and oat, have developed a genetic control of chromosome pairing that confers on them meiotic regularity (diploid-like chromosome pairing), and hence reproductive stability, and disomic inheritance. Being natural hybrids, they enjoy the benefits of hybridity as well as polyploidy that make them highly adaptable to diverse environments. Despite the complexities of sexual reproduction, it is widespread among plants and animals. Sexual polyploids are highly successful in nature. Sexual polyploidization is far more efficient than somatic chromosome doubling. Sexual polyploidization effected by functioning of unreduced (2n) gametes in the parental species or in their hybrids has been instrumental in producing our grain, fiber, and oilseed crops. Evidence is presented for the occurrence of sexual polyploidization in durum haploids. ThePh1-induced failure of homoeologous pairing is an important factor in the formation of first division restitution(FDR) nuclei and 2n gametes. The evolutionary and breeding significance of sexual polyploidization is discussed. It is emphasized that three factors, viz.,sexual reproduction, allopolyploidy, and genetic control of chromosome pairing,jointly constitute a perfect recipe for cataclysmic evolution in nature. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
With the aim of utilizing allotriploid (2n = 3x = 36) lily hybrids (Lilium) in introgression breeding, different types of crosses were made. First, using diploid Asiatic lilies (2n = 2x = 24), reciprocal crosses (3x − 2x and 2x − 3x) were made with allotriploid hybrids (AOA) obtained by backcrosses of F1 Oriental × Asiatic hybrids (OA) to Asiatic cultivars (A). Secondly, the AOA allotriploids were crossed with allotetraploid (OAOA, 2n = 4x = 48), in 3x − 4x combination. Finally, the AOA allotriploids where crossed to 2n gamete producer F1 OA hybrids (3x − 2x (2n)). Two types of triploids were used as parents in the different types of crosses, derived from: (a) mitotic polyploidization and (b) sexual polyploidization. Ploidy level of the progeny was determined by estimating the DNA values through flowcytometry as well as chromosome counting. The aneuploid progeny plants from 3x − 2x and reciprocal crosses had approximate diploid levels and in 3x − 4x crosses and 3x − 2x (2n) the progeny had approximate tetraploid levels. Balanced euploid gametes (x, 2x and 3x) were formed in the AOA genotypes. Recombinant chromosomes were found in the progenies of all crosses, except in the case of 2x − 3x crosses through genomic in situ hybridization (GISH) analyses. Recombinant chromosomes occurred in the F1 OA hybrid when the triploid AOA hybrid was derived through sexual polyploidization, but not through mitotic polyploidization with two exceptions. Those recombinant chromosomes were transmitted to the progenies in variable frequencies.  相似文献   

5.
Summary Sexual polyploidization via the action of 2n gametes (gametes with the sporophytic chromosome number) has been identified as the most important evolutionary mode of polyploidization among plant genera. This study was conducted to determine whether 2n gametes are present in the tetraploid level of the genus Avena (2n=4×=28) Twenty tetraploid Avena lines, representing four species and one interspecific hybrid, were screened for pollen grain size in order to differentiate between n and 2n pollen. Avena vaviloviana (Malz.) Mordv. line PI 412767 was observed to contain large pollen grains at a 1.0% frequency. Cytogenetic analyses of pollen mother cells of PI 412767 revealed cells with double the normal chromosome number (i.e., 56 chromosomes at metaphase I and anaphase I). The mode of chromosome doubling was found to be failure of cell wall formation during the last mitotic division that preceded meiosis. The resulting binucleate cells underwent normal meiotic divisions and formed pollen grains with 28 chromosomes. Based on the formation and function of 2n gametes, three models involving diploid and tetraploid oat lines are proposed to describe possible evolutionary pathways for hexaploid oats. If stable synthetic hexaploid oat lines could be developed by utilizing 2n gametes from diploid and tetraploid oat species through bilateral sexual polyploidization, the resulting hexaploids could be used in breeding programs for transferring genes from diploids and tetraploids to cultivated hexaploids.  相似文献   

6.
It is believed that unreduced gametes with somatic chromosome numbers play a predominant role in natural polyploidization. Allohexaploid bread wheat originated from spontaneous hybridization of Triticum turgidum L. with Aegilops tauschii Coss. Unreduced gametes originating via meiotic restitution, including first-division restitution (FDR) and single-division meiosis (SDM), are well documented in triploid F1 hybrids of T. turgidum with diploid Ae. tauschii (genomic constitution ABD, usually with 21 univalents in meiotic metaphase I). In this study, two T. turgidum lines known to carry genes for meiotic restitution were crossed to tetraploid Ae. tauschii. The resulting F1 hybrids (genomes ABDD), had seven pairs of homologous chromosomes and regularly formed 14 univalents and seven bivalents at metaphase I. Neither FDR nor SDM were observed. The distribution of chromosome numbers among progeny obtained by self pollination and a backcross to T. turgidum showed the absence of unreduced gametes. These results suggest that high homologous pairing interfered with meiotic restitution and the formation of unreduced gametes. This may be related to asynchronous movement during meiosis between paired and unpaired chromosomes or to uneven distribution of chromosomes in anaphases, resulting in nonviable gametes.  相似文献   

7.
Summary The meiotic behaviour of a hybrid between Triticum aestivum and the amphiploid Hordeum chilense x T. turgidum conv. durum, was studied using a C-banding staining method. This hybrid has the genome formula of AA BB D Hch with 2n=6x=42 chromosomes. The durum wheat chromosomes (genomes A and B) were easily recognized, whereas the D and Hch chromosomes were recognized as a whole. Meiotic pairing was homologous, as expected (14 bivalents from A and B genomes +14 univalents from D and Hch genomes). However, some pollen mother cells at metaphase-I presented pseudobivalents that could have been caused by either homoeologous or autosyndetic pairing amongst D and Hch chromosomes.  相似文献   

8.
The F1 hybrids of seven diploid Alstroemeria species (2n=2x=16) were investigated for the production of numerically unreduced (2n) gametes and their mode of origin. Based on a survey of 17 interspecific hybrid combinations,consisting of 119 genotypes, it was found that the F1 hybrids of Chilean-Brazilian species mostly produced first division restitution (FDR) 2n gametes. These F1 hybrids were self-pollinated in order to obtain F2 seeds, which was an indication that the F1 plants also produced 2neggs simultaneously. All the F2 progeny plants were typical allotetraploids, most of which formed 16 bivalents and a small proportion formed multivalents during metaphase I stages of meiosis. Through genomic in situ hybridisation (GISH) it was proved that multivalent formation in F2plants, derived from A. inodora ×A. pelegrina hybrid, was due to homoeologous recombination but not from reciprocal translocations. In order to test the segregation pattern of the recombinant chromosomes, an F3 population from one genotype, P6C49-6, was investigated. The recombinant chromosomes assorted independently from each other supporting the hypothesis that the segregation of chromosomes in ring quadrivalents did not behave like those in translocation heterozygotes. It was concluded that in allopolyploids of Alstroemeria,bilateral sexual polyploidisation could accomplish genetic recombination by both homoeologous crossing-over as well as through the assortment of chromosomes. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
The wheat progenitors and other wild relatives continue to be important sources of genes for agronomically desirable traits, which can be transferred into durum wheat (Triticum turgidum; 2n = 4x = 28; AABB genomes) cultivars via hybridization. Chromosome pairing in durum × alien species hybrids provides an understanding of genomic relationships, which is useful in planning alien gene introgression strategies. Two durum cultivars, ‘Lloyd’ and ‘Langdon’, were crossed with diploid wheatgrass, Thinopyrum bessarabicum (2n = 2x = 14; JJ), to synthesize F1 hybrids (2n = 3x = 21; ABJ) with Ph1. ‘Langdon’ disomic substitution 5D(5B) was used as a female parent to produce F1 hybrids without Ph1, which resulted in elevation of pairing between durum and grass chromosomes – an important feature from the breeding standpoint. The F1 hybrids were backcrossed to respective parental cultivars and BC1 progenies were raised. ‘Langdon’ 5D(5B) substitution × Th. bessarabicum F1 hybrids were crossed with normal ‘Langdon’ to obtain BC1 progeny. Chromosome pairing relationships were studied in F1 hybrids and BC1 progenies using both conventional staining and fluorescent genomic in situ hybridization (fl‐GISH) techniques. Multicolour fl‐GISH was standardized for characterizing the nature and specificity of chromosome pairing: A–B, A–J and B–J pairing. The A–J and B–J pairing will facilitate gene introgression in durum wheat. Multicolour fl‐GISH will help in characterizing alien chromosome segments captured in the durum complement and in their location in the A and/or B genome, thereby accelerating chromosome engineering research.  相似文献   

10.
Summary An aneuploid hybrid (2n=23) of Fragaria moschata (2n=42) and Potentilla fruticosa (2n=14) was backcrossed with pollen of both parents, separately and combined in a pollen mixture. Seven vigorous progeny were obtained. The origin of the exeptional chromosome numbers, 2n=44, 49, 63, 63, 65, 67, 67, is discussed, and it is shown that each of the numbers could be produced by the fertilisation of unreduced and double unreduced gametes of the hybrid by normally reduced gametes of one of the parental species.  相似文献   

11.
M. Dujardin  W. W. Hanna 《Euphytica》1988,38(3):229-235
Summary An interspecific hybridization program designed to transfer gene(s) controlling apomixis from Pennisetum squamulatum Fresen. (2n=6x=54) to induced tetraploid (2n=4x=28) cultivated pearl millet, Pennisetum americanum (L.) Leeke resulted in four offtype plants, two with 27 chromosomes and two with 28 chromosomes. These plants were found among 217 spaced plants established from open-pollinated seed of an apomictic 21-chromosome polyhaploid (2n=21) plant derived from an apomictic interspecific hybrid (2n=41) between tetraploid pearl millet and Pennisetum squamulatum. It appeared that a 21- (or 20-) chromosome unreduced egg from the apomictic polyhaploid united with a 7-chromosome pearl millet (2n=2x=14) gamete to produce a 28- (or 27-) chromosome offspring. Meiotic chromosome behavior was irregular averaging from 3.60 to 4.05 bivalents per microsporocyte in the 27- and 28-chromosome hybrids. The 27- or 28-chromosome hybrids, like the 21-chromosome female parent, shed no pollen, but set from 1.8 to 28 seed per panicle when allowed to outcross with pearl millet. Progeny of the 28-chromosome hybrids were uniform and identical to their respective female parents, indicating that apomixis had been effectively transferred through the egg. In addition, a 56-chromosome plant resulting from chromosome doubling of a 28-chromosome hybrid was identified. Pollen was 68 per cent stainable and the plant averaged 2.3 selfed seeds per panicle. Chromosomes of the 56-chromosome plant paired as bivalents (x=10.67) or associated in multivalents. Three to nine chromosomes remained unpaired at metaphase I. Multiple four-nucleate embryo sacs indicated the 56-chromosome hybrid was an obligate apomict. The production of 27-, 28-, and 56-chromosome hybrid derivatives were the results of interspecific hybridization, haploidization, fertilization of unreduced apomictic eggs, and spontaneous chromosome doubling. These mechanisms resulted in new unique genome combinations between x=7 and x=9 Pennisetum species.  相似文献   

12.
Summary Atrazine resistant Brassica napus × B. oleracea F1 hybrids were backcrossed to both parental species. The backcrosses to B. napus produced seeds in both directions but results were much better when the F1 hybrid was the pollen parent. Backcrosses to B. oleracea failed completely but BC1s were rescued by embryo culture both from a tetraploid hybrid (2n = 4x = 37; A1C1CC) and sesquidiploid hybrids (2n = 3x = 8; A1C1C). Progeny of crosses between the tetraploid hybrid and B. oleracea had between 25 and 28 chromosomes. That of crosses between the sesquidiploid hybrid and B. oleracea had between 21 and 27. A few plants that had chromosome counts outside the expected range may have originated from either diploid parthenogenesis, unreduced gametes or spontaneous chromosome doubling during in vitro culture. Pollen stainability of the BC1s ranged from 0% to 91.5%. All the BC1s to B. oleracea were resistant to atrazine.  相似文献   

13.
Summary A simple method is proposed to distinguish hexaploid (Triticum aestivum L.) from tetraploid (Triticum turgidum L., durum wheat) cultivated wheats on the basis of peroxidase isozymes coded by genome D. It can also be used as a first step to detect possible contamination by tetraploid genotype mixtures. The peroxidase patterns of endosperm and of embryo plus scutellum found among 349 entries of a durum wheat world basis collection are shown.  相似文献   

14.
Colchicine induced polyploids have not directly contributed for crop improvement in the past. On the other hand, the so-called natural polyploids, derived from the functioning of numerically unreduced(2n) gametes have been shown to be more relevant for crop improvement in many cases. Different types of cytological abnormalities during meiosis can give rise to 2n gametes and the genetic composition of these gametes is variable. Depending on the type meiotic abnormalities, various types of 2ngametes, such as first division restitution(FDR), second division restitution (SDR),indeterminate meiotic restitution (IMR) and post meiotic restitution (PMR) gametes,among others, have been described in recent years. For the improvement of autopolyploids such as potato, alfalfa,Vaccinium spp., and some of the fodder grasses, FDR gametes have been proved to be highly useful. However, the use of 2n gametes for the improvement of allopolyploid crops has received much less attention so far. Some of the investigations on allopolyploids, derived from Festuca-Lolium, Alstroemeria and Lilium species hybrids, have revealed that 2ngametes can be most useful for the introgression of alien genes and chromosomes into cultivars. An important feature of using sexual polyploidization in the case of allopolyploids is that introgression can be achieved through recombination due to genetic crossing-over between alien chromosomes as well as addition of alien chromosomes, which is extremely difficult or impossible to achieve in the case of colchicine induced allopolyploids. Because of the recent developments in the field of plant molecular biology, methods have become available for the analysis of 2ngametes and sexual polyploid progenies more accurately and to develop systematic breeding approaches. The methods include DNA in situ hybridization (GISH and FISH)and molecular mapping (AFLP, RFLP, RAPDs).In addition to providing basic information on the genetic and genome composition of the polyploid progenies, these methods can be potentially useful for a more efficient creation of desirable breeding material and cultivars. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
Haploidisation by in situ parthenogenesis of 4x R. hybrida resulted in the production of some dihaploid roses (2n=2x=14) able to produce viable pollen. A cytological study of microsporogenesis revealed that, although the first meiotic reductional division occurred normally, the second (equational) division was characterised by frequent abnormalities which concerned spindle formation and led to unreduced gametes of First Division Restitution (FDR) type. Analysis of the hybrid progeny of a parthenogenetically derived male fertile dihaploid plant revealed a selective advantage of the 2n-pollen, especially in the case of an hybridization with a tetraploid female parent. Moreover, crosses carried out among dihaploid partners always resulted in hybrids with ploidy levels≥ 3x. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
Summary Dihaploids were produced from tetraploids resistant to potato cyst nematode (Globodera pallida (Stone)). High levels of resistance were found in the dihaploids and three were used to produce tetraploid progenies by crossing them with susceptible tetraploid cultivars. One dihaploid, PDH505, produced more highly resistant offspring than the other two, PDHs 417 and 418. The latter gave progenies whose levels of resistance were similar to those obtained from susceptible dihaploids crossed with resistant tetraploids.The differences between the progenies of the resistant dihaploids were probably due to different modes of unreduced gamete formation (PDH505 producing gametes by first division restitution (FDR) and PDHs 417 and 418 by second division restitution (SDR)) although cytological studies would be necessary to confirm this. The methods by which dihaploids could be utilised in a tetraploid potato breeding programme are discussed in relation to the mode of unreduced gamete formation.  相似文献   

17.
The widespread occurrence of 2ngametes (i.e. gametes with the somatic chromosome number) in the Medicago sativa-coerulea-falcata complex supports the concept that gene flow from diploid to tetraploid species occurs continuously in nature and plays a key role in alfalfa evolution. Breeders realized early that gene transfer between ploidy levels via 2n pollen and 2n eggs would have had potential use in cultivated alfalfa improvement. Cytological investigations provided insights into the types of meiotic abnormalities responsible for the production of 2n gametes. Alterations were defined as genetically equivalent to first (FDR) or second division restitution(SDR) mechanisms. For breeding purposes,data have proven that 2n gametes of the FDR type are more advantageous than those obtained by SDR for transferring parental heterozygosity and retaining epistatic interactions. The use of diploid meiotic mutants that produce 2ngametes is now recognized as one of the most effective methods available for exploiting heterosis and introgressing wild germplasm traits into cultivated tetraploid alfalfa via unilateral (USP) and bilateral sexual polyploidization (BSP) schemes. Both2n egg and 2n pollen producers could be used for direct gene transfer from wild diploid relatives into cultivated alfalfa by means of 2x-4x and4x-2x crosses. Although data have shown that forage yield improvement can be achieved when plants are sexually tetraploidized, problems related to reduced plant fertility and seed production remain largely unexplained. Apomixis has the potential of cloning plants through seed and thus provides a unique opportunity for developing superior tetraploid cultivars with permanently fixed heterosis and epistatic effects. A main goal in alfalfa breeding could be the introduction of functional apomixis (i.e. Apomeiosis and parthenogenesis) in cultivated alfalfa stocks. In the future, the efficiency of alfalfa breeding programs based on the use of reproductive mutants could be improved by direct selection at the genotype level using RFLPs and PCR-based markers. Suitable DNA markers and detailed linkage maps of alfalfa mutants should help to discover apomictic mutants and address basic genetic issues such as the extent of genomicre combination in polyploid hybrids and the effect of sexual polyploidization on heterosis. Molecular markers have recently been used in alfalfa for studying the inheritance of 2n gamete formation and identifying polymorphisms associated to genes involved in meiotic abnormalities. Molecular tagging of 2n egg and 2n pollen formation not only should explain the genetic control and regulation of these traits, but may also be an essential step towards marker-assisted selection of 2n gamete producers and implementation of USP and BSP breeding schemes. Future perspectives include strategies for the map-based cloning of genomic DNA markers,and screening of EST mini-libraries related to flowers at different developmental stages from meiotic mutants and wild-type scan lead to the identification of mRNAs and thus of candidate genes that control 2n gamete formation in alfalfa. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
Tritordeum (X Tritordeum Ascherson et Graebner) is a synthetic amphiploid belonging to the Triticeae tribe, which resulted from crosses between Hordeum chilense and wheat. It presents useful agronomic traits that could be transferred to wheat, widening its genetic basis. In situ hybridisation with total genomic DNA from H. chilense and cloned, repetitive DNA sequences (pTa71 and pAs1) probes were used to discriminate the parental origin of all chromosomes, to analyse the chromosome pairing and to identify the chromosomes in pollen mother cells (PMCs) at metaphase I of the tritordeum line HT251 (HchHchDD, 2n = 4x = 28). The H. chilense total genomic DNA and the ribosomal sequence pTa71 probes, allowed the unequivocal discrimination of the 14 chromosomes of Hch genome-origin and the 14 chromosomes of D genome-origin. Chromosome pairing analysis revealed meiotic irregularities such as reduced percentage of PMCs with complete homologous pairing, high frequency of univalents, most of H. chilense-origin and a reduced frequency of intragenomic multivalents from both genomes. The H. chilense genome revealed high meiotic instability. After individual chromosome identification at metaphase I with the pAs1 probe, we found the occurrence of pairing between chromosomes of different homoeology groups. The possible interest of the tetraploid tritordeum in the improvement of other Triticeae species is also discussed.  相似文献   

19.
B. S. Ahloowalia 《Euphytica》1982,31(1):103-111
Summary Aneuploid plants of perennial ryegrass (Lolium perenne L.) with 2n=15 to 30 chromosomes were obtained by crossing a near-triploid (2n=3x+1=22) with a diploid or on open-pollination with diploids and tetraploids. Aneuploids occurred with a frequency of 83% in near triploid × diploid progeny and 92% on open-pollination with diploid and tetraploid plants. Aneuploid plants with 15 to 18 chromosomes resembled diploids in morphology and those with 19 to 30 chromosomes were akin to tetraploids. Meiotic studies suggested that most aneuploid plants resulted from transmission of aneuploid egg cells (n=8 to 23). Aneuploid plants with 2n=27 to 30 chromosomes in the progeny of 22×14 cross originated from unreduced egg cells. Plants with 19 to 21 chromosomes were recovered only by immature seed culture. Aneuploid plants with 26 to 30 chromosomes and triploids (2n=21) had higher pollen fertility and bigger seeds than plants with 15 to 22 chromosomes.  相似文献   

20.
The New Zealand hop breeding programme is based solely on the development of seedless triploid cultivars. This relies on the use of tetraploid parents. While a sexually derived tetraploid parents have been used successfully, sexually derived tetraploids offer a useful alternative. They may have a higher level of heterozygosity and are easier to obtain. Methods for the identification of tetraploids from seedling populations by flow cytometry are described. Two studies were conducted; one on field-grown plants, the other on plants grown in a glasshouse. Approximately 15%of seedlings in the two studies were identified as tetraploids (2n = 4x = 40). Between 70 and 80% were identified as either diploid (2n =2x = 20) or triploid (2n = 3x = 30). Remaining plants were haploid, pentaploid or probably aneuploid. Within triploid and tetraploid populations from 40to 50% of seedlings were female, 30 to40% were monoecious, with the remainder being males and non-flowering plants. Sexually derived tetraploid parents have been used successfully in the breeding programme, from which several promising triploid selections have subsequently been made. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号