首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Congenital extrahepatic portosystemic shunts are anomalous vessels joining portal and systemic venous circulation. These shunts are often diagnosed sonographically, but computed tomography (CT) angiography produces high‐resolution images that give a more comprehensive overview of the abnormal portal anatomy. CT angiography was performed on 25 dogs subsequently proven to have an extrahepatic portosystemic shunt. The anatomy of each shunt and portal tributary vessels was assessed. Three‐dimensional images of each shunt type were created to aid understanding of shunt morphology. Maximal diameter of the extrahepatic portosystemic shunt and portal vein cranial and caudal to shunt origin was measured. Six general shunt types were identified: splenocaval, splenoazygos, splenophrenic, right gastric‐caval, right gastric‐caval with a caudal shunt loop, and right gastric‐azygos with a caudal shunt loop. Slight variations of tributary vessels were seen within some shunt classes, but were likely clinically insignificant. Two shunt types had large anastomosing loops whose identification would be important if surgical correction were attempted. A portal vein could not be identified cranial to the shunt origin in two dogs. In conclusion, CT angiography provides an excellent overview of extrahepatic portosystemic shunt anatomy, including small tributary vessels and loops. With minor variations, most canine extrahepatic portosystemic shunts will likely be one of six general morphologies.  相似文献   

2.
The aims of this study were to determine if accurate diagnosis of congenital portosystemic shunt was possible using two dimensional, grey-scale ultrasonography, duplex-Doppler, and color-flow Doppler ultrasonography in combination, and to determine if dogs with congenital portosystemic shunts have increased or variable mean portal blood flow velocity. Eighty-two dogs with clinical and/or clinicopathologic signs compatible with portosystemic shunting were examined prospectively. Diagnosis of congenital portosystemic shunt was subsequently confirmed in 38 of these dogs using operative mesenteric portography: 14(37%) dogs had an intrahepatic shunt and 24(63%) had an extrahepatic shunt. Ultrasonography had a sensitivity of 95%, specificity of 98%, and accuracy of 94%. Ultrasonographic signs in dogs with congenital portosystemic shunts included small liver, reduced visibility of intrahepatic portal vessels, and anomalous blood vessel draining into the caudal vena cava. Correct determination of intra - versus extrahepatic shunt was made ultrasonographically in 35/38 (92%) dogs. Increased and/or variable portal blood flow velocity was present in 21/30 (70%) dogs with congenital portosystemic shunts. In one dog with an intrahepatic shunt the ultrasonographic diagnosis was based partly on finding increased mean portal blood flow velocity because the shunting vessel was not visible. Detection of the shunting vessel and placement of duplex-Doppler sample volumes were facilitated by use of color-flow Doppler. Two-dimensional, grey-scale ultrasonography alone is sufficient to detect most intrahepatic and extrahepatic shunts; sensitivity is increased by additional use of duplex-Doppler and color-flow Doppler. Increased and/or variable portal blood flow velocity occurs in the majority of dogs with congenital portosystemic shunts.  相似文献   

3.
Two dogs with simultaneous congenital and acquired portosystemic shunts are reported. The first dog was an eight-month-old, male Golden Retriever with a history of peritoneal effusion, polyuria/polydipsia, and stunted growth. The dog had a microcytic, hypochromic anemia, a mildly elevated AST, and a moderate to severely elevated preprandial and postprandial serum bile acids. Transcolonic portal scintigraphy confirmed the presence of a portosystemic shunt. An intraoperative mesenteric portogram was performed. Two conjoined congenital extrahepatic portosystemic shunts and multiple acquired extrahepatic portosystemic shunts were identified. The second dog was a five-month-old, mixed breed with two week history of peritoneal effusion. Abdominal ultrasound and transcolonic scintigraphy were used to diagnose a portosystemic shunt. A single extrahepatic portosystemic shunt, portal hypertension, and multiple acquired collateral shunts were identified at surgery. The histologic alterations observed in these dogs were consistent with a portosystemic shunt. In these dogs, the presence of congenital and acquired portosystemic shunts and histopathologic findings are considered to represent a combination of congenital portosystemic shunts and noncirrhotic portal hypertension or portal vein hypoplasia.  相似文献   

4.
O bjective : To describe the computed tomographic and magnetic resonance imaging features of segmental caudal vena cava aplasia and associated vascular anomalies in dogs.
M ethods : A retrospective study was performed reviewing computed tomographic and magnetic resonance imaging archives of eight institutions for dogs with segmental caudal vena cava aplasia. Inclusion criteria included a computed tomographic or magnetic resonance imaging study and supportive diagnostic and follow-up information. Abdominal vessels were reviewed for size, shape, location and course (including tributaries and branches) and classified as normal, abnormal or shunt vessels.
R esults : Ten dogs with segmental caudal vena cava aplasia were identified. In all dogs, postrenal caval blood was shunted to either a right or a left azygos vein, with seven different angiographic patterns. Affected dogs were predominantly female (70 per cent) and young (mean 2·6 years). Additional portocaval and porto-azygos shunt vessels were identified in two cases each. Computed tomographic angiography and magnetic resonance angiography depicted details of abdominal vessels including thrombus formation in one dog.
C linical S ignificance : Segmental caudal vena cava aplasia is a vascular congenital anomaly in the dog that can be associated with thrombosis and portosystemic shunts. Computed tomographic angiography and magnetic resonance angiography are excellent tools to demonstrate the complex vascular anatomy and to guide treatment planning for portosystemic shunts and thrombolytic therapy.  相似文献   

5.
Extrahepatic‐congenital portosystemic shunt is a vascular anomaly that connects the portal vein to the systemic circulation and leads to a change in hepatic microvascular perfusion. However, an assessment of hepatic microvascular perfusion is limited by conventional diagnostic modalities. The aim of this prospective, exploratory study was to assess hepatic microvascular perfusion in dogs with extrahepatic‐congenital portosystemic shunt using contrast‐enhanced ultrasonography (CEUS) using perfluorobutane (Sonazoid®). A total of 17 dogs were included, eight healthy dogs and nine with extrahepatic‐congenital portosystemic shunt. The time‐to‐peak (TTP), rising time (RT), and rising rate (RR) in the hepatic artery, portal vein, and hepatic parenchyma, as well as the portal vein‐to‐hepatic parenchyma transit time (ΔHP‐PV) measured from time‐intensity curve on CEUS were compared between healthy and extrahepatic‐congenital portosystemic shunt dogs. The RT of the hepatic artery in extrahepatic‐congenital portosystemic shunt dogs was significantly earlier than in healthy dogs (P = 0.0153). The TTP and RT of the hepatic parenchyma were significantly earlier in extrahepatic‐congenital portosystemic shunt dogs than in healthy dogs (P = 0.0018 and P = 0.0024, respectively). ΔHP–PV was significantly shorter in extrahepatic‐congenital portosystemic shunt dogs than in healthy dogs (P = 0.0018). CEUS effectively revealed changes in hepatic microvascular perfusion including hepatic artery, portal vein, and hepatic parenchyma simultaneously in extrahepatic‐congenital portosystemic shunt dogs. Rapid hepatic artery and hepatic parenchyma enhancements may reflect a compensatory increase in hepatic artery blood flow (arterialization) caused by a decrease in portal vein blood flow and may be used as an additional diagnostic test to distinguish extrahepatic‐congenital portosystemic shunt dogs from healthy dogs.  相似文献   

6.
OBJECTIVE: To evaluate the effect of species and breed on the anatomy of portosystemic vascular anomalies in dogs and cats. DESIGN: Retrospective study of 233 dogs and nine cats presenting to the University Veterinary Centre, Sydney. METHODS: Case records were evaluated for breed, sex, age, anatomical and histological diagnosis. Cases were included when a portosystemic vascular anomaly resulted from a congenital or developmental abnormality of the liver or portal venous system. RESULTS: Disease conditions included single congenital portosystemic shunt with patent portal vasculature (214 dogs, nine cats), portal vein aplasia (nine dogs), multiple acquired shunts resulting from portal vein hypoplasia (seven dogs), biliary atresia (one dog) and microvascular dysplasia (one dog). One Maltese had a single, congenital shunt and multiple acquired shunts resulting from hepatic cirrhosis. Breeds that were significantly over-represented included the Maltese, Silky Terrier, Australian Cattle Dog, Bichon Frise, Shih Tzu, Miniature Schnauzer, Border Collie, Jack Russell Terrier, Irish Wolfhound and Himalayan cat. Bichon Frise with shunts were significantly more likely to be female than male (12:2, P < 0.001). Two hundred and fourteen dogs (91.4%), and all cats, had shunts that were amenable to attenuation. Inoperable shunts occurred in 19 dogs (8.2%). Fifty six of 61 (92%) operable shunts in large breed dogs were intrahepatic, versus 10/153 (7%) in small breeds (P < 0.0001). Breeds that were not predisposed to portosystemic shunts were significantly more likely to have unusual or inoperable shunts than dogs from predisposed breeds (29% versus 7.6%, P < 0.0001). No significant relationship between breed and shunt type could be determined in cats. CONCLUSION: Breed has a significant influence on shunt anatomy in dogs. Animals presenting with signs of portosystemic shunting may suffer from a wide range of operable or inoperable conditions. Veterinarians should be aware that unusual or inoperable shunts are much more likely to occur in breeds that are not predisposed to congenital portosystemic shunts.  相似文献   

7.
Per rectal portal scintigraphy using 99mTechnetium pertechnetate (99mTcO4-) was used to diagnose portosystemic shunts (PSS) before surgical confirmation in seven dogs and two cats. Shunt fractions, representing the percent of portal blood that bypasses the liver, were determined by computer analysis of the scintigraphic images. Animals with portosystemic shunts had a mean preoperative shunt fraction of 84.02% (n = 9). The mean postoperative shunt fraction in four animals was 58.22%. The mean shunt fraction in ten control dogs was 5.00%. Per rectal portal scintigraphy is an innovative, easily performed, inexpensive method to diagnose congenital portosystemic shunts in dogs and cats.  相似文献   

8.
OBJECTIVE : To report outcomes after cellophane banding of single congenital portosystemic shunts in dogs and cats. STUDY DESIGN : Retrospective study of sequential cases. ANIMALS : One hundred and six dogs and five cats. METHODS : Medical records were reviewed for breed, sex, age at surgery, shunt anatomy, results of pre- and postoperative biochemical analysis, development of postligation neurologic dysfunction, portal hypertension or other serious complications, and the owners' perception of their animal's response to surgery. RESULTS : Ninety-five dogs and all 5 cats had extrahepatic shunts. Eleven dogs had intrahepatic shunts. Six dogs (5.5%) died as a result of surgery from portal hypertension (2 dogs), postligation neurologic dysfunction (2), splenic hemorrhage (1) and suspected narcotic overdose (1). Serious complications were more common in dogs with intrahepatic shunts than those with extrahepatic shunts (P=.002). Postligation neurologic dysfunction necessitated treatment in 10 dogs and 1 cat; 8 dogs and the cat survived. Clinical signs attributed to portosystemic shunting resolved or were substantially attenuated in all survivors. Postoperative serum bile acid concentrations or results of ammonia tolerance testing were available for 88 animals; 74 (84%) were normal and 14 (16%) were abnormal. Multiple acquired shunts were documented in two animals. CONCLUSIONS : Cellophane banding is a safe and effective alternative to other methods of attenuation. CLINICAL RELEVANCE : Slow occlusion of portosystemic shunts using a variety of methods is being evaluated world wide. Cellophane banding is a relatively simple procedure with comparable safety and efficacy to previously reported techniques.  相似文献   

9.
OBJECTIVE: To evaluate the efficacy of cellophane banding of single congenital extrahepatic portosystemic shunts in dogs using transcolonic portal scintigraphy. To investigate the portal circulation of those dogs with elevated postoperative shunt fractions to determine the cause of the persistent shunting. Further, to evaluate whether presenting signs, clinical pathology findings and liver histopathology are predictive of outcome. DESIGN: Prospective study of 16 dogs presenting with single congenital extrahepatic portosystemic shunts. PROCEDURE: Dogs with single extrahepatic portosystemic shunts attenuated by cellophane banding underwent portal scintigraphy and bile acids tolerance testing pre- and post-operatively. Dogs identified with elevated shunt fractions at 10 weeks post-operatively underwent mesenteric portovenography. Qualitative hepatic histopathology from all dogs was reviewed by a veterinary pathologist and assigned a semi-quantitative score to identify any abnormalities that may predict surgical outcome. RESULTS: At 10 weeks post cellophane banding, 10 of 16 cases (63%) had normal shunt fractions, whilst six dogs (37%) had increased shunt fractions and seven dogs (44%) had increased serum bile acids. Of these dogs, mesenteric portovenography revealed incomplete closure of the shunt in three dogs (18.6%) and multiple acquired shunts in three dogs (18.6%). Liver histopathology findings were similar for all dogs, regardless of outcome. CONCLUSIONS: Cellophane banding is an efficacious method for complete gradual occlusion of single extrahepatic shunts when the shunt vessel is attenuated to < or = 3 mm. Transcolonic portal scintigraphy is a reliable method for assessment of shunt attenuation and, unlike serum bile acids, is not influenced by other causes of liver dysfunction.  相似文献   

10.
Objective —To evaluate lack of encephalopathy as a positive prognostic factor for complete ligation of extrahepatic congenital portosystemic shunts in dogs.
Study Design —Retrospective analysis of case records.
Animals —Dogs with extrahepatic congenital portosystemic shunts treated at the Veterinary Medical Teaching Hospital of the College of Veterinary Medicine, Cornell University, from 1985 to 1996.
Methods —The ability to completely ligate the shunting vessel in 12 nonencephalopathic dogs was compared with that in 44 encephalopathic dogs with similar shunts.
Results —Clinical signs in the 12 nonencephalopathic dogs were related to ammonium biurate urolithiasis. All 12 dogs had single extrahepatic shunting vessels. The rate of complete ligation in the nonencephalopathic dogs was 92%, whereas the rate of complete ligation in the 44 encephalopathic dogs with single extrahepatic shunts was 59%. The ability to completely ligate the shunt in nonencephalopathic dogs was significantly better ( P = .04) than in the encephalopathic dogs.
Conclusion—Lack of encephalopathy is a positive prognostic factor for complete ligation of single extrahepatic congenital portosystemic shunts.
Clinical Relevance —In most affected dogs, extrahepatic congenital portosystemic shunts in nonencephalopathic dogs can be completely ligated.  相似文献   

11.
Ultrasonographic diagnosis of congenital portosystemic shunt in 14 cats   总被引:2,自引:0,他引:2  
Twenty-four cats with clinical and, or, clinico-pathological signs compatible with portosystemic shunting were examined prospectively using two-dimensional grey-scale, duplex and colourflow Doppler ultrasonography. Diagnosis of congenital portosystemic shunt was subsequently confirmed in 14 cats using operative mesenteric portography and surgery. Of the 14 affected cats, nine were purebred; eight were male and six female. The mean age at the time of diagnosis was nine months (range four to 27 months). Ultrasonographic evidence of a small liver was present in seven cats (50 per cent); visibility of intrahepatic portal vessels was reduced in three (21 per cent). An anomalous blood vessel was identified ultrasonographically in each cat; in 10 cats (71 per cent) the vessel was observed to originate from the portal vein and drain into the caudal vena cava. Abnormally variable portal blood flow waspresent in eight of the 10 cats in which it was measured. At surgery, six shunts were intrahepatic and eight extrahepatic; the ultrasonographic diagnosis of intra- versus extra-hepatic shunt was correct in 13 cats (93 per cent). No anomalous blood vessels or abnormalities affecting the portal vein were detected ultrasonographically in any of the 10 cats that did not have congenital portosystemic shunting. Hence, the accuracy of ultrasonography for diagnosis of congenital portosystemic shunting in this series was 100 per cent.  相似文献   

12.
A prospective study was conducted to determine the sensitivity and specificity of diagnosis of portosystemic shunts (PSS) and the accuracy of anatomically locating single congenital PSS in dogs using magnetic resonance angiography (MRA). MRA was performed on 10 normal dogs and 23 dogs with PSS. Sensitivity and specificity of MRA to diagnose any shunt among all dogs were 80% and 100%, respectively. Among dogs identified with PSS, sensitivity and specificity of MRA for diagnosis of multiple extrahepatic shunts were 63% and 97%, respectively, and for diagnosis of single congenital shunts were 79% and 100%, respectively. Using MRA, radiologists correctly identified shunts as extrahepatic or intrahepatic in 83% of patients and correctly identified the origin and insertion of the shunts in 57% and 97% of patients, respectively. Use of MRA is specific for diagnosis of PSS and is a sensitive indicator of anatomic location of single congenital portosystemic shunts.  相似文献   

13.
OBJECTIVE: To determine ultrasonographic abnormalities in dogs with hyperammonemia. DESIGN: Retrospective study. ANIMALS: 90 client-owned dogs with hyperammonemia. PROCEDURE: Ultrasonography of the abdominal vessels and organs was performed in a systematic way. Dogs in which the ultrasonographic diagnosis was a congenital portosystemic shunt were included only if they underwent laparotomy or necropsy. Dogs in which the abdominal vasculature appeared normal and dogs in which the ultrasonographic diagnosis was acquired portosystemic shunts and portal hypertension were included only if liver biopsy specimens were submitted for histologic examination. RESULTS: Ultrasonography excluded portosystemic shunting in 11 dogs. Acquired portosystemic shunts were found in 17 dogs, of which 3 had arterioportal fistulae and 14 had other hepatic abnormalities. Congenital portosystemic shunts were found in 61 dogs, of which 19 had intrahepatic shunts and 42 had extrahepatic shunts. Intrahepatic shunts originated from the left portal branch in 14 dogs and the right portal branch in 5. Extrahepatic shunts originated from the splenic vein, the right gastric vein, or both and entered the caudal vena cava or the thorax. Ultrasonography revealed splenic-caval shunts in 24 dogs, right gastric-caval shunts in 9 dogs, splenic-azygos shunts in 8 dogs, and a right gastric-azygos shunt in 1 dog. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that ultrasonography is a reliable diagnostic method to noninvasively characterize the underlying disease in dogs with hyperammonemia. A dilated left testicular or ovarian vein was a reliable indicator of acquired portosystemic shunts.  相似文献   

14.
Objective —To describe six dogs with congenital abnormalities involving the portal vein, caudal vena cava, or both.
Animals —Six client-owned dogs with congenital interruption of the portal vein or the caudal vena cava, or both.
Methods —Portal vein and caudal vena cava anatomy was evaluated by contrast radiography and visualization at surgery. Vascular casts or plastinated specimens were obtained in three animals.
Results —Portal blood shunted into the caudal vena cava in four dogs and the left hepatic vein in one. Two of these five dogs also had interruption of the caudal vena cava with continuation as azygous vein, as did an additional dog, in which the portal vein was normally formed. Portal vein interruption was present in 5 of 74 (6.8%) dogs with congenital portosystemic shunts evaluated at the Veterinary Teaching Hospital during the study period.
Conclusions —Serious malformations of the abdominal veins were present in more than 1 in 20 dogs with single congenital portosystemic shunts.
Clinical Relevance —Veterinarians involved in diagnosis and surgery for portosystemic shunts should be aware of these potential malformations, and portal vein continuity should be evaluated in all dogs before attempting shunt attenuation.  相似文献   

15.
Transvenous retrograde portography for identification and characterization of portosystemic shunts in dogs A method for transvenous retrograde portography (TRP) in dogs suspected to have a portosystemic shunt (PSS) and results in 20 dogs are described. For TRP, dogs were anesthetized and positioned in left lateral recumbency A dual-lumen balloon-tipped catheter was inserted into the right jugular vein and advanced into the azygos vein. The balloon was inflated to occlude the azygos vein, and contrast material was injected during fluoroscopic evaluation. The catheter was then positioned in the caudal vena cava just cranial to the diaphragm. The balloon was again inflated to occlude the vena cava, and contrast material was again injected. Once a shunt was identified, selective catheterization was attempted with a guide wire and angled catheter. A PSS was identified in 18 of the 20 dogs. In 10 of the 18, the shunt vessel could be selectively catheterized, allowing measurement of portal pressures while the shunt was occluded with the balloon. In 1 dog, results of TRP were normal, but subsequent exploratory celiotomy revealed a single extrahepatic PSS, which was surgically attenuated. The other dog in which results of TRP were normal did not have a macroscopic PSS. In dogs suspected to have a PSS, TRP may be a useful adjunctive diagnostic test that is less invasive than operative mesenteric vein portography and allows measurement of portal pressures before and after temporary shunt occlusion.  相似文献   

16.
Congenital portosystemic venous shunt causing signs of hepatic encephalopathy was diagnosed in 7 cats. The left gastric vein served as the shunt in four of these. Increases in blood ammonia and postprandial serum bile acids were the most consistent serum biochemical abnormalities. Excessive variation in red blood cell shape was a common but nonspecific hematologic finding. The jejunal-mesenteric venous injection of contrast material was the preferred method of portography to diagnose portosystemic shunts. Two cats were treated successfully by partial surgical occlusion of their shunts.  相似文献   

17.
Congenital portosystemic shunts in Maltese and Australian Cattle Dogs   总被引:2,自引:0,他引:2  
SUMMARY Congenital portosystemic shunts were definitively diagnosed in 62 dogs over a period of 15 years. Maltese and Australian Cattle Dogs were significantly over-represented, accounting for 14 and 13 cases, respectively. Maltese invariably had a single extrahepatic shunt derived from the left gastric or gastrosplenic vein, whereas Cattle Dogs usually had large intrahepatic shunts involving the right liver lobes. The clinical syndromes resulting from anomalous portosystemic communications were indistinguishable in the 2 breeds. Fasting blood ammonia concentration was elevated in 20 of 22 dogs tested, providing a minimally invasive and effective means of diagnosis. Complete or partial shunt attenuation was performed successfully in all 9 Maltese and in 2 of 6 Cattle Dogs in which it was attempted.  相似文献   

18.
Three male Poodles (two Toy, one Miniature) were presented to their veterinarians for evaluation of urolithiasis and varying degrees of hepatic encephalopathy. All three dogs were diagnosed as having intrahepatic shunts and referred for surgical correction. In each case, shunts arose from the right branch of the portal vein and were amenable to perivascular dissection caudal to where the vessel entered the hepatic parenchyma and to placement of perivascular cellophane bands to achieve shunt attenuation. During the same period, a female Miniature Poodle also presented for treatment of a congenital portosystemic shunt discovered during evaluation for generalised motor seizures. This animal had an extrahepatic portoazygous shunt that was completely ligated. Congenital portosystemic shunts have not previously been identified in Toy and Miniature Poodles at the University Veterinary Centre, Sydney and the anatomical types of shunt seen in this breed have not previously been reported in a consecutive series of cases. The three male dogs are noteworthy for a number of reasons: all had intrahepatic shunts, despite being small breed dogs; all three presented in a similar fashion, and all had shunts of an anatomical type amenable to placement of cellophane bands. One male dog died within 12 hours of surgery, the remaining three dogs survived and their liver function was normal at follow-up between 2 and 3 months after surgery. Use of cellophane bands for successful attenuation of intrahepatic shunts has not been previously reported.  相似文献   

19.
Neurological dysfunction is an uncommon complication following extrahepatic portosystemic shunt ligation. Three dogs and one cat are described that developed neurological signs within 21 to 42 hours of attenuation of intrahepatic portosystemic shunts. None of these cases had biochemical evidence of hepatic encephalopathy postoperatively. Two dogs died during management of status epilepticus following aspiration of food. One dog died six months postoperatively. The cat had persistent neurological dysfunction at discharge, but was alive and had recovered most of its neurological function at the time of writing, 37 months after surgery. This report demonstrates the potential for animals with intrahepatic portosystemic shunts to develop postoperative neurological signs and highlights the difficulty of managing such cases. Two dogs had both intrahepatic and extrahepatic portosystemic shunts. Large intestinal malrotation (partial situs inversus) may have been linked to the development of a portosystemic shunt in the remaining dog.  相似文献   

20.
Objective To evaluate the efficacy and short term effects of a cellophane banding technique for progressive attenuation of canine single extrahepatic portosystemic shunts.
Design A prospective trial of 11 dogs with single congenital extrahepatic shunts.
Procedure Rectal ammonia tolerance testing and routine biochemical tests were performed preoperatively on all dogs. In seven dogs, preoperative abdominal Doppler ultrasonography was also performed. Exploratory laparotomy revealed a single extrahepatic portocaval shunt in each animal, which was attenuated using a cellophane band with an internal diameter of 2 to 3 mm. The abdomen was closed routinely. Follow-up biochemical analysis and abdominal Doppler ultrasonography or splenoportography were performed postoperatively.
Results The shunt was not amenable to total ligation in 11 dogs, based upon reported criteria. All dogs recovered uneventfully from surgery without evidence of portal hypertension, and showed clinical improvement thereafter. Shunt occlusion was deemed to have occurred in 10 dogs based on resolution of biochemical and/or sonographic abnormalities. One dog continued to have sonographic evidence of portosystemic shunting when evaluated 3 weeks after surgery, despite normal ammonia tolerance, but was lost to subsequent follow-up. Two dogs, in which 3 mm cellophane bands were placed, experienced delayed shunt occlusion.
Conclusion Cellophane banding is simple to perform, and causes progressive attenuation of single extrahepatic shunts in dogs. Further work is needed to determine the maximum diameter of a cellophane band which will produce total attenuation, and the long-term safety and reliability of the treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号