首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Vitamin E (Vit. E) is discussed to influence ruminal biohydrogenation. The objective of this study was to investigate the influence of a Vit. E supplementation on rumen fermentation characteristics, ruminal microbial protein synthesis as well as ruminal organic matter fermentation. Furthermore, we aimed to investigate the influence of Vit. E supplementation on short‐chain fatty acids (SCFA) and protozoa concentrations in the rumen and, in addition, on transfer rates of middle‐chain and long‐chain fatty acids into the duodenum in lactating dairy cows. Eight rumen and duodenum fistulated German Holstein cows were assigned to either a group receiving 2,327 IU/d Vit. E (138.6 IU/kg DM DL‐α‐tocopherylacetate; = 4) or a control group (23.1 IU/kg DM;= 4). Neither ruminal protein synthesis nor organic matter fermentation was influenced by treatment. Vit. E did not act on the concentrations of short‐chain fatty acids and protozoa in rumen fluid. Duodenal flow of C13:0 (1.3 versus 0.2 g/d, = 0.014) and iso‐C14:0 (1.0 versus 0.5 g/d, = 0.050) was higher in the Vit. E group. We observed a trend for higher duodenal flows for C12:0 (1.6 versus 0.9 g/d, = 0.095) and anteiso‐C15:0 (12.2 versus 8.9 g/d, = 0.084). Transfer rate of C12:0 tended to be higher in the Vit. E group (125.61 versus 73.96, = 0.082). No other transfer rates were affected by treatment. Further studies are necessary to investigate the influence of Vit. E on rumen microbiota and their fatty acid production as well as on the impact of different doses of Vit. E supplementation on variables of protein synthesis efficiency.  相似文献   

2.
Microalgae might be considered as an alternative source of fat and/or protein for ruminant's diets. However, changes in populations of ruminal micro‐organisms associated with biohydrogenation process, methane and ammonia production in response to microalgae dietary supplementation have not been well characterized. Thus, 16 cross‐bred goats were divided into two groups. Each goat of both groups was fed individually with alfalfa hay and concentrates separately. The concentrates of the control group had no microalgae while those of the treated group were supplemented with 10 g lyophilized Chlorella vulgaris/kg concentrate (chlor). On the 30th experimental day, samples of rumen fluid were collected for microbial DNA extraction, fatty acid profile and enzyme activity analyses. The results showed that the chlor diet compared with the control increased significantly the populations of Methanosphaera stadtmanae, Methanobrevibacter ruminantium and Methanogens bacteria and protozoa in the rumen of goats. A significant reduction in the cellulase activity and in the abundance of Ruminococcus albus, and a significant increase in the protease activity and in the abundance of Clostridium sticklandii in the rumen liquid of goats fed with the chlor diet, compared with the control, were found. Chlorella vulgaris supplementation promoted the formation of trans C18:1, trans‐11 C18:1 and monounsaturated fatty acids (MUFA), while the proportions of C18:0 and long‐chain fatty acids (LCFA) reduced significantly in the rumen liquid of goats. This shift in ruminal biohydrogenation pathway was accompanied by a significant increase in Butyrivibrio fibrisolvens trans C18:1‐producing bacteria. In conclusion, the supplementation of diets with microalgae needs further investigation because it enhances the populations of methane‐producing bacteria and protozoa.  相似文献   

3.
We conducted two feeding experiments to evaluate the effects of supplementation with either cellooligosaccharide or kraft pulp on growth performance in grazing beef calves (Japanese Black) from 4 weeks pre‐weaning to 12 to 16 weeks post‐weaning. In Experiment 1 (20‐week duration), nine calves (2.9‐month‐old females) were assigned to either a control group (CON) or an experimental group (CEL) fed cellooligosaccharide at a rate of 10 g/day mixed with concentrate. Average daily weight gain tended to be greater in CEL than in CON, especially after 1 month of weaning. In Experiment 2 (16‐week duration), 10 calves (2.0‐month‐old females) were assigned to either a control group or an experimental group (KRA) fed kraft pulp at a rate of 10% replacement of total digestible nutrients with concentrate. The proportion of fibrolytic bacteria increased and that of methanogenic Archaea decreased in the rumen microbial community composition of KRA calves in Experiment 2, whereas the decrease in Fibrobacter and Archaea was observed in CEL calves at first 4 weeks in Experiment 1. We conclude that beta‐glucan prebiotic supplementation to grazing calves at pre‐weaning would affect rumen microbial composition and modified rumen fermentation characteristics, leading to a better rumen environment via different means.  相似文献   

4.
The effects of yeast culture (YC) supplementation and the dietary ratio of non‐structural carbohydrate to fat (NSCFR) on growth performance, carcass traits and fatty acid profile of the longissimus dorsi (LD) muscle in lambs were determined in a 2 × 3 full factorial experiment. Thirty‐six Small‐tailed Han lambs were randomly divided into six groups with six replicates per group. The lambs were fed one of the six pelleted total mixed rations (TMRs) for 60 days after 15 adaption days. The six rations were formed by two NSCFRs (11.37 and 4.57) and three YC supplementation levels (0, 0.8 and 2.3 g/kg dietary dry matter). The average daily gain (ADG), dry matter intake (DMI) and feed conversion ratio (FCR) data of each lamb were recorded and calculated. All the lambs were slaughtered for determining carcass traits and fatty acid profile of the LD muscle. DMI was significantly increased (p < 0.05) in a quadratic fashion with 0.8 g/kg of YC supplementation. Carcass weight (CW) and dressing percentage (DP) were significantly increased (p < 0.05) in a linear fashion with 2.3 g/kg of YC supplementation. Animals fed with high‐NSCFR diet had higher (p < 0.05) contents of myristoleic acid (C14:1), pentadecanoic acid (C15:0) and cis‐10‐heptadecenoic acid (C17:1), and lower (p < 0.05) stearic acid (C18:0) content in LD muscle than those fed with low‐NSCFR diet. Moreover, ADG, growth rate (GR), backfat thickness (BFT), percentages of crude fat (CF) and crude protein (CP), SFAs, MUFAs and PUFAs in LD muscle, were significantly affected (p < 0.05) by interaction of dietary NSCFR and supplemental YC level. Overall, YC not only improved the growth performance and carcass traits of the animals but also modified the fatty acid profile of the LD muscle. Furthermore, the effects of YC supplementation may depend on dietary compositions.  相似文献   

5.
Restricted feeding and high concentrate diets are potential strategies for growing dairy heifers. Ruminal manipulation with additives such as Saccharomyces cerevisiae yeast culture (YC) has been shown to alter digestibility when added to this type of diet. An experiment was conducted to investigate the ruminal fermentation and in situ digestibility of diets with 3 different levels of forage to concentrate (F:C) fed at restricted intake without and with YC addition. Three cannulated post-pubertal Holstein heifers (age 18.0 ± 1.2 months; body weight 449.6 ± 19.7 kg) were fed diets consisting of corn silage as the sole forage source in a 3 period (35-day) Latin square design. Heifers were fed diets for 21 days with no YC addition, followed by 14 days where YC was added to the diet (1 g/kg as fed basis). Low (LC), medium (MC), and high (HC) concentrate diets (20, 40, and 60% concentrate) were fed once daily on a restricted basis to provide 0.22 Mcal ME/kg empty BW0.75. Rumen fluid was sampled on days 18 and 32 of each period, and rumen contents were evacuated on days 21 and 35 of each period. An in situ study was done on days 14 to 17 and on days 28 to 31. Mean ruminal pH was not different between dietary treatments and no YC effect was detected. Mean total volatile fatty acids (VFA) and ruminal ammonia-nitrogen (NH3-N) concentration was also not different among diets with different F:C. Molar proportions of acetate were decreased, and propionate were increased; while the acetate-to-propionate ratio was decreased as the concentrate level increased from LC to HC. Total VFA, propionate, and acetate as well as isoacids concentration increased, yet NH3-N concentration decreased with YC addition in all diets. From these results we conclude that feeding HC diets in restricted amounts had minimal effects on rumen fermentation rate between different F:C diets. The addition of YC modified NH3-N and volatile fatty acid concentrations in the rumen in all 3 diets in this study, presumably through alterations in end-product production and utilization.  相似文献   

6.
Objectives of this study were to compare fatty acid (FA) composition of ruminal bacterial (B) and protozoal (P) cells, and to investigate effect of protozoa on FA profile in the rumen of cattle. Three cows were used to prepare ruminal B and P cells. Four faunated and three defaunated cattle (half‐siblings) were used to study effect of protozoa on ruminal FA profile. Proportions of C16:0 and C18:0 in total fatty acids in B cells were 20.7% and 37.4%, whereas those in P cells were 33.4% and 11.6%, respectively. Proportions of trans‐vaccenic acid (VA) and cis‐9, trans‐11 conjugated linoleic acid (CLA) in B cells were 3.9% and 1.0%, and those in P cells were 5.5% and 1.6%, respectively, being higher in P cells. Proportions of C18:1, C18:2 and C18:3 in P cells were two to three times higher than in B cells. Proportions of unsaturated fatty acids, VA and CLA in B cells of faunated cattle were higher than those of defaunated. VA and CLA in the ruminal fluid of faunated were also 1.6 to 2.5 times higher than those of defaunated. This tendency was similar for cell‐free fraction of ruminal fluid. These results indicate that protozoa contribute greatly in VA and CLA production in the rumen.  相似文献   

7.
The effects of supplementing ewe diets with either DL‐methionine (DL‐Met) or 2‐hydroxy‐4 (methylthio) butanoic acid isopropyl ester (HMBi) were investigated on ruminal in situ degradability of grain and forage diets, in vivo digestibility, rumen fermentation, blood metabolites and antioxidant status. Six ruminally cannulated ewes were used in a replicated 3 × 3 Latin square design with 28‐day periods. The dietary treatments were as follows: (i) no supplemental Met (control; CON), (ii) DL‐Met at 1.2 g/kg DM intake and (iii) HMBi at 1.8 g/kg dry matter (DM) intake. Corn grain, barley grain and alfalfa hay were evaluated for their ruminal degradability by both in situ incubation and effective degradability measurements of DM, neutral detergent fibre (NDF) and acid detergent fibre (ADF). Compared to other treatments, HMBi supplementation increased (p < 0.05) the digestibility of organic matter, crude protein and NDF and also tended (p = 0.08) to increase the digestibility of DM and ADF. Moreover, HMBi supplementation increased (p < 0.01) total VFA concentrations, the molar proportions of valerate and iso‐butyrate in the rumen. Compared to the CON treatment, DL‐Met and HMBi treatments tended (p = 0.08) to increase the molar proportion of acetate but decreased (p < 0.05) ruminal ammonia‐N concentration. Ewes supplemented with HMBi and DL‐Met recorded greater (p < 0.05) serum concentrations of glutathione peroxidase, total antioxidant capacity and superoxide dismutase than the CON treatment. Serum concentrations of glucose, total protein, albumin, high‐density lipoprotein and very low‐density lipoprotein were greater (p < 0.01) and serum urea nitrogen (p < 0.05), malonyl dialdehyde and triglyceride were lower (p < 0.02) in the HMBi and DL‐Met animals than in the CON ewes. The results concluded that HMBi is a very effective form of dietary Met supplementation for ewes with a positive effect on digestion, rumen fermentation and serum antioxidant function.  相似文献   

8.
9.
The objective of this study was using a wide range of dietary concentrate levels to investigate the major effects of limit‐feeding on heifers. Twenty‐four Holstein heifers were blocked into six groups and fed with one of four diets containing different levels of concentrate (20%, 40%, 60% and 80% on a dry matter (DM) basis) but with same intakes of metabolizable energy for 28 days. Increasing levels of dietary concentrate caused decreased ( 0.02) intakes of dry matter (DMI) and neutral detergent fiber and total rumination time, but increased (< 0.01) nonfiberous carbohydrates intake, ruminal concentrations of NH3‐N, propionate and butyrate, and digestibility of DM and crude protein. Dietary concentrate levels had no significant effect on most plasma concentrations and body measurements. The corrected average daily gain (CADG) and feed efficency (ADG/DMI, CFE) were linearly increased (< 0.01) with increasing dietary concentrate levels when gut fill impact was removed. In conclusion, heifers limit‐fed high concentrate diets increased most ruminal fermentation parameters, CADG and CFE with similar body growth and blood metabolites as heifers fed low concentrate diets, and had the potential to be used as an effective feeding strategy in dairy heifers.  相似文献   

10.
The effects of essential oils (EOs) on ruminal nutrient disappearance, rumen fermentation and blood metabolites in fistulated non‐lactating dairy cows were studied. Four fistulated non‐lactaing dairy cows were used in a 4 × 4 Latin square design; the experiment consisted of four periods of 21 days in each period, with the first 14 days for adaptation followed by 7 days of measurement period. Animals were fed 3 kg/day of 21% crude protein (CP) concentrate and ad libitum corn silage. Treatments were: (i) control; (ii) 2 mL Allicin/cow/day; (iii) 2 mL zingiberene/cow/day; and (iv) 2 mL citral/cow/day. The results demonstrated that EOs increased dry matter and neutral detergent fiber degradabilities at 48 and 72 h, but had no effect on acid detergent fiber and CP degradabilities. EOs did not change ruminal pH, ammonia nitrogen, protozoa, volatile fatty acid concentrations and blood glucose but reduced blood urea nitrogen at 4 h.  相似文献   

11.
The effects of supplementing feed of cows in mid‐to‐late lactation with an active yeast product (Actisaf Sc 47) were evaluated using 15 Holstein cows in a replicated 3 × 3 Latin square design. The animals were fed a mixed ration with 33% neutral detergent fiber, consisting of timothy hay (29.8%), a commercial concentrate (70.0%) and commercial calcium triphosphate (0.2%), twice daily to meet 105% of their energy requirement. Yeast supplement was set at 0, 5 and 10 g per day over 21‐day periods, each of which consisted of 14 days for adaptation followed by 7 days of data collection. Milking performance, plasma metabolite parameters, rumen volatile fatty acids, lipopolysaccharide and microbial properties were measured. Although there were no significant differences in feeding and milking performance or blood parameters associated with supplementation, the acetate to propionate ratio in the rumen fluid tended to decrease (P = 0.08). The population of Bacteroidetes tended to be less prominent (P = 0.07) and the fibrolytic bacterium Fibrobacter significantly increased (P < 0.05) in the rumen fluid of the yeast 10 g group compared with that of the control. These data suggest that effects of supplementing live yeast to cows in mid‐to‐late lactation may be limited to microbial composition and fermentation characteristics in the rumen.  相似文献   

12.
In this study, the relative contribution of different microbial groups to ruminal metabolism was investigated for different diets. The rumen microbial cultures included whole rumen fluid, fungi + protozoa, bacteria + protozoa, protozoa and bacteria + fungi and were established by physical and chemical methods. Gas production, short‐chain fatty acid (SCFA) and ammonium production were measured at 24 hr in in vitro incubations using the Hohenheim gas test (HGT) procedure. Seven donor animal diets with different concentrate‐to‐roughage ratios (C:R: 10:90, 30:70, 50:50, 70:30, 70:30BC (BC = NaHCO3), 90:10 and 90:10BC) and five HGT diets (C:R: 10:90, 30:70, 50:50, 70:30 and 90:10) were formulated. Incubations in the HGT were always based on inoculum from sheep diets with the respective C:R ratio. Gas and ammonium production increased (p < 0.001) as a result of a gradual increase in concentrate proportion of the diets. In general, SCFA production followed the same trend. Whole rumen fluid and bacteria + fungi produced approximately 50% higher gas volume than protozoa and fungi + protozoa fractions, whereas gas production with bacteria + protozoa was at an intermediate level. Coculture of protozoa either with bacteria or with fungi produced more ammonium. Populations without bacteria were characterized by a particularly high acetate/propionate ratio. Although an interaction between microbial group and diet was observed for several variables, no clear direction could be established. Manipulating rumen fluid by selectively suppressing specific rumen microbial groups may be a helpful tool in elucidating their role in nutrient degradation and turnover in vitro.  相似文献   

13.
The ruminal disappearance of phytate phosphorus (InsP6‐P) from maize grain and rapeseed meal (RSM) was determined in two in vitro studies. In experiment 1, two diets differing in phosphorus (P) and InsP6‐P concentration were fed to the donor animals of rumen fluid (diet HP: 0.49% P in dry matter, diet LP: 0.29% P). Maize grain and RSM were incubated in a rumen fluid/saliva mixture for 3, 6, 12 and 24 h. In experiment 2, a diet similar to diet HP was fed, and the rumen fluid was mixed with artificial saliva containing 120 mg inorganic P/l (Pi) or no inorganic P (P0). Maize grain and RSM were incubated with either buffer for 3, 6, 12 and 24 h. Total P (tP) and InsP6 concentration were analysed in the fermenter fluids and feed residues. The disappearance of InsP6‐P from maize was completed after 12 h of incubation in both experiments. From RSM, 93% (diet LP) and 99% (diet HP) of the InsP6‐P in experiment 1 and 80% (Pi) and 89% (P0) in experiment 2 had disappeared after 24 h of incubation. InsP6‐P disappearance was higher when diet HP was fed (maize: 3 and 6 h; RSM: 6 and 24 h of incubation) and when rumen fluid was mixed with buffer P0 (maize: 6 h; RSM: 12 and 24 h of incubation). InsP6‐P concentration in the fermenter fluids was higher for maize, but no accumulation of InsP6‐P occurred, indicating a prompt degradation of soluble InsP6. These results confirmed the capability of rumen micro‐organisms to efficiently degrade InsP6. However, differences between the feedstuffs and diet composition as well as the presence of inorganic P in the in vitro system influenced the degradation process. Further studies are required to understand how these factors affect InsP6 degradation and their respective relevance in vivo.  相似文献   

14.
Dietary unsaturated fatty acids (FA) are intensively hydrogenated in the rumen, resulting in reduced amount of poly‐unsaturated fatty acids (PUFA) and accumulation of several biohydrogenation (BH) products. In this study, BH of PUFA originating from different oilseeds (linseed, soya beans, sunflower seed and rapeseed) present in crushed oilseeds or their free oils were assessed in vitro. The assay substrates were incubated in buffered rumen fluid for 0, 6, 12 and 24 h. After incubation, the FA pattern of the incubated samples was analysed using gas chromatography. Biohydrogenation is defined as disappearance of double bonds (DB) calculated from the contents of unsaturated FA. After 24‐h incubation, the DB contents of all oilseeds were reduced (p < 0.001) by 40–60%. The reduction was higher (p < 0.001) for the crushed form compared with the oil form. In addition, linseed and sunflower seed known as oilseeds with high contents of linolenic acid C18:3 c9,12,15 (LNA) and linoleic acid C18:2 c9,12 (LA), respectively, showed a higher (p < 0.001) accumulation of the BH intermediates conjugated linoleic acid (CLA, isomer C18:2 c9t11) and vaccenic acid (C18:1 t11) for the crushed form, when compared with the oil. These results suggest an inherent effect of the physical form of the assay oilseeds on in vitro BH. Changes in FA pattern during BH in vitro can be attributed to both source and physical form of the assay oilseeds. However, further investigations are warranted to ensure whether the observed in vitro effects on ruminal BH can be confirmed in vivo.  相似文献   

15.
This study was conducted to evaluate the effect of supplying two levels of Acacia nilotica (A. nilotica) pods to rations of sheep on nutrient digestibility, nitrogen balance and rumen liquor parameters (pH, total protozoa count, protein concentration and enzymes activity). Twelve mature rams (50 ± 1.25 kg B.W.) were distributed into three groups, each with four rams. Animals in group one were considered as a control which fed a basal diet, consisting of concentrate mixture and Egyptian clover. The second group and the third one received the same basal diet with supplying the concentrate mixture by 1.5% and 3.0% of A. nilotica pods meal respectively. The experiment lasted for 3 weeks. It was found that supplementation of A. nilotica pods to the concentrate mixture at a rate of 1.5% and 3.0% significantly improved the total feed intake compared to the control. The digestibility of dry matter and crude fibre was significantly reduced with A. nilotica supplements, whereas the digestibility of crude protein was significantly improved. All of nitrogen intake and N‐retained were significantly increased in rams fed on concentrates with 1.5% and 3.0% A.  nilotica pods when compared to the control. The pH of ruminal fluid was not affected by the dietary treatments. Nevertheless, the total rumen protozoa count was significantly decreased in A. nilotica pods supplemented groups. Also, the rumen protein concentration and the ruminal enzymes activity, especially α‐amylase, cellulase and protease, were lower in A. nilotica pods supplemented treatments. In conclusions, inclusion of low levels of A. nilotica pods (1.5% and 3.0%) in the concentrates can be used as a natural protein protectant in ruminants by forming tannin protein complexes in the rumen to maximize the amino acids available in the lower digestive tract. Also, these levels can increase the protein digestibility as well as the N‐retained in the body .  相似文献   

16.
The aim of this study was to identify factors that regulate ruminal epithelial insulin‐like growth factor‐binding protein (IGFBP) expression and determine its role in rumen epithelial cell proliferation. Primary bovine rumen epithelial cells (BREC) were incubated with short‐chain fatty acids (SCFAs) at pH 7.4 or 5.6, lactate, lipopolysaccharide (LPS), insulin‐like growth factor‐I (IGF‐I), ‐II (IGF‐II), or recombinant bovine IGFBP2 (rbIGFBP2). The mRNA expression levels of IGFBP in BREC were analyzed using quantitative real‐time polymerase chain reaction (qRT‐PCR). The proliferation rate of BREC was analyzed using a WST‐1 assay. IGFBP2 gene expression tended to be lower with SCFA treatment (p < .1), and IGFBP6 gene expression was significantly lower with SCFA treatment (p < .05). IGFBP3 and IGFBP6 gene expression tended to be higher with d ‐Lactate treatment (p < .1). IGFBP3 gene expression was significantly higher (p < .05) with LPS treatment. BREC treated with IGF‐I grew more rapidly than vehicle control‐treated cells (p < .01); however, recombinant bovine rbIGFBP2 inhibited IGF‐I‐induced proliferation. IGF‐II and/or rbIGFBP2 did not affect BREC proliferation. Taken together, SCFA treatment decreased IGFBP2 and IGFBP6 expression in rumen epithelial cells, and lower expression of these IGFBP might promote rumen epithelial cell proliferation by facilitating IGF‐I.  相似文献   

17.
Colonization patterns of representative rumen bacteria were compared between untreated rice straw (UTS) and sodium hydroxide‐treated rice straw (SHTS). UTS and SHTS were incubated in the rumen of sheep for 10 min, 1, 2, 6, 12, 24, 48 and 96 h using the nylon bag method. The population sizes of 13 representative bacterial species or groups were quantified by real‐time PCR. The total bacterial population size (abundance) was similar in both UTS and SHTS. Fibrobacter succinogenes showed a higher population size compared to other fibrolytic species and was detected at a higher level in SHTS (3.7%) than in UTS (2.6%). Ruminococcus albus and Ruminococcus flavefaciens were also detected at higher levels in SHTS (0.15% and 0.29%) than in UTS (0.03% and 0.18%). Population sizes of non‐fibrolytic species, such as Selenomonas ruminantium, Anaerovibrio lipolytica and Succinivibrio dextrinosolvens were higher in UTS than in SHTS. Coefficient of determination (r2) on population changes between bacterial species or groups were higher in UTS than in SHTS, suggesting the necessity of stronger bacterial interactions for UTS digestion. Therefore, not only colonization of fibrolytic species, but also synergistic interactions between different bacterial species may be key to the ruminal digestion of rice straw.  相似文献   

18.
This study was conducted to examine in vivo long‐term effects of dietary dried oregano (Origanum vulgare ssp. hirtum) whole plant on rumen fermentation, enzyme profile and microbial communities. For this purpose, eight healthy, adult, non‐lactating Alpine goats were kept in tie stalls equipped for individual feeding and randomly divided into two homogeneous groups: one fed 0.6 kg of a concentrate mixture and 0.6 kg of wheat straw without any supplementation and served as control group (CON) while the other group (OR) fed the same diet of CON but supplemented with 20 g of dried oregano plants (OPs) to provide daily dosage of 1 ml of essential oil (EO) per animal. The experimental period lasted 69 days and individual rumen fluid samples were obtained every 2 weeks at 0 and 4 hr after feeding. The results showed that dietary supplementation with OPs increased the protease activity (p < .001) and ammonia concentration (p < .05) in the rumen. Among the studied microbial populations, Peptostreptococcus anaerobius (p = .028) and Clostridium sticklandii (p < .001) were found to be the most sensitive to oregano at the current dosage. Furthermore, the total methanogen population significantly decreased (p < .05). It is concluded that a long‐term dietary administration of OPs can suppress specific rumen micro‐organisms and modify rumen fermentation favourably at least by means of suppressing methanogens.  相似文献   

19.
A first aim of this batch in vitro experiment (21 h) was to use changes in odd and branched chain fatty acid (OBCFA) patterns to suggest shifts in microbial populations, associated with four types of incubated whole dairy cow diets. Principal component analysis suggested higher dietary starch increased the proportion of C15:0 and C17:0, whereas increased neutral detergent fibre content was positively related to anteiso C15:0 concentrations, which is in agreement with the importance of these fatty acids in respectively amylolytic and cellulolytic bacteria. A second aim of the experiment was to relate rumen volatile fatty acid proportions to OBCFA by principal component regression and to compare these relations with predictions based on diet proximate composition. The R2 values achieved for the regressions between acetate, propionate and butyrate, and OBCFA were 79.6%, 86.6% and 84.9% respectively. Moreover, in the current study, predictions of the rumen fermentation pattern showed higher R2 (p < 0.01) when based on OBCFA compared with proximate feed composition. If relations persist in vivo, there could be scope for milk OBCFA to predict the supply of specific rumen nutrients.  相似文献   

20.
The present study examined the effects of substituting kraft pulp (KP) with corn silage (CS) on dry matter intake (DMI), ruminal mat and rumen fermentation characteristics, and rumination. Four non‐lactating, rumen‐cannulated Holstein cows were fed a CS diet comprising 36% grass silage (GS) and 64% CS or a KP diet comprising 36% GS, 57% KP, and 7% soybean meal. DMI was significantly lower in cows fed the KP diet than in those fed the CS diet (< 0.05), whereas rumination time did not significantly differ between the treatments. Dry matter content in the rumen immediately before and 3 h after feeding was significantly higher in cows fed the KP diet than in those fed the CS diet (< 0.05). The consistency and thickness of the ruminal mat did not significantly differ between the treatments. The ruminal mean retention time of feed particles tended to be longer in cows fed the KP diet than in those fed the CS diet (p < 0.10). The ruminal digestion rate of KP was comparable to that of GS and CS. Because ruminal mat was formed and rumination was stimulated, KP was considered to have the equivalent physical effectiveness as CS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号