首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
This study was performed in Ross 308 chickens aged 1–21 days and aimed to evaluate whether the addition of 25‐hydroxycholecalciferol (25(OH)D3) to broiler chicken diets affects their growth performance and immunity. A completely random 2 × 2 factorial arrangement was used with two levels of vitamin D3 and the absence or presence of 25(OH)D3, corresponding to four treatments based on sorghum + soya bean diets: (i) 200 IU of vitamin D3/kg of feed (Diet 1) (NRC, 1994 ), (ii) Diet 1 + 69 μg of 25(OH)D3/kg of feed (Diet 2), (iii) 5,000 IU of vitamin D3/kg of feed (Diet 3) and (iv) Diet 3 + 69 μg of 25(OH)D3/kg of feed (Diet 4). Each treatment was conducted with six replicates of 10 chickens each. Water and feed was supplied ad libitum. The results showed significantly increased growth and tibia ash (p < .05) in the birds fed 5,000, IU of vitamin D3/kg + 25(OH)D3. Additionally, the cellular immune response increased significantly (p < .05) in both treatments with added 25(OH)D3. Based on the results obtained under the current test conditions, the addition of 25(OH)D3 at a rate of 69 μg/kg to diets containing vitamin D3 improved the cellular immune response and mineral deposition in the bones of broilers aged 1–21 days. Because these parameters are very important in modern poultry farming, these results indicate that supplementation with 25(OH)D3 should improve broiler production.  相似文献   

2.
Leg problems often result from the rapid weight gain and poor bone quality in modern ducks, leading to a high risk of fractures and continuous pain. We hypothesized that improving bone quality in combination with delaying weight gain via a low nutrient density (LND) diet probably reverses these skeletal abnormalities. Studies indicated that 25-hydroxycholecalciferol (25-OH-D3), a vitamin D3 metabolite, is effective in treating bone-related disorders. Therefore, Exp. 1 evaluated the effects of 25-OH-D3 on tibial mass of meat ducks. Male meat ducklings were fed a standard nutrient density diet (containing a regular vitamin regimen) without or with 25-OH-D3 at 0.069 mg/kg for 35 d. The results showed that 25-OH-D3 supplementation improved the mineral content, microarchitecture and mechanical properties of tibias, and this companied by a decreased serum bone resorption marker and a concomitant decrement in osteoclast-specific marker genes expression. Subsequently, Exp. 2 was conducted to examine the impacts of 25-OH-D3 incorporating an LND diet on tibial quality of ducks under 2 different vitamin regimens (regular and high). Ducklings were allocated to a 2 × 2 factorial arrangement with 2 kinds of vitamin premixes and without or with 25-OH-D3 at 0.069 mg/kg in LND diets. The high premix had higher levels of all vitamins except biotin than the regular premix. The results demonstrated that high vitamin diets exhibited more significant effects than regular vitamin diets on inhibiting bone turnover and increasing minerals deposition. Tibial mineral content, microarchitecture, and strength of birds under the regular vitamin regimen were increased by 25-OH-D3 supplementation; However, these positive effects were not observed in ducks under the high vitamin regimen. To conclude, 25-OH-D3 supplementation improves tibial mass by suppressing osteoclast-mediated bone resorption in meat ducks, and this positive impact only was observed in regular but not high vitamin regimen when birds fed an LND diet.  相似文献   

3.
The effect of exposure to different UVb compact lamps on the vitamin D status of growing bearded dragons (Pogona vitticeps) was studied. Forty‐two newly hatched bearded dragons (<24 h old) were allocated to six treatment groups (n = 7 per group). Five groups were exposed to different UVb compact lamps for two hours per day, with a control group not exposed to UVb radiation. At 120 days of age, blood samples were obtained and concentrations of 25(OH)D3, Ca, P and uric acid were determined. In addition, plasma 25(OH)D3 concentration was determined in free‐living adult bearded dragons to provide a reference level. Only one treatment resulted in elevated levels of 25(OH)D3 compared to the control group (41.0 ± 12.85 vs. 2.0 ± 0.0 nmol/L). All UVb‐exposed groups had low 25(OH)D3 plasma levels compared to earlier studies on captive bearded dragons as well as in comparison with the free‐living adult bearded dragons (409 ± 56 nmol/L). Spectral analysis indicated that all treatment lamps emitted UVb wavelengths effective for some cutaneous vitamin D synthesis. None of these lamps, under this regime, appeared to have provided a sufficient UVb dose to enable synthesis of plasma 25(OH)D3 levels similar to those of free‐living bearded dragons in their native habitat.  相似文献   

4.
Forty‐eight, cross‐bred (GL × LW × P) piglets were used in a 42‐day tolerance trial to assess the effects of feeding diets supplemented with vitamin D or increasing levels of 25‐hydroxyvitamin D3 (25‐OH‐D3). Six‐week‐old piglets (24 castrate males, 24 females) were used. Two replicate groups of 6 piglets were randomized by weight and allocated to four dietary treatments. The control group (T1) was supplemented with 50 μg vitamin D3/kg feed. The experimental groups received 25‐OH‐D3 at the recommended dose (T2: 50 μg/kg = 1x), at 250 μg/kg (T3: 5x) or at 500 μg/kg (T4: 10x) respectively. Feed intake and daily weight gain were measured weekly, and the animals were examined by a veterinarian daily. After 42 days, body mass, blood, urine, bone and tissue samples were analysed and a pathology examination conducted. Dietary treatments had no significant effect on final body mass or daily weight gain. The 25‐OH‐D3 plasma concentration in T1 was 17 ± 3 ng/ml (mean ± SD) while the respective values of the experimental groups were significantly increased in T2, T3 and T4. Tissue concentrations of 25‐OH‐D3 were higher in liver and muscle for T3 and T4 and in skin for T4 than in T1. However, neither gross pathology nor histology, nor blood and urine characteristics, nor bone parameters were affected by dietary treatments. Weight of organs as well as dry matter, ash and calcium content of kidneys remained unaffected by dietary 25‐OH‐D3 intake. Furthermore, no changes were observed for general indicators of health. The results of this study demonstrated that feeding piglets with 25‐OH‐D3 at 5 or 10 times the recommended level had no adverse effects on any of the biological parameters measured. It was concluded that 25‐OH‐D3 can be regarded as a supplement with a very high safety margin when used at the recommended level.  相似文献   

5.
Vitamin D is involved in calcium metabolism as well as bone and shell quality, and is therefore important to broiler breeders. In this research we investigated the effects of maternal dietary 25-OH vitamin D3 on broiler breeder egg quality and hatchability, as well as on progeny bone mineral density and performance. In a field study, all hens were fed 3,000 IU of vitamin D3 (D) per kilogram of complete feed; in addition half of the hens also received 34.5 µg of 25-OH vitamin D3 per liter in the drinking water (25OHD). Eggs from each treatment group were incubated and hatched; chicks were fed a common diet and grown to 41 d of age. Eggs from hens in the 25OHD treatment had a nearly 30% reduction in early embryo mortality. However, a larger egg size resulted in greater chick BW for the D chicks, although this did not affect broiler production performance. Broilers from the maternal 25OHD treatment had a lower FCR during the grower phase. Unexpectedly, chick plasma 25-OH vitamin D3 was only greater for the maternal 25OHD treatment at 4 d of age, but not at hatch, 2, 6, 8, 10, 12, or 14 d of age. Maternal vitamin D3 source did not affect progeny 41-d bone mineral density. Maternal 25-OH vitamin D3 had a protective effect on the growing embryo, reducing early embryonic mortality, with minimal effects on progeny performance and bone mineral density to processing at 41 d of age. The previously reported effects of 25-OH vitamin D3 on increasing broiler performance and breast yield seem to be dependent on supplementation of the broiler diet; a carry-over effect of maternal supplementation is insufficient to achieve these effects.  相似文献   

6.
Objective To investigate factors associated with low vitamin D status of alpacas at pasture in southern Australia. Design A 2‐year survey of alpacas from two farms in South Australia and three in Victoria. Blood samples were collected from 20 to 30 alpacas on each farm on five occasions each year. Breed, gender, age and fleece colour of animals were recorded. Method Blood samples were assayed for plasma 2.5‐hydroxycholecalciferol (25‐OH D3) and plasma inorganic phosphorus (Pi). Data sets from 802 animal samples were analysed by multiple regression to determine variables associated with low vitamin D status of alpacas. The relationship between plasma 25‐OH D3 and plasma Pi was also investigated. Results Vitamin D status was significantly affected by month of sampling, with low values in late winter and high values in summer. Plasma vitamin D concentrations increased with age, were higher in alpacas with light fleeces than in those with dark fleeces and were also higher in the Suri than in the Huacaya breed. Plasma Pi concentrations were generally lower in alpacas with plasma 25‐OH D3 values < 25 nmol/L. Conclusions Young alpacas with dark fleeces are most at risk from vitamin D insufficiency in late winter in southern Australia. The present study indicates that plasma Pi values are not a reliable indicator of vitamin D status of alpacas as assessed by plasma 25‐OH D3 concentrations.  相似文献   

7.
The principal objective of this experiment was to evaluate the effect of 25‐hydroxy‐cholecalciferol (25‐OH‐D3) on the development of osteochondrosis in 6‐ to 110‐kg castrated male pigs. The growth rate and serum calcium and inorganic phosphate levels neither increased nor decreased in response to supplementation of 25‐OH‐D3. However, supplemental 25‐OH‐D3 significantly increased serum levels of 25‐OH‐D3 and 1α,25‐hydroxy‐cholecalciferol without any influence on bone mineral density. The 25‐OH‐D3‐treated group had significant (P < 0.05) reduced incidence of osteochondrotic lesions compared to the control group as evidenced by macroscopically examining the articular cartilage of the distal humerus (32.4% vs. 59.3%) and distal femur (47.1% vs. 87.5%). Likewise, supplemental 25‐OH‐D3 significantly reduced osteochondrotic lesions over the control when histologically examining humerus (20.6% vs. 43.8%) and femur (52.9% vs. 87.5%). The results of this experiment suggested that 25‐OH‐D3 supplementation in pig diets had a tendency to promote normal endochondral ossification, inhibit osteochondrosis progression and possibly regenerate destroyed cartilage tissue.  相似文献   

8.
The purpose of this study was to investigate the effects of diet type (normal or low Ca and P diets) and 25(OH)D3 supplementation (with or with not 2000 IU/kg 25(OH)D3) during late gestation on the serum biochemistry and reproductive performance of aged sows and newborn piglets. A total of 40 sows, which are at their 7th parity, were divided into four groups: control group (standard diet), low Ca group, 25(OH)D3 group and low Ca plus 25(OH)D3 group respectively (10 in each group). The blood of sows on day 100 and 114 of gestation and newborn piglets was collected for serum biochemical analyses. Results showed that the reproductive performance of sows was not influenced by diet type or 25(OH)D3 supplementation (p > 0.05). And the addition of 25(OH)D3 to diet low Ca group caused that the content of serum TG in sows on day 100 of gestation was not different from that of the control group (p > 0.05). The addition of 25(OH)D3 significantly decreases the content of serum TG in sows on day 114 of gestation (p < 0.05). The addition of 25(OH)D3 significantly increased the content of serum UREA and CREA in newborn piglets (p < 0.05). Overall, feeding 2000 IU/kg 25(OH)D3 to aged sows at late gestation had no effects on reproductive performance, but partly contributed to keeping serum TG balance in sows and may indicate increased pressure on kidneys in newborn piglets.  相似文献   

9.
Improvements in sow productivity have raised questions regarding dietary vitamin D recommendations. The present study aimed to evaluate the effects of the housing system with access to sunlight exposure and supplementation of 25-hydroxicholecalciferol on performance and serum levels of 25(OH)D3 in sows during gestation and lactation. Sows were distributed in an experimental design with two housing systems: gestation crates or gestation free-range system with external area for sunlight exposure; and two diets: 0 or 50 μg of 25-hydroxicholecalciferol kg−1. The use of 25-hydroxicholecalciferol tended (P = 0.052) to improve total born and influenced (P = 0.046) on number of born alive. Litter weight at birth was also increased (P = 0.01) by 25-hydroxicholecalciferol supplementation; 25-hydroxicholecalciferol supplementation and housing system (free-range with sunlight exposure) tended to increase weaning weight (P = 0.07) and litter daily gain (P = 0.051) during lactation. Exposure to sunlight and 25-hydroxicholecalciferol supplementation increased 25(OH)D3 serum levels when compared with control treatment during gestation (136.95 vs. 113.92 ng mL−1; P = 0.035) and lactation (120.29 vs. 88.93 ng mL−1; P = 0.026). In conclusion, the association of 25-hydroxicholecalciferol supplementation with exposure to sunlight during gestation improved significantly 25(OH)D3 serum levels and consequently performance traits in gestation and lactation.  相似文献   

10.
A study was conducted to determine the circadian rhythms and trends of vitamin D metabolites including 25‐hydroxyvitamin D3, 25‐hydroxyvitamin D2, 1,25‐dihydroxyvitamin D and parathyroid hormone, in addition to serum calcium, phosphorus and magnesium concentrations in horses over 48 h on the shortest and longest days of the year in 2013. Five healthy adult horses (Equus caballus) were on a constant pasture feeding regimen, and blood samples were collected from each horse every 3 h over a 48‐h period, starting at 07:00 PM on day one and finishing at 07:00 PM on day three, for the measurement of calciotropic hormones and electrolytes. There was a significant difference between the serum concentration of calciotropic hormones, iCa, tCa, P and tMg between the shortest (winter) and longest (summer) days of the year in horses. Serum concentration of 25OHD3 was very low and mostly undetectable. Serum iCa, 1,25(OH)2D and PTH concentrations clearly showed a circadian rhythm on the longest days of the year and serum tCa, P and tMg concentrations showed a diurnal pattern on the longest days (summer) of the year. None of the analytes showed any circadian rhythm on the shortest days (winter) of the year. The result of this study could have significant relevance to equine athletes travelling to international equestrian competitions and facing a huge time and seasonal differences that might affect their ability to adjust their circadian rhythms to new time zones.  相似文献   

11.
Vitamin D is essential in calcium and phosphorus regulation, bone physiology, cell proliferation and epithelial integrity. Literature on vitamin D in growing horses is sparse, and the effect of age on vitamin D has not been evaluated in equids in the United States or in tropical countries. The goal of this study was to determine if there was an effect of age on serum 25(OH)D3 concentrations in equids in the US (Ohio/Kentucky) and Thailand (Chiang Rai and Kanchanaburi) during the same time of the year. Blood samples were collected from healthy ponies (n = 21) and Thoroughbred foals (n = 13), yearlings (n = 10), and horses (n = 20) in Thailand and from Thoroughbred foals (n = 10) and horses (n = 17) in the US. Serum concentrations of 25(OH)D3, calcium and phosphorus were measured.In both countries, serum 25(OH)D3 concentrations were lower in foals than in yearlings and adult horses. Serum 25(OH)D3 concentrations were higher in horses than in ponies in Thailand, but were not different between horses from either country. Calcium concentrations were not different between groups or location. In both countries, phosphorus concentrations were higher in foals than in older groups; however, were not different between ponies and horses. This study shows that independent of geography there are age-related differences in 25(OH)D3 concentrations in horses and further confirms that 25(OH)D3 concentrations are lower in horses compared to other species. The information will serve as the basis for future clinical studies and to help understand better the pathophysiology of equine disorders associated with calcium and phosphorus dysregulation.  相似文献   

12.
The present study was conducted to investigate the effects of dietary vitamin level on sternum growth, calcification and carcass traits in meat duck. A total of 432 1‐d‐old mixed‐sex Cherry Valley ducks (216 males and 216 females) were randomly allocated and fed low‐vitamin level diet (70% NRC vitamin regimen), high‐vitamin level diet (DSM vitamin regimen) or medium‐vitamin level diet (50% low‐vitamin level diet and 50% high‐vitamin level diet). Sternum and serum were harvested after 49 d of feeding. Compared with the low‐vitamin level group, dietary high‐vitamin level increased body weight (BW) at d 49 (p = 0.029) but did not alter all parameters of carcass trait (p > 0.05). Medium‐ and high‐vitamin level increased sternum defatted weight, density, ash and calcium (Ca) concentration (p < 0.05). Meanwhile, the medium and high‐vitamin level group significantly decreased the relative proportions of the keel cartilage at 49 d (p < 0.05) and decreased the sternum length and height (p < 0.05) in meat ducks at 49 d. Likewise, high‐vitamin level improved serum Ca and phosphate (P) content (p < 0.05) and declined serum Alkaline phosphatase (ALP) activity (p = 0.003) compared with the low‐vitamin level group. Our study indicates that high‐vitamin level did not affect the examined carcass traits; however, high‐vitamin level improved growth performance and sternum calcification.  相似文献   

13.
Dietary supplementation with 25-hydroxyvitamin D3 (25OHD3), as an alternative source of vitamin D, is becoming increasingly popular due to its commercialization and more efficient absorbability. The addition of 25OHD3 rather than its precursor vitamin D3 can circumvent the 25-hydroxylation reaction in the liver, indicating that supplementation of 25OHD3 can rapidly improve the circulating vitamin D status of animals. Emerging experiments have reported that maternal 25OHD3 supplementation could increase sow performances and birth outcomes and promote circulating vitamin D status of sows and their offspring. Increased milk fat content was observed in many experiments; however, others demonstrated that adding 25OHD3 to lactating sow diets increased the contents of milk protein and lactose. Although an inconsistency between the results of different experiments exists, these studies suggested that maternal 25OHD3 supplementation could alter milk composition via its effects on the mammary gland. Previous studies have demonstrated that adding 25OHD3 to sow diets could improve the mRNA expressions of insulin-induced gene 1 (INSIG1) and sterol regulatory element-binding protein 1 (SREBP1) in the mammary gland cells from milk and increase the mRNA expressions of acetyl-CoA carboxylase α (ACCα) and fatty acid synthase (FAS) in the mammary gland tissue. Maternal 25OHD3 supplementation promotes skeletal muscle development of piglets before and after parturition, and improves bone properties including bone density and bone breaking force in lactating sows and their piglets. Interestingly, 25OHD3 supplementation in sow diets could improve neonatal bone development via regulation of milk fatty acid composition related to bone metabolism and mineralization. In this review, we also discuss the effects of adding 25OHD3 to sow diets on the gut bacterial metabolites of suckling piglets, and propose that butyrate production may be associated with bone health. Therefore, to better understand the nutritional functions of maternal 25OHD3 supplementation, this paper reviews advances in the studies of 25OHD3 for sow nutrition and provides references for practical application.  相似文献   

14.
One hundred Yorkshire × Landrace sows were randomly assigned to one of two dietary treatments (diet ND: 6,000 IU vitamin D3/d feed; diet 25‐D: 200 μg/day 25OHD3 feed). The experiment began on d 90 of gestation and continued until weaning on day 21 of lactation. In sows that received 25OHD3, the growth rate of the piglets before weaning was significantly accelerated (0.266 kg/day, p < .05). Sow serum was collected after weaning, and those in the 25OHD3 group were found to have significantly higher serum calcium (CA) and phosphorus (PI) levels (p < .05). Interestingly, the oestrus cycle of sows fed 25OHD3 was significantly shortened (p < .05), the oestrus time was concentrated on the fifth day after weaning, and the piglets were born with a higher degree of uniformity (p < .05). Colostrum was collected on the day of delivery, and the colostrum of sows fed 25OHD3 contained higher milk fat content than the control group (p < .05). 25OHD3 supplementation increased the mRNA and protein expression of INSIG1 and SREBP1, which regulate milk fat synthesis, in the mammary gland of lactating sows (p < .05). In conclusion, 25OHD3 supplementation in maternal diets improved reproductive performance, milk fat content and the mRNA and protein levels of genes regulating milk fat synthesis in lactating sows.  相似文献   

15.
In this study, supplementation of two levels (5 and 25 parts per million; ppm) of boron into broiler diets including 125 kg−1(inadequate) and 2000 kg−1(adequate) vitamin D3as investigated. The effects of supplementation on performance and biochemical characters (Ca, P, Mg, glucose and ) of broilers from 1 to 45 days of age were evaluated. Boron provided significant increases in performances of chicks fed both adequate and inadequate vitamin D3-containing diets. The improvements in the inadequate vitamin D3-containing group were higher than that of adequate vitamin D3-containing group. The boron addition had a positive effect on Ca, P and alkaline phosphatase levels of chicks. Boron might be regarded as beneficial in inadequate vitamin D3-containing broiler feed.  相似文献   

16.
Two experiments were conducted to investigate the effects of 1,25(OH)2D3 to stimulate Na+-dependent phosphate uptake in Caco-2 cells, and the effects of dietary vitamin D supplementation to vitamin D-deficient nursery pigs on Na+-dependent nutrient uptake and mRNA expression of NaPi-IIb cotransporter and calbindin D9k in the jejunum. In Exp. 1, 250,000 Caco-2 cells were seeded on Costar 12 mm Snapwell inserts with a 0.40 µm polycarbonate filter and a seeding density of 0.25 × 106 and studied at 15 d postconfluence. Cells were treated with 10 nM of either 1,25(OH)2D3 or vehicle for 48 h and then mounted in modified Ussing chambers for transepithelial measurements. In Exp. 2, pigs (n = 32) were removed from sows at 3 d of age, placed on a vitamin D-deficient milk replacer diet and housed in a room devoid of sunlight and UV light in the range of 280 to 300 nm. On day 28, serum 25(OH)D3 concentrations were measured to verify low vitamin D status. Pigs (BW 10.10 ± 0.38 kg) were then individually housed day 28 postweaning and allotted to 1 of 2 dietary treatments. Dietary treatments consisted of corn-soybean-based diets with vitamin D supplementations of 0 or 1,500 IU/kg diet for 12 d. Blood samples were taken from the brachiocephalic vein on the initial (day 0) and final day (day 10, 11, or 12) of the study for analysis of serum 25(OH)D3, P, and Ca. Pigs were euthanized and jejunal segments were harvested and used in modified Ussing chambers and for RNA isolation and subsequent quantitative RT-PCR analysis. In Exp. 1, treating Caco-2 cells with 10 nM 1,25(OH)2D3 resulted in a 52% increase (P < 0.005) in Na+-dependent phosphate uptake compared with cells treated with a vehicle. In Exp. 2, Na+-dependent phosphate and glucose transport did not differ (P > 0.10) among treatment groups. Additionally, NaPi-IIb and calbindin D9k mRNA expression were not different (P > 0.10) between treatment groups. No differences (P > 0.10) were detected in final serum P or 25(OH)D3 concentrations between treatments. However, serum Ca linearly increased (P < 0.05) as the concentration of supplemental vitamin D increased in the diet. Overall, while 1,25(OH)2D3 stimulated Na+-dependent phosphate uptake in Caco-2 cells, supplementing diets with 1,500 IU/kg vitamin D3 from cholecalciferol did not increase jejunal Na+-dependent phosphate uptake or NaPi-IIb mRNA expression over that of pigs fed diets with no supplemental cholecalciferol.  相似文献   

17.
1. The aim of the study was to investigate the effects of feeding fast growing turkeys with differentiated dietary calcium (Ca) content, and the partial replacement of vitamin D3 in the feed with 25-hydroxycholecalciferol (25(OH)D3), on skeletal properties.

2. One-day-old Big-6 male turkeys (n?=?1008) were randomly divided into 4 groups, and two subgroups were created within each group. The groups were differentiated with 4 levels of Ca provision in the feed, namely 85% of the National Research Council (NRC) recommendation (Group Ca1); 95% as above (Group Ca2); 105% as above (Group Ca3); and 115% as above (Group Ca4). The first subgroup received the recommended dosage of cholecalciferol (vitamin D3 subgroup) in the feed, while in the second subgroup (Hy-D subgroup), half of the dosage of cholecalciferol was replaced with 25(OH)D3. At the ages of 4, 8, 12 and 20 weeks, 7 turkeys from each subgroup were randomly selected and killed to obtain the right tibia for densitometric, geometric and mechanical analyses.

3. This study showed advantageous effects of increased calcium supply in the diet on skeletal system properties, that were increased and produced the most desirable traits in turkeys receiving 95%, 105% and 115% of the NRC calcium recommendation. Benefits resulting from administration of 25(OH)D3 in the diet were also obtained in the skeletal formation of turkeys, and the most advantageous effects were present in the group receiving 105% of recommended dietary Ca.

4. Effects on the metabolic response of the skeleton of turkeys to manipulation of dietary calcium content and vitamin D3 source were the most evident in the groups between 4 and 12 weeks of life, and demonstrated a limited ability to induce a positive influence on bone properties at advanced stages of the production cycle by alteration of these dietary factors.  相似文献   


18.
Maternal nutrient restriction during pregnancy is a major problem worldwide for human and animal production. Arginine (Arg) is critical to health, growth and reproduction. N‐carbamylglutamate (NCG), a key enzyme in arginine synthesis, is not extensively degraded in rumen. The aim of this study was to investigate ameliorating effects of rumen‐protected arginine (RP‐Arg) and NCG supplementation on dietary in undernourished Hu sheep during gestation. From day 35 to 110 of gestation, 32 Hu ewes carrying twin foetuses were randomly divided into four groups: a control (CG) group (n = 8; fed 100% National Research Council (NRC) requirements for pregnant sheep), a nutrient‐restricted (RG) group (n = 8; fed 50% NRC requirements, which included 50% mineral–vitamin mixture) and two treatment (Arg and NCG) groups (n = 8; fed 50% NRC requirements supplemented with 20 g/day RP‐Arg or 5 g/day NCG, which included 50% mineral–vitamin mixture). The umbilical venous plasma samples of foetus were tested by 1H‐nuclear magnetic resonance. Thirty‐two differential metabolites were identified, indicating altered metabolic pathways of amino acid, carbohydrate and energy, lipids and oxidative stress metabolism among the four groups. Our results demonstrate that the beneficial effect of dietary RP‐Arg and NCG supplementation on mammalian reproduction is associated with complex metabolic networks.  相似文献   

19.
The objective of this study was to investigate the effects of supplementing both phytase and 25‐hydroxyvitamin D3 (25‐OH ‐D?) on pig performance, nutrient digestibility, carcass characteristics, bone parameters and pork quality in finisher pigs. The experimental design was a 2 × 2 factorial comprising of four dietary treatments. One hundred and twenty pigs (60 male, 60 female) were blocked according to live weight and sex and allocated to the following dietary treatments: low P (4.81 g/kg) diet (basal) (T1); low P diet + phytase (T2); low P diet + 25‐OH ‐D? (T3) and low P diet + phytase + 25‐OH ‐D? (T4). Pigs supplemented with phytase had a lower average daily feed intake (ADFI ) (2.45 kg vs. 2.59 kg; p  < 0.05) and lower feed conversion ratio (FCR ) (2.74 kg/kg vs. 2.85 kg/kg; <  0.05) compared to pigs offered the nonphytase diets. Pigs offered phytase diets had a higher (<  0.05) coefficient of apparent total tract digestibility (CATTD ) of ash, phosphorous (P) and calcium (Ca) compared with pigs offered the nonphytase supplemented diets. Pigs offered the 25‐OH ‐D3 diets had a higher CATTD of N and ash. Pigs offered the phytase diets had increased (<  0.05) bone DM , ash, Ca, P and density compared to the nonphytase diets. There was a significant interaction (<  0.05) between phytase and 25‐OH ‐D3 on cook loss. Pigs offered 25‐OH ‐D3 had increased cook loss over the basal diet; however, there was no effect on cook loss when phytase and 25‐OH ‐D3 were offered in combination compared to the phytase only diet. Pigs offered 25‐OH ‐D3 exhibited higher (<  0.05) Warner Bratzler shear force values and lower (<  0.05) pork lightness (L *) surface colorimeter values. In conclusion, there was no benefit to offering a combination of phytase and 25‐OH ‐D3 on pig performance, bone parameters or pork quality.  相似文献   

20.
In this study, the effect of ultraviolet (UV) light and dietary vitamin D on calcium metabolism in permanently indoor‐housed gentoo penguins (Pygoscelis papua ) was investigated. The study consisted of three periods, each completed with blood samples to analyse plasma concentrations of 25‐OH‐D, 1,25‐(OH)2‐D, ionized (iCa) and total calcium (tCa). During the first study period (D), animals were housed under routine conditions without UV‐light and fed a diet of different fish species, supplemented with 1,000 IU vitamin D per animal and day. The following study period (Baseline) of 28‐day duration consisted of the same diet without any vitamin D supplementation and without UV‐light. During the study period (UVB) artificial UV‐light was added for 3 weeks. The vitamin D content of fish was measured by high‐performance liquid chromatography. It varied between fish species and between facilities, ranging from no measurable content in capelin (Mallotus villosus ) to 7,340 IU vitamin D/kg original matter (OM) in herring (Clupea spp). The average dietary vitamin D content was 311 IU/kg OM at facility 1 and 6,325 IU/kg OM at facility 2, resulting in a vitamin D intake per animal and day without supplementation of 130 IU (25.5 IU/kg body weight BW) and 2,454 IU (438.2 IU/kg BW) respectively. The supplementation of vitamin D elevated significantly the plasma concentrations of 25‐OH‐D by an intraindividual difference of 15 (range ?2 to 59) nmol/L and tCa by 0.1 (0.0–0.3) mmol/L only at facility 2. The exposure to UV‐light raised the blood concentrations of tCa at facility 2 by 0.15 (0.1–0.2) mmol/L, and of iCa and tCa for females at facility 1 by 0.23 (0.13–0.41) mmol/L and 1.8 (1.1–2.5) mmol/L respectively. No significant influence of the study periods (D) and (UVB) was found for the concentrations of 1,25‐(OH)2‐D at both facilities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号