首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Both arbuscular mycorrhizal fungi (AMF) and earthworms often coexist in agriculture ecosystems, but very little is known on the interactions between them. A two-compartment air gap-incorporating device was used to investigate the effects of three species of earthworm (epigeic Eisenia foetida, endogeic Aporrectodea trapezoide, and anecic Pheretima guillelmi) on AMF (Glomus intraradices) under the exclusion of plant roots, and then on maize (Zea mays L.) performance and nutrients uptake. Results showed a strong correlation between hyphal length density and subsequent plant growth and nutrient uptake. Earthworms improved soil nutrients availability in hyphal compartment (HC): E. foetida improved the concentration of soil inorganic N, A. trapezoide changed the concentration of available phosphate in the soil, and P. guillelmi changed the soil's physical properties. We found some indications that different species of earthworm and AMF might interact within the soil. Earthworms and AMF mainly acting on different nutrients create distinct niches for plants. The feeding and burrowing activities did not significantly destroy hyphal length density and made negative affect on plant performance.  相似文献   

2.
ABSTRACT

This work was conducted to study phosphorus (P) efficiency of two maize genotypes (Zea mays, L.) in calcareous soil grown in potted soil with two levels of P in soil by adding 40 and 270 mg P/kg soil. Half of the pots were inoculated with arbuscular mycorrhizal fungi (AMF) (Rhizoglomus irregulare). The maize genotypes were harvested two times at 35 and 50 days after transplanting. The plant dry matter, root length and Plant P uptake of maize genotype Hagen 1 without mycorrhizal fungi (AMF) increased significantly compared with Hagen 9 at a low P level. In contrast, there was no significant difference between two maize genotypes inoculated with AMF under the same P level. The predicted value increased rapidly with increasing P levels from about 70% up to 97% in both maize genotypes with and without mycorrhizal fungi. At a low P level, the mycorrhizae hyphae contributed by about 31.6% and 30.2% of the predicted total P uptake in maize genotype Hagen 1 and Hagen 9, respectively. The results of this study suggested that the P-inefficient genotype Hagen 9 improved with inoculation with mycorrhizal fungi under a low P level at the same conditions of this experiment. Also, root growth system and mycorrhizal hyphae length would be a suitable plant parameter for studying P efficient maize genotypes, especially under limited P supply. The current study clearly pointed out that the mechanistic simulation model (NST 3.0) provides useful tools for studying the role of AMF in P uptake of plant.  相似文献   

3.
【目的】蚯蚓和丛枝菌根真菌处于不同的营养级,但在促进植物生长和提高土壤肥力等方面却都发挥着积极作用。研究蚯蚓菌根互作及其对玉米吸收土壤中的氮、磷养分的影响,可为提升土壤生物肥力及促进农业的可持续发展提供理论依据。【方法】本研究采用田间盆栽方式,以玉米为供试作物,研究蚯蚓(Eisenia fetida)与丛枝菌根真菌(Glomus intraradices)互作及其对玉米养分吸收的影响。试验设置P 25和175 mg/kg两个水平。每个磷水平进行接种与不接种菌根真菌以及添加与不添加蚯蚓,共8个处理。调查了玉米生长、养分吸收以及真菌浸染和土壤养分的有效性。【结果】两个磷水平下,蚯蚓和菌根在增加玉米地上部和根系生物量方面有显著正交互作用(P0.05)。接种菌根真菌的各处理显著增加了玉米的侵染率及泡囊丰度、根内菌丝丰度等菌根指标。同时添加蚯蚓和接种菌根真菌的处理(AM+E)显著提高了菌根的侵染率、菌丝密度、丛枝丰度和根内菌丝丰度但是泡囊丰度有所下降。两种磷水平下,AM+E处理玉米地上部和地下部含氮量和含磷量均显著高于其他三个处理。在低磷条件下,地上部氮磷总量的增加分别是添加蚯蚓和接菌的作用;而地下部磷总量的增加主要是菌根真菌的作用。在高磷条件下,单加蚯蚓显著增加玉米氮磷的总量,而接种菌根真菌对玉米氮磷吸收的影响未达显著性水平。在高磷条件下,单加蚯蚓的处理显著提高玉米地上地下部生物量(P0.05),而单接菌的处理效应不显著,蚯蚓菌根互作通过提高土壤微生物量碳、氮实现对玉米生长和养分吸收的调控。在低磷条件下,单接菌显著提高了玉米的生物量(P0.05),单加蚯蚓的处理具有增加玉米生物量的趋势。菌根真菌主要促进玉米对磷的吸收,蚯蚓主要矿化秸秆和土壤中的氮磷养分增加土壤养分的有效性,蚯蚓菌根互作促进了玉米根系对土壤养分的吸收并形成氮磷互补效应。【结论】无论在高磷还是低磷水平下,蚯蚓菌根相互作用都提高了玉米地上地下部生物量、氮磷吸收量同时提高了土壤微生物量碳、氮。蚯蚓菌根相互作用对植物生长的影响取决于土壤养分条件。在高磷条件下(氮相对不足),蚯蚓菌根互作通过调控土壤微生物量碳、氮调控玉米生长和养分吸收。低磷条件下,菌根主要发挥解磷作用,蚯蚓主要矿化秸秆和土壤中的氮素,蚯蚓和菌根互补调控土壤中氮、磷,从而促进植物的生长和养分吸收。  相似文献   

4.
A pot experiment was conducted to evaluate native plant species associated with exogenous AMF for their suitability in the revegetation of iron mine tailings of Inner Mongolia grassland. Agropyron cristatum (L.) Gaertn. and Elymus dahuricus Turcz. associated with AMF, Glomus mosseae, or Glomus versiforme, were grown on iron mine tailings to assess the mycorrhizal effects on plant growth, mineral nutrition uptake, C:N:P stoichiometry, and heavy metals uptake. The symbiotic associations were successfully established between exogenous AMF and two native plants, and root colonization rates of G. versiforme were significantly (P?<?0.05) higher than those of G. mosseae. G. versiforme was more effective than G. mosseae in promoting plant growth by significantly (P?<?0.05) increasing the concentrations of N, P, and K and decreasing the ratios of C:N:P. The shoot and root dry weights of A. cristatum and E. dahuricus were increased by 51–103 %. The N, P, and K concentrations of shoots and roots of two plants were increased by 18–236 %. Inoculation with AMF also significantly (P?<?0.05) decreased concentrations of heavy metals in the shoots and increased those in the roots, indicating that AMF could confer some degree of heavy metal tolerance to plants. The results indicated that plant inoculation with G. versiforme was more suitable than inoculation with G. mosseae for the revegetation of iron mine tailings. The experiment provided evidence for the potential use of local plant species in combination with exogenous AMF for ecological restoration of metalliferous tailings in arid and semi-arid grassland.  相似文献   

5.
秦华  白建峰  徐秋芳  李永春 《土壤》2015,47(4):704-710
以摩西球囊霉(Glomus mosseae)为供试菌种,在光照培养箱内利用分室根箱研究丛枝菌根真菌菌丝对多氯联苯(polychlorinated biphenyls,PCBs)污染土壤的修复效应及其机理。试验设置接种丛枝菌根真菌的处理以及不接种的对照,选用美国南瓜(Cucurbita pepo L.)为供试植物,在南瓜生长40天后将接种菌根真菌处理的菌丝室土壤从尼龙网向外水平分为4层取样,测定PCBs及磷脂脂肪酸含量。结果表明:菌丝可以穿越尼龙网影响菌丝室土壤,且距离尼龙网越远菌丝量越低;菌丝显著促进了土壤微生物量(P0.05),并改变了不同土层土壤微生物群落结构;接种菌根真菌处理各土层PCBs降解率为35.67%~57.39%,均显著高于对照的17.31%,相关分析结果表明土壤三氯、四氯联苯以及PCBs总量与菌丝量呈极显著负相关(P0.01);菌丝际土壤微生物量,特别是细菌生物量与土壤三氯联苯含量呈显著负相关(P0.05)。可见,菌丝通过影响菌丝际土壤微生物群落结构及生物量,促进三氯及四氯联苯降解,从而提高土壤PCBs修复效率。  相似文献   

6.
Rare earth elements (REE) of mine tailings have caused various ecological and environmental problems. Revegetation is one of the most cost-effective ways to overcome these problems, but it is difficult for plants to survive in polluted tailings. Arbuscular mycorrhizal fungi (AMF) can provide biotic and abiotic stress tolerance to its host plant and has widely adopted for the revegetation of degraded ecosystems. However, little is known about whether AMF plays role in facilitating the revegetation of REE of mine tailings. The objective was to investigate the uptake of nutrients and REE when plants are inoculated with AMF. A greenhouse pot experiment was conducted on the effects of Glomus mosseae and Glomus versiforme for the growth, nutritional status, and uptake of REE and heavy metals by maize (Zea mays L.) or sorghum (Sorghum bicolor L. Moench) grown in REE of mine tailings. The results indicated that symbiotic associations were successfully established between AMF and the two plant species. G. versiforme was more effective than G. mosseae at promoting plant growth by significantly increasing the uptake of nitrogen (N), phosphorus (P), and potassium (K) and decreasing carbon:nitrogen:phosphorus (C:N:P) stoichiometry. The shoot and root dry weights of the two plant species were increased by 211–387% with G. versiforme inoculation. Maize and sorghum exhibited significant differences in the REE concentrations in response to the colonization by AMF. The shoot and root lanthanum (La), cerium (Ce), praseodymium (Pr), and neodymium (Nd) concentrations of the maize inoculated with G. versiforme were decreased by approximately 70%, whereas those in the roots of sorghum were increased by approximately 70%. G. mosseae only significantly decreased the La, Ce, Pr, and Nd concentrations in the maize shoots. Inoculation with AMF also significantly decreased the concentration of certain heavy metals in the shoots and roots of maize and sorghum. These findings indicate that AMF can alleviate the effects of REE and heavy metal toxicity on plants and enhance the ability of plants to adapt to the composite adversity of REE in mine tailings.  相似文献   

7.
  【目的】  磷极易被土壤吸附和固定,导致土壤中磷有效性较低。研究接种丛枝菌根真菌 (arbuscular mycorrhizal fungi, AMF) 和低磷处理两者交互对紫花苜蓿生长和磷吸收的影响,为提高碱性土壤中磷肥利用率提供理论依据。  【方法】  以黄绵土和紫花苜蓿 (Medicago sativa) 为试验材料进行盆栽试验。在施磷0、5、20 mg/kg (P0、P5、P20) 3个水平下,分别设接种和不接种丛枝菌根 Glomus mosseae BGC YN02 (+AMF、–AMF) 处理。植物生长120天后测定植株生物量、磷吸收量、AMF侵染率以及根际和非根际土壤的pH、土壤碱性磷酸酶活性、土壤有效磷含量、土壤微生物生物量磷,分析根际有机酸的组成与含量。  【结果】  +AMF处理中植物根系被AMF侵染,且施磷水平对侵染率没有显著影响;施磷和+AMF处理显著提高了植株地上部、地下部生物量以及磷含量,其中P20+AMF处理生物量和磷含量最高;根际有机酸总量随施磷水平上升而显著降低,但+AMF处理有机酸总量高于–AMF处理,其中柠檬酸和乙酸含量的变化较为明显;施磷和+AMF显著降低土壤碱性磷酸酶活性,增加土壤有效磷含量和微生物生物量磷,且低磷环境 (P0、P5) 下根际土壤碱性磷酸酶活性和微生物生物量磷均显著高于非根际土;P20处理显著降低磷利用效率和磷肥利用率,+AMF处理显著提高磷肥利用率。  【结论】  碱性土壤 (黄绵土) 中,AMF和紫花苜蓿根系能建立较好的共生关系,低施磷水平 (施磷量 ≤ 20 mg/kg) 对AMF侵染率没有显著影响。施磷和接种AMF均可以显著促进紫花苜蓿生长和磷吸收。低磷环境下,接种AMF可以扩大植物根系吸收范围,同时增强根际土壤碱性磷酸酶活性,促进根系分泌有机酸,特别是乙酸和柠檬酸,从而提高磷肥利用率。  相似文献   

8.
丛枝菌根真菌(Arbuscular mycorrhizal fungi,AMF)能与多数陆生植物共生,促进植物吸收养分尤其是磷。解磷细菌(Phosphate-solubilizing bacteria,PSB)可以活化土壤中难溶性无机磷和有机磷。本研究采用苯菌灵对田间低磷土壤中土著AM真菌进行灭菌,并接种外源AM真菌(Glomusversiforme,G.v)和PSB(Pseudomonassp.),研究AM真菌和PSB接种对不同生育期玉米生长、磷养分吸收和产量的影响。结果表明,施用苯菌灵能够有效地抑制土著AM真菌对玉米根系的侵染,未施用苯菌灵处理中土著AM真菌促进了玉米前期和收获期的生长,提高了玉米吸磷量;接种Pseudomonas sp.促进了玉米六叶期根系的生长;接种外源AM真菌G.v促进了玉米六叶期和收获期地上部的生长,但降低了玉米产量。双接种Pseudomonas sp.和G.v对玉米生长、吸磷量和产量未表现出显著的协同效应。  相似文献   

9.
Plants respond differentially to different arbuscular mycorrhizal fungi (AMF) as well as to the different soil moisture levels. Based on this background, the present study was carried out to investigate the effects of different levels of soil moisture and AMF inoculations on mycorrhization and growth of important agroforestry plants, viz., Phaseolus mungo, Triticum aestivum, Eucalyptus tereticornis, and Albizia procera. The experiments consisted of main treatment, i.e., three levels of soil moisture [field capacity (FC?=?16 %), half-field capacity (FC/2?=?8 %) and double-field capacity (2×FC?=?32 %)] and four subtreatments (mycorrhizal inoculations), viz., Acaulospora scrobiculata, Glomus cerebriforme, Glomus intraradices, and un-inoculated (control). AMF inoculations significantly (P?<?0.05) increased growth and P uptake, in all tested plant species. In P. mungo, maximum AMF efficiency was observed at FC while in other plants, AMF were equally effective at FC/2 and 2×FC. Different inoculants were effective at different moisture levels. Furthermore, mycorrhization was the highest at FC. AMF inoculations were more important than soil moisture (explaining 33–97 % variation in growth) in P. mungo, T. aestivum, and A. procera (forward selection method), whereas soil moisture was more important for growth of E. tereticornis. Thus, it may be stated that depending upon soil moisture, inoculation of plants with suitable AMF consortium can be beneficial.  相似文献   

10.
Abstract

In general, according to previous studies, pioneer species do not require arbuscular mycorrhizal fungi (AMF) to increase their growth and survival in tropical systems. The aim of this study was to determine the dependence response to AMF of Heliocarpus appendiculatus, a pioneer species, at different phosphorus (P) levels. In a greenhouse experiment, H. appendiculatus seedlings were grown in pots with a sterile vermiculite-sand mixture (1:1). Two sets of pots were set up: One set was inoculated (150 spores per pot) with indigenous AMF from a tropical rain forest at “Los Tuxtlas” (Veracruz, Mexico); the other set was not inoculated. To each set, 0, 0.02, 0.2, and 2 g L?1P was added. All pots were watered with 250 mL of nutrient solution. Mycorrhizal plants showed a higher total dry weight and relative growth rate in 0.02 g L?1P concentration, while nonmycorrhizal plants responded positively at 0.2 g L?1P; a decrease in plant responses at higher P levels was observed in both treatments. H. appendiculatus showed to have higher relative dependence at lower P concentration (≈50%). As levels of P increased, mycorrhizal colonization decreased. Successful growth of pioneer species during succession process may be improved if there is AMF content in soils, prior to disturbance.  相似文献   

11.
Earthworms (Annelida: Oligochaeta) deposit several tons per hectare of casts enriched in nutrients and/or arbuscular mycorrhizal fungi (AMF) and create a spatial and temporal soil heterogeneity that can play a role in structuring plant communities. However, while we begin to understand the role of surface casts, it is still unclear to what extent plants utilize subsurface casts. We conducted a greenhouse experiment using large mesocosms (volume 45 l) to test whether (1) soil microsites consisting of earthworm casts with or without AMF (four Glomus taxa) affect the biomass production of 11 grassland plant species comprising the three functional groups grasses, forbs, and legumes, (2) different ecological groups of earthworms (soil dwellers—Aporrectodea caliginosa vs. vertical burrowers—Lumbricus terrestris) alter potential influences of soil microsites (i.e., four earthworms × two subsurface microsites × two AMF treatments). Soil microsites were artificially inserted in a 25-cm depth, and afterwards, plant species were sown in a regular pattern; the experiment ran for 6 months. Our results show that minute amounts of subsurface casts (0.89 g kg?1 soil) decreased the shoot and root production of forbs and legumes, but not that of grasses. The presence of earthworms reduced root biomass of grasses only. Our data also suggest that subsurface casts provide microsites from which root AMF colonization can start. Ecological groups of earthworms did not differ in their effects on plant production or AMF distribution. Taken together, these findings suggest that subsurface earthworm casts might play a role in structuring plant communities by specifically affecting the growth of certain functional groups of plants.  相似文献   

12.
The development of communities of arbuscular mycorrhizal fungi (AMF) was investigated in the subalpine foreland of the glacier Morteratsch located at approx. 1900–2100 m a.s.l. near Pontresina (Engiadin’ Ota, Switzerland). In particular, we asked if the succession of AMF communities follows or precedes the primary plant succession, and we checked the mycorrhizal status of the pioneer plant Epilobium fleischeri. Soil samples were taken at pioneer and dense grassland sites established during the last hundred years representing different periods of glacier retreat: 1875–1900, 1940–1950, 1970–1980 and 1990–2000. Extraradical hyphal length densities and AMF spore populations were analyzed in soil samples. Spore formation and mycorrhizal root colonization were monitored in trap cultures grown on Trifolium pratense, Lolium perenne, Plantago lanceolata and Hieracium pilosella or on E. fleischeri over 14 months. We found that E. fleischeri is strongly arbuscular mycorrhizal, but plants in closest distance to the glacier (glacier retreat in the last 4–6 years before sampling) were non-mycorrhizal. Spore densities and root colonization in trap cultures were generally low in samples from glacier stage 1990–2000. Highest spore density and colonization were found for the sites ice-free since 1970–1980, whilst highest AMF species richness and hyphal length densities were found at the sites ice-free since 1875–1900. Our findings show an establishment of a few AMF pioneer species (e.g. Diversispora versiformis and Acaulospora punctata) within 5–10 years and species rich AMF communities at sites ice-free for 100 years (28 species). Their succession generally follows the succession of the plant communities. We conclude that AMF pioneer species might be mainly distributed by wind transport while other AMF fungi (e.g. Glomus rubiforme and Glomus aureum) rather need a below-ground hyphal network to invade new areas.  相似文献   

13.
The effects of soil disturbance and residue retention on the functionality of the symbiosis between medic (Medicago truncatula L.) and arbuscular mycorrhizal fungi (AMF) were assessed in a two-stage experiment simulating a crop rotation of wheat (Triticum aestivum L.) followed by medic. Plants were inoculated or not with the AMF, Glomus intraradices and Gigaspora margarita, separately or together. The contribution of the arbuscular mycorrhizal (AM) pathway for P uptake was determined using 32P-labeled soil in a small hyphal compartment accessible only to hyphae of AMF. In general AM colonization was not affected by soil disturbance or residue application and disturbance did not affect hyphal length densities (HLDs) in soil. At 4 weeks disturbance had a negative effect on growth and phosphorus (P) uptake of plants inoculated with G. margarita, but not G. intraradices. By 7 weeks disturbance reduced growth of plants inoculated with G. margarita or AMF mix and total P uptake in all inoculated plants. With the exception of plants inoculated with G. margarita in disturbed soil at 4 weeks, the AM pathway made a significant contribution to P uptake in all AM plants at both harvests. Inoculation with both AMF together eliminated the negative effects of disturbance on AM P uptake and growth, showing that a fungus insensitive to disturbance can compensate for loss of contribution of a sensitive one. Application of residue increased growth and total P uptake of plants but decreased 32P in plants inoculated with the AMF mix in disturbed soil, compared with plants receiving no residue. The AMF responded differently to disturbance and G. intraradices, which was insensitive to disturbance, compensated for lack of contribution by the sensitive G. margarita when they were inoculated together. Colonization of roots and HLDs in soil were not good predictors of the outcomes of AM symbioses on plant growth, P uptake or P delivery via the AM pathway.  相似文献   

14.
Drought stress greatly affects the growth and development of plants in coal mine spoils located in the Inner Mongolia grassland ecosystem. Arbuscular mycorrhizal fungi (AMF) can increase plant tolerance to drought. However, little is known regarding the contribution of AMF to plants that are grown in different types of coal mine spoils under drought stress. To evaluate the mycorrhizal effects on the drought tolerance of maize (Zea mays L.) grown in weathered (S1) and spontaneously combusted (S2) coal mine spoils, a greenhouse pot experiment was conducted to investigate the effects of inoculation with Rhizophagus intraradices on the growth, nutrient uptake, carbon:nitrogen:phosphorus (C:N:P) stoichiometry and water status of maize under well-watered, moderate and severe drought stress conditions. The results indicated that drought stress increased mycorrhizal colonization and decreased plant dry weights, nutrient contents, leaf moisture percentage of fresh weight (LMP), water use efficiency (WUE) and rehydration rate. A high level of AMF colonization ranging from 65 to 90% was observed, and the mean root colonization rates in S1 were lower than those in S2. In both substrates, inoculation with R. intraradices significantly improved the plant growth, P contents, LMP and WUE and decreased the C:P and N:P ratios of plants under drought stress. In addition, maize grown in S1 and S2 exhibited different wilting properties in response to AMF inoculation, and plant rehydration after drought stress occurred faster in mycorrhizal plants. The results suggested that inoculation with R. intraradices played a more positive role in improving the drought stress resistance of plants grown in S2 than those grown in S1. AMF inoculation has a beneficial effect on plant tolerance to drought and effectively facilitates the development of plants in different coal mine spoils.  相似文献   

15.
The P efficiency, crop yield, and response of maize to arbuscular mycorrhizal fungus (AMF) Glomus caledonium were tested in an experimental field with long-term (18-year) fertilizer management. The experiment included five fertilizer treatments: organic amendment (OA), half organic amendment plus half mineral fertilizer (1/2 OM), mineral fertilizer NPK, mineral fertilizer NK, and the control (without fertilization). AMF inoculation responsiveness (MIRs) of plant growth and P-uptake of maize were estimated by comparing plants grown in unsterilized soil inoculated with G. caledonium and in untreated soil containing indigenous AMF. Soil total P, available P, microbial biomass P, alkaline phosphatase activity, plant biomass, crop yield and total P-uptake of maize were all significantly increased (P < 0.05) by the application of OA, 1/2 OM, and NPK, but not by the application of NK. Specifically, the individual crop yield of maize approached zero in the NK-fertilized soils, as well as in the control soils. All maize plants were colonized by indigenous AMF, and the root colonization at harvest time was not significantly influenced by fertilization. G. caledonium inoculation increased mycorrhizal colonization significantly (P < 0.05) only with the NK treatment, and produced low but demiurgic crop yield in the control and NK-fertilized soils. Compared to the inoculation in balanced-fertilized soils, G. caledonium inoculation in either the NK-fertilized soils or the control soils had significantly greater (P < 0.05) impacts on soil alkaline phosphatase activity, stem length, plant biomass, and total P-uptake of maize, indicating that AMF inoculation was likely more efficient in extremely P-limited soils. These results also showed that balanced mineral fertilizers and organic amendments did not differ significantly in their effects on MIRs in these soils.  相似文献   

16.
  目的  绿肥作为生物肥料,加入土壤后如何提高植物对绿肥利用效率及氮转化效率一直是热点研究课题。本文使用新鲜苜蓿(Medicago sativa)作为绿肥,接种丛枝菌根真菌(Arbuscular Mycorrhizal Fungi,AMF)和深色有隔内生真菌(Dark Septate Endophytes,DSE),探究利用微生物接种提高植物对绿肥利用效率和促进氮素转化的方法。  方法  本研究在温室条件下,采用玉米(Zea mays L.)作为供试植物,使用新鲜苜蓿(Medicago sativa)作为绿肥,并接种AMF和DSE。试验设置4个处理:绿肥(L);绿肥 + AMF(L + A);绿肥 + DSE(L + D);绿肥 + DSE + AMF(L + D + A)。  结果  AMF和DSE可以同时定殖玉米植株;接种真菌处理均显著提高玉米株高与生物量,其中L + D处理效果最好,株高与干重的值分别为86.25 cm、41.893 g每盆。L + D处理较其它接菌处理对植物全氮、绿肥的利用效率促进作用最为显著,最大值分别为585.27 mg、76.50%,且L + D处理下土壤硝氮、铵氮含量、脲酶活性最高,分别为0.201 g kg?1、0.339 g kg?1以及81.51 μg kg 24 h?1。接种AMF处理土壤全氮含量均显著高于其不接种AMF处理,同时接种AMF和DSE对玉米生长产生一定程度抑制作用。  结论  绿肥接种深色有隔内生真菌在植物生物量及营养利用等方面略好于接种丛枝菌根真菌,而双接菌处理需进一步研究证明协同或竞争关系。该结果为利用微生物技术提高绿肥在土壤中的利用效率及促进氮素的转化提供理论依据。  相似文献   

17.
丛枝菌根真菌对红三叶草利用不同有机磷源的研究   总被引:5,自引:3,他引:5  
以红三叶草为材料 ,利用三室隔网培养方法 ,施用不同有机磷源 :植酸钠 (Na -Phytate)、核糖核酸 (RNA)和卵磷脂 (Lecithin) ,研究接种菌根真菌Glmous versiforme对土壤及外加有机磷源的利用效率 ,另设无机磷及不施磷作为对照。结果表明 ,接种菌根真菌能明显增加植株干物重、含磷量和吸磷总量。与各有机磷处理相比 ,无机磷处理前期的生长效应较好 ,施用有机磷各处理在不同生长时期均明显促进了植株生长 ,但不同有机磷源之间没有显著差异。在植株吸磷量上 ,植株生长 7周以前 ,磷酸二氢钾处理高于其它处理 ,而植株生长 10周时 ,植酸钠处理高于磷酸二氢钾处理。接种菌根处理由于丛枝菌根活化了土壤有机磷 ,到植株生长 10周时其吸收有机磷的量已占吸磷总量的 76 .7%。  相似文献   

18.
菌根对紫色土上间作玉米生长及磷素累积的影响   总被引:6,自引:2,他引:4  
丛枝菌根真菌(arbuscular mycorrhizal fungi,AMF)在土壤与植物系统的磷素循环中发挥着关键的作用。本文通过盆栽模拟试验研究了不同AMF接种状况[不接种(NM)、接种Glomus mosseae(GM)、接种G.etunicatum(GE)]和玉米/大豆间作体系不同根系分隔方式(不分隔、尼龙网分隔、塑料膜分隔)对间作玉米植株生长及磷素吸收累积的影响。研究结果表明:GM处理下的间作玉米根系侵染率在不同根系分隔方式之间的差异不显著,而GE处理则在塑料膜分隔处理下对玉米的侵染率最高。接种不同AMF对间作玉米促生效果不同,GM和GE处理在不同根系分隔情况下表现出各自的优势,与未接种处理相比,GM处理能使玉米生物量、株高有一定程度增加并在根系不分隔处理下玉米磷吸收较多、生长较好;GE处理能使植株生物量有一定程度增加并在尼龙网分隔处理下的玉米磷吸收较多、生长较好。间作体系不同根系分隔方式对玉米的影响也不同,其中玉米地上部生物量在根系分隔处理下普遍小于不分隔处理,但根系生物量的大小情况则刚好相反。另外,无论何种接种状况,玉米根系磷含量及吸收量均以尼龙网分隔处理显著较高。而根系磷吸收效率则以接种G.mosseae且不分隔根系处理显著高于分隔处理。所有复合处理中,以接种G.etunicatum与尼龙网分隔根系组合处理对间作玉米的生长及磷素累积的促进作用最好,若应用于滇池流域,可望有效控制坡耕地土壤磷素的迁移。  相似文献   

19.
Mycorrhizal fungi may simultaneously associate with multiple plant hosts, and the implications of this for the fungi involved are not well understood. To address this question, two arbuscular mycorrhizal fungi (AMF), Glomus clairoideum (a treatment referred to as “Glo”) and Scutellospora fulgida (a treatment referred to as “Scut”), were grown separately in pots that each consisted of two plant compartments separated by a root-free-compartment (RFC). Fungi within each two-plant-compartment pot were exposed to either two individuals of indiangrass (Sorghastrum nutans), two individuals of big bluestem (Andropogon gerardii), or one of each. A non-inoculated treatment (“Non”) was included to help gauge the potential influence of greenhouse contaminant fungi, cross-contamination, or any misidentification of non-AMF hyphae. The two host species had additive effects on the growth of AM hyphae in plant compartments of Scut, Glo, and Non pots, and in the RFCs of Scut pots. In Glo RFCs, however, they were antagonistic in their effects. Synergism between hosts in Non RFCs suggested that any potential contaminants or misidentification could not explain this result. Underyielding was not seen in shoot weight, root weight, or root length in dual host pots, and also therefore could not explain the result. Hyphal growth in the Scut treatment was evenly distributed between the RFC and plant compartments (or marginally skewed toward the RFC), while hyphal growth in the Glo treatment was skewed toward plant compartments (nearer roots). However, hyphal lengths were more highly correlated across plant compartments within a common pot in the Glo treatment, suggesting that this AMF bridged the RFC to experience the entire two-host pot as a single environment to a greater extent than Scut did. These AMF differed in how they responded to both the species composition of the two-host environment and its spatial structure; potential implications for mycorrhizal community dynamics are discussed.  相似文献   

20.
Earthworms and arbuscular mycorrhizal fungi (AMF) are important macrofauna and microorganisms of the rhizosphere. The effect of the inoculation of soil with earthworms (Aporrectodea trapezoides) and mycorrhiza (Rhizophagus intraradices) on the community structure of mycorrhizal fungi and plant nutrient uptake was determined with split plots in a maize field. Maize plants were inoculated or not inoculated with AMF, each treated with or without earthworms. Wheat straw was added as a feed source for earthworms. Inoculating AMF significantly increased maize yield (p?<?0.05), and the yield was further enhanced by the addition of earthworms. Alkaline phosphomonoesterase activities, soil microbial biomass carbon (SMBC) and nitrogen (SMBN) increased with the addition of both earthworms and AMF. Soil inorganic N and available K were positively affected by earthworms, while available P showed a negative relationship with AMF. Treatment with both AMF and earthworms increased shoot and root biomass as well as their N and P uptake by affecting soil phosphomonoesterase and urease activities, SMBC, SMBN, and the content of available nutrients in soil. The applied fungal inoculants were successfully traced by polymerase chain reaction with novel primers (AML1 and AML2) which target the small subunit rRNA gene. The amplicons were classified by restriction fragment length polymorphism and sequencing. Moreover, field inoculation with inocula of non-native isolates of R. intraradices appeared to have stimulated root colonization and yield of maize. Adding earthworms might influence native AMF community, and the corresponding abundance increased after earthworms were inoculated, which has positive effects on maize growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号