首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 218 毫秒
1.
将加权模糊聚类算法应用于管理区划分,权值的确定分别采用主成分分析法和变异系数法.在吉林省榆树市精细农业试验田获取土壤氮、磷、钾数据,应用本文提出的加权模糊聚类算法进行管理区划分,确定了试验区的管理分区数目,并与传统的模糊聚类方法进行了比较.结果表明,基于加权模糊聚类的管理分区更合理、更符合实际情况,该方法可用于指导精准施肥.  相似文献   

2.
基于模糊c均值聚类法的玉米农田管理分区研究   总被引:3,自引:0,他引:3  
为提高大面积农田作物管理的精确性,以甘肃黄羊河农场玉米膜下滴灌示范区为研究对象,对大面积农田进行管理分区研究。综合考虑地形属性(高程、坡度、坡向)、土壤质地(砂粒、粘粒、粉粒含量)、土壤含水率(SWC)、速效氮含量(AN)、电导率(EC1:5)以及玉米产量,根据相关性分析结果筛选产量主控因子,使用主成分分析得到3个主成分作为分区依据,进而使用模糊c均值聚类法(Fuzzy c-means algorithm, FCM)进行管理区划分,以模糊性能指数和归一化分类熵作为最佳分区数的评判依据,分析管理分区后各分区间的差异。结果表明:玉米产量的主控因子分别为土壤粉粒含量、土壤砂粒含量、SWC、AN、EC1∶5和高程,使用模糊c均值聚类法进行聚类分区得到最优分区数为3个。管理区之间各主控因子呈现极显著差异性(P<0.01),且生育期内作物株高、叶面积指数(LAI)和SWC在不同分区中也有明显差异;同时,分区内的各因子变异性均有不同程度的下降。研究结果说明,农田分区管理可以依据不同分区特点制定管理策略,为“精准农业”的实施提供理论基础。  相似文献   

3.
聚类分析方法是土壤研究中的一种合理有效方法.以淮安市清浦区有代表性的84个土壤样品为例,研究土壤的6个农艺性状,根据聚类中心表将土壤肥力状况分为5类.聚类结果表明:聚类分析可将土壤养分状况相似或相同的归为一类,更符合土壤养分的实际,便于土壤工作者开展土壤肥力分析工作.  相似文献   

4.
多源遥感信息融合技术使得融合影像拥有更多的数据信息,更高的空间分辨率等优点。使融合影像数据在土壤墒情监测中作为数据源更具优势。以郑州市为研究区域,采用单窗算法,应用Landsat-ETM+和SPOT影像进行地表温度的反演。结合实测土壤墒情、气象等资料构建土壤墒情反演模型。研究表明:融合后的遥感数据反演土壤墒情的精度比未经融合的遥感数据高。  相似文献   

5.
根据产量数据的时空变异性特征,建立准确的高精度的产量空间分布图是实施精准农业的起点。本研究以Insight棉花产量监测系统采集的棉花产量实时数据为数据源,对经过误差处理后的两年的棉花产量数据进行了时间和空间上的变异性特征研究。研究表明,两年的棉花产量数据的时间变异性特征不明显,但其空间变异性特征处于中等水平,进而拟合最优的半方差函数模型,应用地统计学Kriging插值,生成了高精度的产量空间分布图,符合划分精准农业管理分区的条件和指导变量作业的要求。  相似文献   

6.
高分辨率遥感影像农田林网自动识别   总被引:3,自引:0,他引:3  
以0.5 m的Geo Eye-1卫星遥感影像为数据源,充分利用影像的纹理和光谱信息,研究农田林网高分辨率遥感自动识别方法。首先利用归一化差值植被指数(NDVI)和二维熵值构建分类决策树,并结合辅助数据初步提取出带状的农田林网;其次对该结果进行形态学处理,得到连续、细化的农田林网识别结果。选取甘肃省临泽县河西走廊中部巴丹吉林沙漠南缘绿洲的部分区域为研究区,进行实例验证,结果表明,采用本文构建的方法,农田林网的自动识别精度均在92%以上,平均精度达到92.97%,空间位置吻合度均在86%以上,平均吻合度达到93.13%,满足土地整治等工程监管的实际需求。该方法可为农田林网建设及相关工程监管提供科学支撑。  相似文献   

7.
毛乌素沙地土壤养分空间变异性初步研究   总被引:2,自引:1,他引:1  
以乌审旗毛乌素沙地为研究区,以0~40 cm土壤全氮、速效磷、速效钾为研究对象,结合传统的经典概率统计理论和地质统计学理论对其进行全面研究,分析了三种土壤养分的空间分布特征,绘制了三种土壤养分的变异函数图以及空间分布图,从而得出该地三种土壤养分的空间分布规律。分析表明:该地土壤全氮、速效磷、速效钾养分的含量均极少,属于六级,土壤较贫瘠。通过对研究区土壤的采样分析,了解了研究区土壤养分的分布状况和空间变异情况,为促进和提高毛乌素沙地农业生产实践提供理论依据,为精确指导农业生产提供科学依据。  相似文献   

8.
基于地形单元的土壤有机质空间变异研究   总被引:6,自引:0,他引:6  
为克服传统地形分类方法中仅依据单一指标(如高程)的缺点,以钟祥市土壤有机质空间分布为例,综合由30 m精度数字高程模型生成的地形因子,依据其在不同地形条件下的层次组合规律构建地形分类规则,精确地划分为13种典型地形单元,并运用普通克里金法对不同地形单元内的土壤样本插值,获得相应区域的土壤有机质空间分布。通过组合各地形范围下的结果,以获取蕴含地形因素影响的有机质空间分布。研究发现,地形起伏较大的地形单元的预测精度与全局预测结果精度相似度达0.75,而地势平缓区域内的预测精度大幅度提升,比全局预测结果精度提升了16.39%,因此基于地形单元的空间预测可以精确有效地获取土壤有机质空间特征。利用地形分区获取较高精度的有机质空间分布,进一步探讨了有机质地统计学研究中地形的协同影响。  相似文献   

9.
棉花产量空间分布图精度的高低,直接关乎实施精准农业的整体效果。本研究基于Insight棉花在线测产系统采集的棉花产量实时数据,分析了产量数据中包含的系统误差,粗大误差和随机误差,设计了阈值过滤器对棉花产量数据进行误差处理,剔除了产量数据中的异常值,而且将误差处理后生成的棉花产量空间分布图与误差处理前的进行对比,发现经过误差处理后Kriging插值成的棉花产量空间分布图中的异常点显著减少,分布图的精度、聚类性和平滑性得到了显著提升,符合划分精准农业管理分区的条件和指导变量作业的要求。  相似文献   

10.
基于时序EVI决策树分类与高分纹理的制种玉米识别   总被引:3,自引:0,他引:3  
针对遥感技术区分制种玉米与大田玉米的技术难题,以不同源、不同时相遥感数据,构建了多时相OLI/Landsat-8结合Geo Eye-1高分纹理制种玉米识别方法。首先以多时相OLI/Landsat-8构建各地类EVI时序曲线,利用地类的物候差异,以C5.0决策树算法识别玉米,然后针对制种玉米与大田玉米田块的纹理差异,利用Geo Eye-1高分影像纹理信息进一步以阈值法识别制种玉米。最后,以甘肃省张掖市临泽县为研究区,对提出的方法进行了试验验证,结果显示,多时相OLI/Landsat-8总体分类精度为86.31%,Kappa系数为0.81。玉米识别的用户精度为88.39%,制图精度为95.35%,可满足进一步对制种玉米的识别。依据Geo Eye-1高分遥感影像的纹理差异,识别制种玉米,用户精度为86.37%,制图精度为83.02%,高于只利用单一OLI/Landsat-8数据源的分类精度。  相似文献   

11.
Information about soil nutrient carryover dynamics can assist cotton producers with the optimal management of potassium (K) fertilizer. Optimal K management promotes cotton plant health, may decrease input costs, and increases cotton lint yields. A dynamic programming model was developed to determine optimal K application rates and economic returns under different soil information scenarios based on cotton yield response to K fertilizer and fertilizer carryover estimates from a multi-year field trial. A Monte Carlo analysis was conducted to simulate the impact of stochastic input and lint prices and cotton yield on K management over a five-period planning horizon. Results suggest that soil test data could provide important information about K carryover potential, which may lead to more efficient fertilizer use and higher profit margins for cotton producers.  相似文献   

12.
地理信息系统在精确农业变量施肥中的应用   总被引:20,自引:2,他引:20  
应用MapInfo软件,建立了用于精确农业变量施肥的田间土壤养分信息数据库及田间施肥管理方式。根据土壤采样数据生成田间土壤养分分布图。依此可以了解田间土壤养分差异,并根据该差异进行变量施肥决策和变量施肥作业。应用实践表明:建立的田间土壤养分信息库可以应用于精确农业变量施肥的决策和作业管理。  相似文献   

13.
Observations of the normalized difference vegetation index (NDVI) from aerial imagery can be used to infer the spatial variability of basal crop coefficients (Kcb), which in turn provide a means to estimate variable crop water use within irrigated fields. However, monitoring spatial Kcb at sufficient temporal resolution using only aerial acquisitions would likely not be cost-effective for growers. In this study, we evaluated a model-based sampling approach, ESAP (ECe Sampling, Assessment, and Prediction), aimed at reducing the number of seasonal aerial images needed for reliable Kcb monitoring. Aerial imagery of NDVI was acquired over an experimental cotton field having two treatments of irrigation scheduling, three plant density levels, and two N levels. During both 2002 and 2003, ESAP software used input imagery of NDVI on three separate dates to select three ground sampling designs having 6, 12, and 20 sampling locations. On three subsequent dates during both the years, NDVI data obtained at the design locations were then used to predict the spatial distribution of NDVI for the entire field. Regression of predicted versus imagery observed NDVI resulted in r2 values from 0.48 to 0.75 over the six dates, where higher r2 values occurred for predictions made near full cotton cover than those made at partial cover. Prediction results for NDVI were generally similar for all three sample designs. Cumulative transpiration (Tr) for periods from 14 to 28 days was calculated for treatment plots using Kcb values estimated from NDVI. Estimated cumulative Tr using either observed NDVI from imagery or predicted NDVI from ESAP procedures compared favorably with measured cumulative Tr determined from soil water balance measurements for each treatment plot. Except during late season cotton senescence, errors in estimated cumulative Tr were between 3.0% and 7.3% using observed NDVI, whereas they were they were between 3.4% and 8.8% using ESAP-predicted NDVI with the 12 sample design. Thus, employing a few seasonal aerial acquisitions made in conjunction with NDVI measurements at 20 or less ground locations optimally determined using ESAP, could provide a cost-effective method for reliably estimating the spatial distribution of crop water use, thereby improving cotton irrigation scheduling and management.  相似文献   

14.
土壤热特性参数空间变异性与拟合方法研究   总被引:4,自引:0,他引:4  
采用3S技术相结合的方法,在陕西省泾惠渠灌区研究了土壤热特性参数区域尺度的空间变异性,结果表明:土壤热容量、热扩散率及土壤导热率在该区域尺度下属于中等变异,土壤热扩散率和导热率的空间异质性较强,而土壤热容量的空间异质性相对土壤热扩散率和导热率表现较弱,三者均具有较强的空间依赖性。土壤热容量、热扩散率及土壤导热率的最优拟合模型分别为指数、球型、高斯模型,推荐三者的采样间距分别为2.67、3.68、2.76 km,推荐该区域范围内土壤热特性参数空间变异采样间距的最优值为3 km。在描述土壤热特性参数空间变异特征的基础上,建立利用土壤物理基本参数拟合土壤热特性参数的简单公式,并验证了此方法的适用性,决定系数R2达0.80以上,利用此方法能够实现土壤热特性参数的空间变异特征在复杂程度上的定量化。  相似文献   

15.
土壤养分空间变异性是指导土壤养分管理、科学施肥的重要依据,已经引起了广泛的关注.为此,从研究尺度、插值方法、采样方式和采样密度3个研究方向对土壤养分空间变异性研究进展进行了概括和总结.同时,指出探索适合不同尺度的插值方法、采样方式和采样密度仍是今后进一步研究的方向,而综合利用多种技术手段建立土壤养分的时空过程模型,将可能更有助于土壤养分变异性特征的表达.  相似文献   

16.
基于颜色和形状特征的机采棉杂质识别方法   总被引:2,自引:0,他引:2  
机采棉的含杂识别分类检测能够提高棉花加工设备效率,减少棉花纤维损伤,并为棉花收获设备的改进提供指导。提出了一种基于颜色和形状特征的机采棉杂质识别分类方法,对大杂质和小杂质检测采取不同的图像处理方法。颜色特征主要采用基于彩色梯度图像的分水岭变换与改进模糊C均值聚类方法融合的方法;形状特征主要采用机采棉杂质的面积、周长、离心率和矩形度特征。通过对100幅机采棉图像试验表明,该方法对各类杂质的平均识别正确率为89%。  相似文献   

17.
针对林区自动对靶施药过程中,当立木生长密集时,获取的点云数据聚类准确率低、效率低的问题,提出优化后的K-均值聚类算法,数据获取方式基于2D激光扫描。针对立木点云信息聚类前需对相关数据进行滤波,提出窗口滤波算法,选取产生混合像素点的树干边缘,提取3次连续扫描的混合像素及其近邻点组成滤波窗口,进行最大阈值滤波,结果显示50次试验中仅有2个混合像素点未被滤除,混合噪声的滤除率高。在K-均值算法优化方面,针对算法需预先确定聚类数和初始聚类中心的不足,提出利用斜率变化确定聚类数的方法,试验对5个不同距离下5组立木分别进行100次测量,结果显示错误测量次数仅为3次,并可在试验前期通过人工方式去除,算法合理有效;对哈夫曼树法确定立木扫描点聚类中心的性能进行了试验分析,3种不同树干分布类型下分别运用随机抽样法和哈夫曼树法进行K-均值聚类,前者平均正确率仅为76.4%,后者则为95.5%;同时分析了Ⅰ型分布下2种算法聚类的迭代次数和耗时,5个不同距离下,随机抽样法的平均迭代次数明显高于哈夫曼树法,平均运行耗时上,哈夫曼树法则高于随机抽样法,前者变化范围为120~220 ms,后者为50~85 ms,该范围为林区测绘的可接受范围。试验证明,基于斜率变化确定聚类数和基于哈夫曼树法确定聚类中心的K-均值算法是林区立木点云聚类的有效算法,可应用于林区的立木检测。  相似文献   

18.
研究于我国西北旱区武威市一葡萄园内进行,根据葡萄行走向按照30m×30m设置网格,共设计60个采样点。测定表层(10~20cm)、葡萄根区(20~80cm)、深层(80~100cm)3个层次土壤水分。采用传统统计与地统计相结合的方法对土壤水分空间分布状况进行分析,结果表明,各层次土壤水分均服从正态分布,具有中等变异强度,并随着深度的增加呈现出先增加后减小的趋势;各层次土壤水分具有较强的空间相关性,其理论变异函数的有效变程分别为117.04、167.92、174.81m;采用克立格插值方法绘制的各层次土壤水分分布图可以为灌溉制度的制定提供参考。并给出了不同置信水平及精度要求下的合理取样数目。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号