首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 265 毫秒
1.
采用硼酸熔融法合成了一种锌硼磷酸铵盐化合物(ZBP),利用X射线衍射、扫描电镜、X射线光电子能谱、红外光谱分析、热失重等对合成产物的结构、形貌、组成及热稳定性进行表征。将ZBP作为阻燃剂加入到木粉/聚氯乙烯复合材料(WF/PVC)中,通过热压工艺制得阻燃木粉/聚氯乙烯复合材料(ZBP-WF/PVC),利用热失重(TG)和锥形量热仪(CONE)对阻燃ZBP-WF/PVC复合材料的热解成炭和燃烧性能进行分析,通过万能力学试验机和组合冲击试验机对其进行力学性能测试。结果表明:阻燃剂的加入提高了复合材料的热稳定性,增加了残炭量;阻燃剂的加入对复合材料的热释放影响较小,但显著降低了材料的烟释放速率,具有一定的阻燃抑烟效果;添加量为10%的阻燃剂对复合材料的力学性能影响较小。  相似文献   

2.
木质素结构中含有丰富的羟基与芳香官能团,具备大分子阻燃成炭剂的结构要求且成本低廉,绿色无污染。焦磷酸哌嗪(PPAP)是一种氮-磷协同的新型环保阻燃剂,具有优异的阻燃性能。将木质素与焦磷酸哌嗪按质量比1∶1复配得到一种木质素和焦磷酸哌嗪复合膨胀型阻燃剂,并将其用于阻燃改性环氧树脂(EP)。采用锥形量热分析(CONE)、极限氧指数测试(LOI)、垂直燃烧试验(UL-94)对所制备的“(木质素+焦磷酸哌嗪)复合膨胀型阻燃剂+环氧树脂”阻燃材料的燃烧行为与阻燃性能进行探究。采用热质量分析(TGA)、力学性能测试分析了阻燃材料的热稳定性与力学性能。采用傅里叶红外光谱(FTIR)、X射线光电子能谱(XPS)、扫描电子显微镜(SEM),对环氧树脂复合材料燃烧后所得残炭层的化学结构、表面各元素的原子百分比、微观形貌进行分析表征。结果表明:木质素和焦磷酸哌嗪复合膨胀型阻燃剂(L+P)的引入提高了环氧树脂的阻燃性能与热稳定性。与纯环氧树脂相比,“质量分数20%的(木质素+焦磷酸哌嗪)复合膨胀型阻燃剂+环氧树脂”阻燃材料的极限氧指数由22.2%提高至27.5%,最大热释放速率、总烟释放量分别降低了60.11...  相似文献   

3.
采用共沉淀法制备无机氢氧化镁(MH)和氢氧化铝(ATH)复合阻燃剂,并将它和ATH分别用于压制阻燃中密度纤维板,探讨无机金属氢氧化物阻燃剂对中密度纤维板燃烧过程中的热释放性能、质量变化、烟释放性能和烟气毒性的影响。结果表明,添加无机氢氧化物的MDF的点燃时间延长;热释放速率和热释放量减小;MDF燃烧过程中质量损失速率降低,残余物质量增多;烟释放量明显减小,烟气中CO_2和CO的生成速率降低,表现出显著的阻燃抑烟效果。与单一ATH相比,无机氢氧化镁铝复合阻燃剂体系中的MH和ATH具有协同阻燃效果,能更有效地降低热量释放和烟释放,提高阻燃效率,减少阻燃剂的用量。  相似文献   

4.
对比测试不同多孔材料协同聚磷酸铵(APP)阻燃处理木纤维/聚氯乙烯(PVC)复合材料热释放特性参数,探究不同多孔材料的协同效应对复合材料CONE热、烟释放特性参数的影响规律,为选择多孔材料协同阻燃提供依据。在50kW·m~(-2)热辐照功率下,通过CONE测定3种不同多孔材料协同APP阻燃处理的木纤维/PVC复合材料的热释放速率(HRR)及其峰值(PHRR)、总热释放量(THR)、有效燃烧热(EHC)等CONE热释放特性参数。结果表明,APP阻燃处理的木纤维/PVC复合材料的热释放峰值(PHRR)比未阻燃木纤维/PVC复合材料降低了56kW·m~(-2),膨化石墨协同APP阻燃处理的复合材料的PHRR降低了103.9kW·m~(-2);活性炭协同APP阻燃处理的木纤维/PVC复合材料的总烟释放量(TSP)为36.2m~2·s~(-1),比未阻燃木纤维/PVC复合材料降低了12%。聚磷酸胺(APP)阻燃剂能有效地降低木纤维/PVC复合材料的热释放,多孔材料与APP的协同效应,在降低热释放的同时更能降低烟气释放。  相似文献   

5.
目的公共场所和住宅起火后易引燃木质材料,迅速燃烧,火势蔓延,并产生大量有毒烟气,导致人员伤亡。为了进一步提高公共场所消防安全水平,以及降低火灾危险性,需对木材进行阻燃处理。本研究用植酸与三聚氰胺处理木材,研究改性材阻燃性能,旨在为木材阻燃提供新思路,丰富木材阻燃体系。方法使用两步浸渍法在青杨内部浸入植酸?三聚氰胺阻燃剂,研究改性木材的增重、增容、热解与燃烧性能;分析改性材燃烧后的残炭形貌,探讨植酸三聚氰胺复配阻燃剂应用于木材的阻燃机理。结果与对照组相比,15%植酸与5%三聚氰胺复合处理组(PM2)的热释放速率峰值和总热释放量分别降低了91.24%和79.05%,热释放抑制效果较好;与对照组相比,PM2组显示出更好的抑烟性能,烟释放速率减少了52.94%。与P15%组相比,PM2组的一氧化碳平均产率减小了51.29%,具有明显的减毒作用。PM2组的残炭量显著提高,较P15%组提升了69.58%,与对照组相比增加了278.4%。结论植酸?三聚氰胺阻燃体系能够进入木材,植酸与三聚氰胺复配处理能减少阻燃木材燃烧的热释放速率、总热释放量、总烟释放量与CO产率。植酸能催化木材脱水和炭化反应,使热解反应在较低温度发生,促使木材产生较多残炭。三聚氰胺能减缓木材热解速率,植酸与三聚氰胺协同作用可促使木材生成更多残炭。   相似文献   

6.
利用氧指数测定仪和锥形量热仪,研究不同质量分数FRW阻燃剂浸渍杨木素板和饰面炭化杨木单板的阻燃性能。结果表明,质量分数8%以上FRW阻燃剂浸渍处理的炭化杨木单板阻燃性可达到日本标准JISD1322-77中规定的难燃一级品标准;随着FRW阻燃剂浸渍质量分数的增加,阻燃炭化杨木单板的热释放速率、总热释放量、烟比率和总烟释放量均呈降低趋势,说明阻燃炭化杨木单板具有较佳的阻燃和抑烟性能。  相似文献   

7.
采用硅烷包覆型聚磷酸铵(APP)作为阻燃剂,对竹粉/聚丙烯(PP)复合材料进行阻燃改性,研究APP的用量对复合材料阻燃性能和力学性能的影响;基于APP的最佳用量,以APP、季戊四醇(PER)和三聚氰胺(MEL)作为膨胀型阻燃剂(IFR),研究APP、PER和MEL的互配比例对复合材料阻燃和力学性能的影响。结果表明,随着APP用量的增加,复合材料的阻燃性能不断增强,但弯曲和拉伸强度下降。当APP用量为复合材料总质量的15%时,其综合性能较佳,与未阻燃复合材料相比,极限氧指数(LOI)由17.1%提高至21.5%,弯曲模量和缺口冲击强度(NIS)分别增强14.8%和32.2%,弯曲强度和拉伸强度分别降低9.3%和28.8%。当APP、PER和MEL的互配比例为3∶1∶1时,添加15% IFR的复合材料的力学性能总体增强,与未阻燃复合材料相比,弯曲强度、弯曲模量和NIS分别增强18.1%、20.0%和23.3%,仅拉伸强度降低10%。锥形量热仪和极限氧指数仪结果显示,IFR阻燃复合材料的热释放速率、热释放速率峰值和总热释放量分别降低56.7%、40.2%和30.5%;LOI提高至25.9%,复合材料的阻燃性能进一步改善,但是,总产烟量增大了16.7%,该IFR的添加对复合材料的持久抑烟效果不佳。  相似文献   

8.
5种N-P阻燃剂阻燃抑烟性能的CONE分析   总被引:1,自引:0,他引:1  
为进一步研究和改进N-P阻燃剂的性能,采用质量分数10%的APP、BL、MBL、GUPR以及WR等5种木材N-P阻燃剂,60℃真空(-0.5MPa)浸渍处理速生杨木,对其进行极限氧指数、烟密度以及锥形量热分析。结果表明,无机型阻燃剂APP、BL、MBL的载药率均较高,BL和MBL处理试样极限氧指数达40以上,阻燃性能良好;有机型阻燃剂GUPR的载药率最低,但其阻燃效率最高,抑烟效果最优;阻燃剂(除WR)使木材耐热性能降低,木材热解进程提前,HRR峰值出现时间推迟;复合型阻燃剂WR延缓热解进程的能力最强,碳层阻隔能力优良,但抑制热释放速率的能力较差;与BL相比,MBL处理试样燃烧总烟气释放量减少,特别是在前300 s内CO释放量降低26.2%,燃烧反应更为缓和,整体阻燃效果提高。  相似文献   

9.
复合NP阻燃剂处理杨木的热解特性与动力学分析   总被引:1,自引:0,他引:1  
为研究复合NP阻燃剂处理杨木的热解特性与阻燃机理,利用热分析法对蒸馏水、聚硅酸磷酸二氢铝(Al-Si)、NP阻燃剂(N-P)、聚硅酸磷酸二氢铝复合NP阻燃剂(N-P-Al-Si)处理杨木(编号为A、B、C、D)的燃烧性能进行探讨,分别运用Ozawa-Flynn-Wall法和修正Coats-Redfern法计算阻燃杨木活化能。结果表明:A仅有1个热解阶段,此阶段的活化能值为65~70 kJ/mol。阻燃处理材的热解大致分为2个阶段,D的主要热解阶段介于B、C之间,其热释放速率缓慢,失重速率和失重量最小。并且在不同的升温速率下D的失重趋势一致,随着升温速率的增大,失重曲线向高温方向移动。D第1、2阶段的活化能分别为120、240 kJ/mol,均显著大于C(115 kJ/mol),表明Al-Si与N-P复配后的阻燃效率得到提高。   相似文献   

10.
为获得性能良好的阻燃型聚丙烯基木塑复合材料(WPC),从理论上估算WPC中木粉(WF)所含的羟基(—OH),以指导调整膨胀型阻燃剂(IFRs)中聚磷酸铵(APP)与季戊四醇(PER)的比例及用量,通过正交试验对其进行优化。利用前期试验得到的协效剂组MgO/EG/SiO_2(其组成为m(MgO)∶m(可膨胀石墨,EG)∶m(SiO_2)=1∶5∶5,配比为m(IFRs)∶m(MgO/EG/SiO_2)=1.00∶0.18)对优化后的APP/PER进行阻燃增效,进一步提高WPC的阻燃性能。结果表明,当m(APP)∶m(PER)=2.0∶0.6、IFRs的质量分数为25%时的IFRs1对WPC的阻燃效果最为显著。IFRs1及MgO/EG/SiO_2的同时加入可有效提高WPC的热稳定性,其残炭率提高至24.79%。WPC/IFRs1的热释放速率峰和总热释放量比WPC分别降低了33.9%和10.4%,WPC/IFRs1/MgO/EG/SiO_2的热释放速率峰和总热释放量比WPC分别降低了39.15%和15.99%。硅烷偶联剂KH550、钛酸酯偶联剂NDZ-201和铝酸酯偶联剂DL-411-DF处理均能提高WPC/IFRs1/MgO/EG/SiO_2的力学性能和阻燃性能,其中KH550的效果最好。  相似文献   

11.
用锥形量热仪(CONE)、热重分析(TGA)、极限氧指数(LOI)等研究手段分析了可膨胀石墨(EC)及其与聚磷酸铵(APP)复配对木粉—聚丙烯复合材料燃烧性能的影响.结果表明:随EG质量分数的增加,复合材料的热释放速率(HRR)、总热释放量(THR)、烟释放速率(RSR)和总烟释放量(TSR)均有显著降低,极限氧指数增...  相似文献   

12.
采用不同固体质量分数的苯酚-三聚氰胺-尿素-甲醛(PMUF)树脂和硼酸、硼砂阻燃剂对人工林杉木进行浸渍处理,并对改性材的阻燃性能进行评价。结果表明:与素材相比,硼化物改性材的氧指数提高,热释放速率和总热释放量均大幅降低;随着树脂固体质量分数的增加,树脂改性材的氧指数呈现先升高后略下降的趋势,点燃时间延长,第一热释放速率峰值逐渐减小并且第二热释放速率峰值出现时间延迟,但总热释放量上升;复配改性材的氧指数均达到55%以上,阻燃性比树脂改性材进一步提高,热释放速率和总热释放量降低明显,残炭量增加,热稳定性提高。  相似文献   

13.
采用硼、氮-磷、硅和卤素系4种组分复合的无机阻燃剂制备难燃超轻质木纤维发泡材料(ULDM),通过锥形量热仪(CONE)法对超轻质木纤维发泡材料独特的燃烧热解特点、燃烧过程的热释放及阻燃剂各组分协效作用进行研究。结果表明,超轻质木纤维发泡材料的燃烧热解有不同于其他木质材料的爆燃现象,放热集中且迅速,瞬间放热量高。经无机复合阻燃处理后的超轻质木纤维发泡材料有焰燃烧时间低于30 s,在火场高温中能够维持阴燃状态,燃烧热解进程缓和,放热平稳。证明了复合阻燃剂各组分可充分产生协效阻燃作用,硼系能迅速形成玻璃态隔离层,氮-磷系能促进脱水成炭,硅系能有效增强纤维和炭层热稳定性,卤素系能极大降低有效燃烧热。  相似文献   

14.
采用锥形量热仪实验法,在50KW/m^2的热辐射功率下,对不同的FRW质量分数阻燃剂对落叶松木材进行阻燃处理和系统的阻燃性研究,结果表明:当FRW阻燃剂的质量分数为6.87%时,FRW阻燃落叶松木材的热释放速率、总热释放量、烟比率,比光面积,二氧化碳体积分数等燃烧参数均比未处理材降低50%以上,并且,这些燃烧参数随着FRW质量分数的升高而降低。因此,FRW阻燃处理显著地提高了落叶松木材的阻燃性和抑烟性。  相似文献   

15.
为了研究硅溶胶和聚磷酸铵(APP)复配后的阻燃性能,真空常压方法下分别用APP、硅溶胶以及两者复配后的阻燃剂浸渍辐射松木材,分析各改性材的增重、增容率以及热解燃烧性能,并用扫描电镜(SEM)分析改性后的残炭形貌。研究结果表明:氧指数由高到低是APP-硅溶胶、APP、硅溶胶和素材;由APP处理和APP-硅溶胶联合处理材的初始分解温度、最大失重率温度均提前,残炭率提高,硅溶胶处理材的初始分解温度和最大失重率与素材相近。经锥形量热测试结果显示:由APP处理和APP-硅溶胶联合处理材的热释放速率峰值分别比素材降低了232.8和150.3 kW·m-2,总释放热降低29.63和17.98 MJ·m-2,而由硅溶胶处理的效果不明显。与其他3种试材相比,硅溶胶处理材的COP最低,说明硅溶胶对CO的生成有抑制作用。处理材的火灾蔓延指数(FGI)均比素材降低;扫描电镜显示,经浸渍处理过的残炭结构更加致密,表面更加光滑。结果说明了硅溶胶的加入可以降低CO毒气的生成,APP的加入使木材的阻燃性达到了难燃级。  相似文献   

16.
复合硅改性热处理杨木的制备及性能   总被引:1,自引:1,他引:0  
[目的]针对木材树脂改性剂释放甲醛不环保,无机改性材吸湿性高等问题,将廉价易得的硅石粉溶液化,再有机杂化,制得高渗透、环保、防火的水溶性木材复合硅改性剂,通过真空加压浸渍处理和热处理联合改性,可以有效提高木材的物理力学和阻燃等性能.[方法]分别制备硅油复合硅改性剂(SC2)和偶联剂杂化硅改性剂(HS2),对人工林杨木进...  相似文献   

17.
以木粉和聚丙烯为主要原料,填充改性炭黑(M-CB)和可膨胀石墨(EG)制备阻燃抗静电木粉-聚丙烯木塑复 合材料,并进行力学性能、表面电阻率、氧指数及燃烧性能、热失重行为、阻燃性能测试。结果表明:加入15 g EG、10 g M-CB 后,木塑复合材料的拉伸强度、弯曲强度和冲击强度分别增加了2.0%、5.2% 和15.6%,电阻率下降到了 108 ;与空白样相比,复合材料的起始分解温度从255.0 ℃上升到了272.5 ℃,木粉最高分解温度由349.2 ℃下降 到了287.5 ℃,聚丙烯的最高分解温度由448.1 ℃上升到了477.9 ℃,在800 ℃下的残炭率由9.9% 上升到了 33.5%;点燃时间从3 s 增加到了14 s,在500 s 时总热释放量下降了56.5%,残炭率提高了5 倍,表现出显著的阻燃 与抗静电性能。   相似文献   

18.
:以三聚氰胺改性脲醛树脂(MUF)与聚乙酸乙烯酯树脂(PVAc)共混物作为成膜树脂,以磷酸脒基脲(GUP)、聚磷酸铵(APP)、三聚氰胺(MEL)和季戊四醇(PER)的组合物为膨胀阻燃体系,制备适用于木材的膨胀型水性阻燃涂料。以锥形量热仪法、傅里叶变换红外光谱法和热重分析法为评价手段,对膨胀型水性木材阻燃涂料涂覆的胶合板A、仅涂覆成膜树脂的胶合板M和素胶合板S的阻燃性能进行了对比分析。结果表明:胶合板A的热释放速率、总热释放、烟释放速率均比胶合板M、胶合板S的显著降低,但其残余物质量最高,并显著延长了点燃时间。在传统的膨胀型阻燃体系中引入GUP后,与APP在不同温度区间起到催化成炭作用,有利于提高涂料的阻燃性能。胶合板A的涂层受热辐射后炭化彻底,表明GUP-APP-MEL-PER是MUF-PVAc共混树脂的有效膨胀型阻燃体系。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号