首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
探究改性生物炭对重金属的吸附性能,为不同改性生物炭对铜、铅离子的有效去除提供理论依据。以玉米秸秆为原料,经500℃限氧热解制备生物炭(BC),再分别经KOH和聚乙烯亚胺(PEI)改性得到碱改性生物炭(KBC)和PEI改性生物炭(PBC),探讨3种生物炭对Cu~(2+)和Pb~(2+)的单一吸附效果及对复合体系中Cu~(2+)和Pb~(2+)的竞争吸附。3种生物炭对Cu~(2+)、Pb~(2+)的吸附动力学均符合准二级动力学方程,改性后生物炭的吸附速率均高于BC;吸附等温线均符合Langmuir模型,最大吸附量表现为:PBCKBCBC。3种生物炭的饱和吸附量和吸附容量遵循Pb~(2+)Cu~(2+);通过竞争吸附试验发现,Pb~(2+)在3种生物炭上的竞争吸附能力均高于Cu~(2+)。结果表明:KBC和PBC对Cu~(2+)、Pb~(2+)的吸附能力明显优于BC,有成为新型重金属吸附剂的潜力。  相似文献   

2.
利用合成沸石吸附混合重金属Ni~(2+)、Pb~(2+)、Cu~(2+),考察吸附剂量、初始pH、反应时间对其竞争吸附效果的影响,探讨沸石吸附等温线和吸附动力学。结果表明,吸附剂量、初始pH、反应时间对沸石吸附Ni~(2+)、Pb~(2+)、Cu~(2+)的吸附效果影响较大。随着沸石投加量增大,其对Ni~(2+)、Pb~(2+)、Cu~(2+)的吸附去除率逐渐上升,而单位质量吸附剂对3种重金属饱和吸附量呈下降趋势。沸石对3种重金属离子的竞争吸附去除顺序为PbCuNi。初始pH为强酸性环境不利于Ni~(2+)、Pb~(2+)、Cu~(2+)吸附,其吸附去除率均低于20%;不同初始pH,沸石对Pb~(2+)吸附效果最好。随着反应时间延长,沸石对Ni~(2+)、Pb~(2+)、Cu~(2+)吸附去除率逐步提高;不同反应时间下,沸石对3种重金属的吸附去除顺序不变。沸石吸附Ni~(2+)与Cu~(2+)的过程符合Freundlich吸附等温式,对Pb~(2+)的吸附过程符合Langmuir吸附等温式。准二级吸附动力学方程能够描述沸石对Ni~(2+)、Pb~(2+)、Cu~(2+)的吸附行为。  相似文献   

3.
玉米秸秆生物炭对溶液体系中不同重金属离子的吸附特性   总被引:1,自引:0,他引:1  
为探究在废水处理中针对不同重金属吸附特征选择合适的生物炭修复方案,以玉米秸秆为原料,在300和500℃下热裂解得到2种生物炭,通过试验模拟研究生物炭在单组分溶液体系和多种重金属离子的混合溶液体系中,对不同重金属离子的吸附能力,并用等温吸附模型对试验结果进行拟合。研究结果表明:1)对于同种重金属而言,500℃下得到的生物炭的吸附能力更强;2)对于同种吸附材料,单组分与多种重金属离子的混合溶液中对重金属离子饱和吸附量的顺序均为:Ni ~(2+)Zn~(2+)Cd~(2+)Pb~(2+)Cu~(2+);3)但在多种重金属离子的混合溶液体系中金属离子浓度较高条件下,离子之间的相互作用影响生物炭吸附能力;同时Cu~(2+)和Pb~(2+)2种离子具有较高的吸附量,竞争力更强。  相似文献   

4.
为探讨银中杨、玉簪落叶所制备生物质炭对水体Pb~(2+)、Cd~(2+)和Cr~(6+)吸附规律的差异及影响因素,采用限氧裂解法将银中杨及玉簪落叶制成生物质炭,并以此为吸附载体研究其在不同初始离子质量浓度、pH值、Na+浓度及接触时间等因素影响下对Pb~(2+)、Cd~(2+)和Cr~(6+)的吸附。结果表明:随着初始Pb~(2+)、Cd~(2+)和Cr~(6+)质量浓度的增加(0~800 mg·L~(-1)),落叶生物质炭对相应重金属离子的吸附量也增加。将初始质量浓度设置在0~200 mg·L~(-1),生物质炭对3种金属离子的吸附量由大到小表现为Pb~(2+)、Cd~(2+)、Cr~(6+),然而,将初始离子质量浓度提升至300~800 mg·L~(-1),吸附量由大到小表现为Pb~(2+)、Cr~(6+)、Cd~(2+);溶液pH值由2增至8,可使Pb~(2+)和Cd~(2+)在生物质炭表面的吸附率得到迅速提升,然而,生物质炭对Cr~(6+)的吸附率在整个pH值变化范围则呈渐趋降低的趋势;随着Na+浓度增加(0~0.6 mol·L~(-1)),落叶生物质炭对3种金属离子所表现的吸附规律各不相同,其中,对Pb~(2+)的吸附量先下降而后渐趋升高,对Cd~(2+)的吸附量逐渐下降,而对Cr~(6+)的吸附量则表现为先增加而后下降。Na+离子浓度由0 mol·L~(-1)提升至0.6 mol·L~(-1)可使生物质炭对Pb~(2+)和Cd~(2+)的吸附量分别降低16.8%和97.1%,相反,对Cr~(6+)吸附量却有所促进,使其增加55.6%;生物质炭对初始质量浓度为400 mg·L~(-1)的Pb~(2+)、Cd~(2+)和Cr~(6+)吸附的数量随接触时间延长(0~1 440min)而逐渐增加,相同条件下由大到小表现为Pb~(2+)、Cr~(6+)、Cd~(2+);生物质炭对Pb~(2+)、Cd~(2+)的吸附主要以电性吸附为主,而专性吸附则为生物质炭吸附Cr~(6+)的主要机制。  相似文献   

5.
以废弃的虎杖药渣为原料,经乙醇、氢氧化钠处理,得到皂化虎杖药渣生物吸附剂,将其用于对重金属铜离子(Cu~(2+))的吸附研究。采用扫描电镜对皂化虎杖药渣进行表征,并考察吸附剂投加量、溶液p H值、初始Cu~(2+)浓度、吸附温度与时间对吸附性能的影响。此外,研究吸附动力学、等温吸附模型以及吸附剂的循环再生性能。结果表明,虎杖药渣经过皂化处理后表面变得疏松多孔,在吸附剂投加量5.0 g/L、溶液p H值5.5、初始Cu~(2+)浓度50 mg/L、吸附温度30℃、吸附时间120 min的条件下,皂化虎杖药渣对Cu~(2+)的吸附率达87.2%。吸附剂对Cu~(2+)的吸附符合准二级动力学模型,等温吸附符合Langmuir模型,根据Langmuir模型计算可知,30℃时饱和吸附量为34.482 mg/g。解吸再生试验表明,吸附剂可以再生重复使用4次。  相似文献   

6.
以椰衣和椰壳作为原材料,在300、500和700℃条件下热解制备生物质炭,表征其物理化学性质;同时,研究所制备的生物质炭对溶液中Pb~(2+)的吸附特征与机制.结果表明:随着热解温度升高,所制备的生物质炭的含氧官能团减少,灰分、pH值、阳离子交换量、比表面积和碱性官能团的含量随之升高.热解温度升高可促进生物质炭对Pb~(2+)的吸附;Langmuir模型可较好地描述所制备的生物质炭对Pb~(2+)的等温吸附;在供试的6种生物质炭中,吸附量最高的是在700℃条件下制备的椰衣生物质炭,且优于大多数已报道的用其他材料制备的生物质炭.拟合发现,所制备的生物质炭的阳离子交换量和灰分含量是影响其吸附Pb~(2+)的重要因子,在初始Pb~(2+)质量浓度为200mg/L条件下,椰衣生物质炭对Pb~(2+)的稳定吸附量为9.83~13.91mg/g,椰壳生物质炭为9.68~25.16mg/g.这表明椰壳生物质炭吸附态Pb~(2+)比椰衣生物质炭吸附态Pb~(2+)更稳定.  相似文献   

7.
为了探讨和研究治理环境中重金属污染的有效途径,以香菇菌糠为吸附剂吸附混合重金属(Cr~(3+)、Cd~(2+)和Pb~(2+))溶液中的重金属离子,通过单因素试验研究吸附时间、p H值、投料量、重金属溶液初始浓度和菌糠粒径对吸附效果的影响。结果显示,对于混合的重金属离子溶液,在固定试验温度25℃和振摇速率200 r/min条件下,综合最佳吸附条件为:吸附时间60 min,p H4.0,投料量5 g/L,菌糠粒径小于0.5 mm。混合重金属溶液中,重金属离子之间存在竞争吸附。菌糠对3种重金属离子的吸附作用符合Lagergern准二级动力学模型;等温吸附模型中Cd~(2+)符合Langmuir吸附模型,Cr~(3+)和Pb~(2+)符合Freundlich吸附模型。在适当吸附条件下,香菇菌糠对混合重金属溶液中Cr~(3+)、Cd~(2+)和Pb~(2+)都有较强的去除能力。  相似文献   

8.
针对愈发严重的水体重金属污染,通过灌溉重金属流入农田严重影响农产品质量安全的问题,以南方区域农业废弃物水稻秸秆(RSC)、谷壳(RHC)和中药渣(HRC)为原料制备生物炭,研究不同原料、不同热解温度(300,500,700℃)、不同热解时间(2,3,4 h)条件下制备生物炭的理化性质及其对重金属Cu~(2+)和Cd~(2+)的吸附效果。结果表明,热解温度对生物炭的理化性质及其对重金属Cu~(2+)和Cd~(2+)的吸附效果存在显著影响,而热解时间对其无显著影响。生物炭的灰分含量、pH和P含量均随着热解温度的升高而显著增加,产率和N含量显著降低;生物炭对重金属Cu~(2+)和Cd~(2+)的吸附量和去除率随着热解温度的升高显著提高;生物炭对重金属Cu~(2+)和Cd~(2+)的吸附量与其本身的灰分含量、pH以及P含量存在显著的正相关性。3种原料制备的生物炭对重金属Cu~(2+)和Cd~(2+)的吸附效果由大到小总体表现为:RSC、RHC和HRC,且对Cd~(2+)的吸附效果大于Cu~(2+)。综合来看,热解温度为700℃时制备的RSC对Cu~(2+)和Cd~(2+)的吸附效果好,最大去除率分别达99.88%和99.14%。  相似文献   

9.
木薯渣基生物质炭对水中Cd2+ Cu2+的吸附行为研究   总被引:3,自引:1,他引:2  
以木薯渣为原料,制备不同温度(350、450、550℃)的生物质炭(BC350、BC450、BC550),对其性质进行表征,探究吸附时间、溶液初始浓度、温度、p H对生物质炭吸附Cd~(2+)、Cu~(2+)作用的影响。结果表明:生物质炭对Cd~(2+)、Cu~(2+)的吸附平衡时间随着生物质炭热解温度的升高而缩短,伪二级动力学模型能较好地描述吸附动力学特性(R20.983)。吸附等温线符合Freundlich模型和Langmuir模型,但Freundlich模型拟合的线性更好,R2分别在0.951~0.998和0.992~0.998之间,说明生物质炭对Cd~(2+)、Cu~(2+)的吸附为多层吸附。lg KF值表示吸附能力,随生物质炭热解温度的升高而增大,说明BC550吸附效果最好,对Cd~(2+)、Cu~(2+)的最大吸附量分别为15.55和5.44 mg·g-1。生物质炭对Cd~(2+)、Cu~(2+)的吸附具有自发的特性,吸附量随p H的增加先增加后下降,最适p H分别为5.5和6.5。  相似文献   

10.
通过海泡石(SEP)和酸化海泡石(ASEP)表面酸碱反应与吸附平衡实验,研究了天然和酸化海泡石表面化学特性及其对重金属的吸附机理.结果表明,海泡石经过酸化处理后碱性下降,表面部分阳离子被质子取代,表面酸度增加,形成更多的表面吸附位,有利于对重金属离子的吸附作用.随着溶液pH由酸性向碱性的变化,重金属离子在海泡石表面的吸附机理表现为同品置换与表面配位模式并存;当溶液pH呈弱碱性时,Pb和Cu均发生表面沉淀,其中Pb表现最为明显.采用等温吸附方法,研究了海泡石和酸化海泡石对Pb~(2+)、Cd~(2+)和Cu~(2+)离子的吸附特性,结果表明,海泡石和酸化海泡石对Pb~(2+)、Cd~(2+)和Cu~(2+)离子均有较好的吸附作用.海泡石对Pb~(2+)、Cd~(2+)和Cu~(2+)离子的饱和吸附量分别为32.06、11.48和22.10 mg·g~(-1),酸化海泡石对Pb~(2+)、Cd~(2+)和Cu~(2+)离子的饱和吸附量分别为35.28、13.62和24.36 mg·g~(-1).以物质的量计算,天然海泡石和酸化海泡石对三种重金属离子的吸附能力顺序为Cu>Pb>Cd.Cd~(2+)和Cu~(2+)在海泡石和酸化海泡石表面的吸附等温线符合Langmuir方程,Pb~(2+)离子的吸附由于随溶液pH的升高而产生表面沉淀,导致其吸附等温线偏离Langmuir方程.该项研究可为海泡石在土壤重金属污染修复中的应用提供一定的理论基础.  相似文献   

11.
不同热解温度生物炭对Pb(Ⅱ)的吸附研究   总被引:3,自引:0,他引:3  
以稻壳(RH)和棉花秸秆(CS)为原料,在300、400、500、600、700℃下制备了生物炭,研究不同添加量、不同初始pH、吸附时间对生物炭吸附水溶液中Pb~(2+)的影响。结果表明:生物炭添加量越大对Pb~(2+)的去除效果越好;热解温度越高,达到同样去除效果所需生物炭的量越少;吸附效果与溶液的pH呈正相关,pH在4~7的范围内,高温生物炭去除Pb~(2+)的效果更好。生物炭对Pb~(2+)的吸附更符合拟二级动力学模型(R~2≥0.992),热解温度越高,吸附速率越快,同时中温(500℃)和高温(600、700℃)生物炭对Pb~(2+)的平衡吸附量不低于49.0 mg·g~(-1)。制备稻壳和棉花秸秆生物炭较合适的温度是500℃。  相似文献   

12.
狐尾藻基生物炭对水中草甘膦和Cu2+的吸附性能研究   总被引:1,自引:1,他引:0  
为了消除生态修复过程中除草剂和重金属对沉水植物生长胁迫因素影响,选择草甘膦和Cu~(2+)为目标物,以收割的狐尾藻废弃物为原料,在450℃下炭化2 h制成狐尾藻基生物炭(HW450),研究不同pH和生物炭投加量等实验条件下,HW450对水中草甘膦和Cu~(2+)等单一污染物吸附效果的影响。探究复合污染水体中草甘膦和Cu~(2+)相互影响规律,并用响应面法优化HW450对草甘膦和Cu~(2+)复合污染最优吸附条件。研究结果表明:Cu~(2+)和草甘膦的去除率增速随时间由快到慢,48 h后基本达到平衡;在生物炭吸附饱和范围内,去除率随溶液浓度增加而增加;在适合pH范围内,草甘膦和Cu~(2+)的去除率随pH先增后减,Cu~(2+)比草甘膦变化显著;生物炭投加量增加,能提高草甘膦和Cu~(2+)的去除率。在复合污染中,Cu~(2+)能促进HW450吸附草甘膦;高浓度草甘膦能抑制低浓度Cu~(2+)的吸附,高浓度Cu~(2+)去除率受草甘膦浓度的影响较小。响应面表明,3个因素对去除率的影响排序为:HW450投加量Cu~(2+)浓度pH。在pH为5.21,HW450投加量为0.06 g,Cu~(2+)浓度为27.32 mg/L的条件下,能得到复合污染最优吸附效果:草甘膦去除率为97.44%,Cu~(2+)为100%。  相似文献   

13.
有机肥对溶液中铅铜的吸附   总被引:2,自引:0,他引:2  
为研究不同原材料生产的有机肥对溶液中Pb~(2+)、Cu~(2+)的吸附性能差异及其机理,采用Langmuir和Freundlich模型拟合分析上述原材料生产的有机肥对溶液中Pb~(2+)、Cu~(2+)的等温吸附曲线,使用元素分析仪、FTIR、灰分、p H值和CEC等研究了不同原材料生产的有机肥组成与理化性质。结果表明,Langmuir模型能够更好地描述6种不同原材料制备的有机肥对Pb~(2+)、Cu~(2+)的等温吸附,6种有机肥中对Pb~(2+)和Cu~(2+)吸附强度最大的品种是羊粪和豆粕,平衡参数分别达到0.006 31、0.028 40 L/mg。同时,发现有机肥O/C值的高低决定了有机肥对Pb~(2+)吸附能力的大小,有机肥对Cu~(2+)的吸附能力除有机肥H/C值决定外,强酸性以及高腐殖酸含量也是提高有机肥对Cu~(2+)吸附量的重要因素。  相似文献   

14.
不同改性生物炭对溶液中Cd的吸附研究   总被引:2,自引:0,他引:2  
为研究生物炭对溶液中重金属Cd的吸附去除效果,进一步提升生物炭对Cd的吸附性能,以玉米芯、玉米秸秆、木屑为原料,分别在400℃、500℃、600℃和700℃密闭缺氧条件下热解制备生物炭,通过微波改性、Na OH改性方法对生物炭进行改性处理,研究初始浓度、溶液p H、吸附时间等因素对生物炭吸附Cd效果的影响,筛选出适合用于处理镉污染水体的生物炭品种。结果表明:当Cd浓度为100 mg/L时,玉米秸秆-600℃-Na生物炭(B-6-Na)对Cd的吸附可用Langmuir方程拟合,吸附量可达78.7 mg/g,去除率为78.7%,基本达到吸附平衡的时间为60~120 min;当溶液p H达到7时,三种生物炭对Cd吸附率均超过80%以上;600℃条件下经Na OH溶液改性制备的玉米秸秆生物炭能够更好地吸附溶液中的Cd。该研究结果为制备对污染物具有高效、深度净化功能的生物炭方法提供参考,在深入研究生物炭在重金属Cd污染修复的可行性方面提供理论支撑。  相似文献   

15.
采用批量平衡吸附法研究了重金属Cu~(2+)对四环素类抗生素土霉素(OTC)在东北地区典型黑土上吸附热力学的影响,以及Cu~(2+)共存时溶液初始p H值和OTC添加顺序对OTC吸附的影响。结果表明,Freundlich吸附模型对不同浓度Cu~(2+)影响下OTC在黑土上的吸附热力学过程能够进行较好地描述(R≥0.990,P0.01),共存Cu~(2+)能够促进黑土对OTC的吸附,且促进作用随着Cu~(2+)浓度的增加而增大,OTC吸附量大小顺序符合100 mg/L Cu~(2+)+OTC50 mg/L Cu~(2+)+OTCOTC。p H值可以通过改变OTC的电荷状态显著影响OTC在黑土上的吸附,OTC的吸附量随着p H值的升高而降低,当p H值≤6.90时OTC的吸附量下降趋势不显著,当p H值6.90时其吸附量显著下降,尤其当p H值9.56时,OTC的吸附量急剧下降。共存Cu~(2+)并未改变OTC在不同p H值条件下的吸附规律,但促进了OTC在黑土上的吸附,且促进作用与Cu~(2+)浓度成正比。Freundlich吸附模型对Cu~(2+)共存时OTC添加顺序对黑土吸附OTC的热力学过程也能进行较好地描述(R≥0.936,P0.01),黑土对OTC的吸附能力随着OTC添加顺序的不同而改变,OTC吸附量大小顺序符合TOTC+Cu(二者同时加入)TOTC(先加入OTC)TCu(先加入Cu~(2+))。  相似文献   

16.
[目的]探讨热解温度对制备不同类型秸秆生物炭及其吸附去除Cu~(2+)的影响。[方法]以玉米、水稻、芝麻3类秸秆为原料于400~700℃热解炭化制备生物炭,探讨热解温度对秸秆生物炭的结构官能团、比表面积、孔径分布等结构及理化性质的影响,并评价生物炭对Cu~(2+)的吸附性能。[结果]生物炭的pH和比表面积随热解温度的升高而逐渐增大,而产率却逐渐稳定,其中热解温度的变化对水稻和芝麻秸秆生物炭的影响更为明显;此外,生物炭对Cu~(2+)的吸附效率与生物炭的种类和热解温度有关,升高热解温度有利于提高生物炭对Cu~(2+)的吸附去除率,且水稻和芝麻秸秆生物炭的吸附效率明显高于玉米秸秆生物炭,其中700℃下热解所制备的水稻和芝麻秸秆生物炭对Cu~(2+)的去除率可达100%。[结论]该研究可为控制农业环境污染提供科学依据。  相似文献   

17.
该研究采用农林废弃物核桃壳以及Fe(Ⅲ)改性的核桃壳作为吸附剂,对模拟废水中的Cu~(2+)进行吸附去除,并且考察了水样初始p H、吸附剂投加量、Cu~(2+)初始浓度、吸附时间等因素对Cu~(2+)吸附效果的影响,确定最佳吸附参数,并进行了吸附动力学和吸附等温线的分析。结果表明:当水样初始p H 5.0、吸附剂投加量0.05g,Cu~(2+)初始质量浓度200mg/L,吸附时间120min,在此条件下50m L水样在180r/min、25℃条件下核桃壳和改性核桃壳对Cu~(2+)的去除率分别达57.6%和93.2%以上,吸附量分别约为120mg/g和195mg/g;采用伪二级动力学方程的拟合结果更为理想,R2均在0.99以上;Langmuir方程可以较好地描述核桃壳和Fe(Ⅲ)改性核桃壳吸附剂对Cu~(2+)的吸附过程,此吸附过程是单分子层的吸附;核桃壳及改性核桃壳对Cu~(2+)的吸附是放热反应。  相似文献   

18.
四种有机物料对Pb2+的吸附特性   总被引:5,自引:3,他引:2  
为研究不同有机物料的性质特征以及对重金属离子的吸附能力,选用四种农林废弃物或其加工产物(锯末生物炭、玉米秸秆、鸡粪、食用菌菌渣),利用SEM、FTIR等方法对其形态和官能团进行表征,并通过对Pb~(2+)的批量吸附试验,考察了pH、时间、溶液初始浓度对吸附量的影响。结果表明,四种材料均能够有效吸附Pb~(2+),但吸附特性有一定差异。生物炭、秸秆、鸡粪最佳pH为5,且受pH影响较大;菌渣最佳pH为2,受pH影响不大。25℃、pH 5时四种材料均能较快地达到吸附平衡,且吸附量随时间的变化数据均符合准二级动力学模型,吸附量随初始浓度的变化数据均能较好地拟合Langmuir等温方程,其中生物炭的饱和吸附量远高于其他三种材料,达到411.52 mg·g~(-1),秸秆、鸡粪、菌渣的饱和吸附量分别为40.90、41.82、115.65 mg·g~(-1)。  相似文献   

19.
复合氧化物对环境中的金属离子具有较高的吸附容量。但2种或多种金属离子共存条件下,复合氧化物的吸附行为仍缺乏全面的了解。本文通过批吸附试验方法,研究溶液中有无Pb~(2+)共存时,铁铝复合氧化物对Cu~(2+)吸附容量的影响。结果表明,当溶液中不存在Pb~(2+)时,Cu~(2+)在铁铝复合氧化物表面的Qmax为149.08 mg·g~(-1)。当溶液中Pb~(2+)和Cu~(2+)共存时,Cu~(2+)的Qmax降低到28.81 mg·g~(-1)。在pH值3~7的范围内,随着溶液pH值的升高,Cu~(2+)在铁铝复合氧化物表面的吸附量呈现逐渐增加的趋势。此外在相同的pH值条件下,Pb~(2+)的存在减少了吸附在氧化物表面的Cu~(2+)量。存在或不存在Pb~(2+)的情况下,Cu~(2+)在氧化物表面上的吸附动力学均遵循Elovich方程,并且在约120 min时达到吸附平衡。  相似文献   

20.
【目的】以陕西杨凌某自来水厂铝污泥(Al-WTRs)为原料,对其进行改性,研究改性后铝污泥对Pb~(2+)和Cu~(2+)的吸附性能,以期为Al-WTRs的利用提供途径。【方法】采用KMnO_4和FeCl_2·4H_2O对Al-WTRs进行改性,制备铁锰氧化物改性铝污泥(M-Al-WTRs),采用比表面(BET-N2)、扫描电镜(SEM-EDS)、X射线衍射(XRD)、红外光谱(FTIR)等方法对改性前后Al-WTRs进行表征分析,并探讨不同pH、吸附时间、重金属初始质量浓度、温度和离子强度等条件下M-Al-WTRs对Pb~(2+)和Cu~(2+)的吸附性能。【结果】与Al-WTRs(9.10m~2/g)相比,M-Al-WTRs比表面积显著增大到100.8m~2/g;SEM-EDS、XRD、FTIR分析结果显示,M-Al-WTRs表面粗糙,且负载许多颗粒,并保持无定形态。M-Al-WTRs对Pb~(2+)和Cu~(2+)的吸附量随着pH的增加逐渐增大,最终趋于稳定,其中当pH=5时,M-Al-WTRs对Pb~(2+)和Cu~(2+)的吸附量分别为67.18和20.81mg/g,分别比Al-WTRs提高了109.1%和68.64%。M-Al-WTRs对Pb~(2+)和Cu~(2+)的吸附动力学符合准二级吸附动力学模型,吸附等温线符合Langmuir等温模型。热力学分析表明,M-Al-WTRs对Pb~(2+)和Cu~(2+)的吸附是自发、吸热、增熵的过程。M-Al-WTRs对Pb~(2+)和Cu~(2+)的吸附几乎不受离子强度的影响,属于专性吸附。【结论】成功制备了对Pb~(2+)和Cu~(2+)具有良好吸附效果的M-Al-WTRs。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号