首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Four grass silages were made from perennial ryegrass ensiled after a 1h wilt in 2-t silos without additive application, with application of formic acid or with one of two enzyme mixtures of hemicellulases and cellulases (enzyme 1 and enzyme 2). Effluent losses were monitored over the ensiling period (130 d).
Analyses of the silage showed that formic acid-treated silage had lower concentrations of lactic acid than the other silages. Both enzyme-treated silages had lower levels of cellulose, acid detergent fibre (ADF) and neutral-detergent fibre (NDF) than the untreated and formic acid treated silages. Effluent production was highest with enzyme-treated silages.
The silages were subsequently fed to growing steers equipped with rumen cannulae and T-piece duodenal cannulae. Apparent whole-tract digestibilities of organic matter constituents were significantly lower ( P < 0·05) with both enzyme-treated silages (untreated; 0·736, formic acid; 0·722, enzyme 1; 0·694, enzyme 2; 0·703). Both untreated and enzyme 2-treated silages sustained higher nitrogen digestibilities (g g−1 intake) (untreated; 0·675, formic acid; 0·636, enzyme 1; 0·630, enzyme 2; 0·662) and N retentions (g d−1) untreated; 16·0, formic acid; 14·0, enzyme 1; 11·6, enzyme 2; 16·6), but none of these differences was significant. When formic acid-treated silage was offered, there was a greater amount of organic matter apparently digested in the rumen (ADOMR). Non-ammonia nitrogen and microbial nitrogen flows at the duodenum were similar on all diets. The efficiency of microbial protein synthesis was highest with enzyme 2-treated silage and lowest with formic acid-treated silage (untreated, 35·4; formic acid, 25·2; enzyme 1, 30·4; enzyme 2, 39·4), but none of these differences were significant.  相似文献   

2.
A mixture of perennial and hybrid ryegrasses(234 g DM kg-1) was forage harvested and ensiled after a 24-h wilt in good ensiling conditions in 2-t capacity silos with no additive application (control) or with the application of either Lactobacillus plantarum , 4 × 106 (g fresh weight of grass)-1, or of 31 formic acid t-1. Sufficient 2-kg capacity laboratory silos were also filled with grass to monitor the changes in chemical composition of the ensiled grass with time. In laboratory silos, inoculation with L. plantarum resulted in a more rapid fall in silage pH ( p < 0.001) and a more rapid production of lactic acid ( P < 0.001) than in the control silage. At the end of the storage period (laboratory silos, 80 d; 2-t silos, 200-300 d), the inoculated silos had lower pH ( p ammonia-N (g kg N1) and acetic acid contents ( p < 0.01) and higher water soluble carbohydrate (WSC), lactic acid (P<00.1) and ethanol ( p < 0.05) contents than the control silage. The formic acid-treated silage had significantly lower contents of ammonia-N (g kg N-1, p < 0.05), acetic and tactic acids (p<0.01) and higher contents of WSC and ethanol ( p < 0.01) than the control silage. When fed to wether sheep, the digestibilities of DM, organic matter and gross energy were not altered by additive treatment. The digestibility of modified acid-detergent fibre was lower for both the inoculated ( P < 0.01) and formic acid-treated silages ( p < 0.05). However, N retention was improved ( p < 0.05) by both additive treatments. Silage intake was improved ( p < 0.01) by additive treatment from 53.4 (control) to 58.0 (inoculated) and 60.4 (formic acid) g DM (kg live weight0.75)-1d-1.  相似文献   

3.
A second cut of lucerne was wilted to 500 g DM kg−1 and either left untreated (control) or treated with formic acid (4.5 1 fresh forage t−1) or with a commercial inoculum of lactic acid bacteria (105 colony forming units (cfu) g forage−1). The forages were ensiled in 2-t capacity silos for 8 months, and later fed to six lambs (mean initial weight 27.7 ±1.60 kg) in a 3x3 duplicated Latin square with 27-d periods. Portions of the untreated and additive-treated forages were also ensiled in laboratory silos at 25 ° C for intervals up to 42 d. Results from the laboratory silos showed that the major increase in ammonia-N in silage occurred between 40 h and 7 d of fermentation; during this period, both formic acid and the inoculant produced a smaller increase in ammonia-N, than did the control. The pH of inoculated silage declined from 5.74 to 4.57 in 7 d, but it took 14 d for the pH of the control silage to fall below 5.0. Formic acid treatment immediately reduced the silage pH from 5.74 to 5.10 ( P < 0·01); the pH then remained unchanged until 21 d, after which it decreased slightly. When compared with control, lambs fed formic acid-treated silage consumed more ( P < 0·05) digestible organic matter; the response was associated with a trend towards decreased concentration of ammonia in plasma. Inoculation of lucerne silage did not ( P < 0·05) affect voluntary intake but increased ( P <0.05) apparent digestibility of fibre and tended to increase N retention.  相似文献   

4.
Two silages were made from primary growth perennial ryegrass and ensiled after the application of either formic acid or an enzyme mixture of cellulase and hemicellulase. Silage analysis showed both silages to be well preserved with low pH of 3·70 and 3·62 for the formic and enzyme treatments respectively. Formic acid-treated silage had a higher total amino acid concentration than enzyme-treated silage. The silages were offered to growing steers either as the sole diet or supplemented with rapeseed meal at 60 g or 120 g fresh weight kg−1 silage DM offered, in a 6 × 6 Latin square arrangement.
Non-ammonia nitrogen and microbial nitrogen flows at the duodenum (g d−1) were significantly ( P < 0·05) increased by supplementation of enzyme-treated silage compared with formic acid-treated silage (enzyme, 83·6, 58·7; enzyme + 60 g, 101·7, 75·3; enzyme + 120 g, 112·5, 80·7; formic, 91·9, 63·7; formic + 60g, 88·3, 67·9; formic + 120 g, 95·5, 67·1) respectively. Efficiencies of microbial protein synthesis were increased for supplemented enzyme-treated silage diets and values were reduced for supplemented formic acid-treated silage diets compared with the silage only diets (enzyme, 27·9; enzyme + 60 37·7; enzyme + 120 g, 38·6; formic, 33·7; formic + 60g, 31·2; formic + 120 g, 28·8). Total amino acid flow at the duodenum increased with supplementation of both silages; however, microbial amino acid flow increased significantly ( P < 0·05) with supplementation of enzyme-treated silage compared with formic acid-treated silage diets. Significantly greater amounts of cystine, methionine, alanine, valine and aspartic acid entered the small intestines of animals receiving supplemented enzyme silages compared with supplemented formic acid silages.  相似文献   

5.
Perennial ryegrass, harvested as second-cut material on 10 and 11 July 1990, was treated with either formic acid at 31 t-1 or an acid-salt type additive at 61 t-1 and ensiled in roofed 150 t bunker silos. Subsequently both silages underwent a predominantly lactic fermentation. Nevertheless the acid-salt-treated silage had a significantly higher quantity of formic acid (19 vs 12 g kg DM-1) and significantly lower levels of lactic (98 vs 118 g kg DM-1) and acetic acid (11 vs 17 g kg DM-1) compared with formic acid-treated silage. In-silo losses and effluent production were similar.
Each silage was individually fed to 10 October-calving Friesian dairy cows (average weight 565 kg) from weeks 2 to 15 of lactation, together with 3 kg d-1 of a compound feed containing 190 g kg DM-1 crude protein and with an estimated metabolizable energy content of 12·6 MJ kg DM-1. The acid-salt additive had no significant effect on silage DM intake, daily milk yield, milk protein or cow liveweight change, but significantly increased milk butterfat content compared with formic acid-treated silage.
It is concluded that the acid-salt type additive produced little difference in terms of either silage fermentation or animal performance compared with formic add treatment.  相似文献   

6.
Lucerne (DM 236 g kg-1, WSC 49 g (kg DM)-1) was ensiled in test-tube silos with or without either glucose or fructose and with or without one of two commercial inoculants. The WSC content of the forage as ensiled was too low to obtain a well preserved untreated silage. By day 4 the pH values of the silages with added sugar or inoculant were significantly lower (P< 0·001) than the control silage. A satisfactory fermentation was attained only in the silages to which sugar and an inoculant had been added. These silages had a lower pH, more protein-N (P< 0·001), less ammonia-N (P<0·001), a faster increase in counts of lactic acid bacteria, and decrease in counts of coliforms than the other silages. Homo-fermentative lactic acid bacteria dominated the fermentation in the inoculated silages while leuconostocs dominated the early stages of fermentation in the control silages. The results indicate that if there is insufficient sugar in the original crop, then the bacteria in an inoculant will not be able to produce enough lactic acid to lower the pH to an acceptable level. This has important implications for the ensilage of lucerne and other highly buffered low sugar crops.  相似文献   

7.
Although many aspects of grass silage have received intensive study, the changes that take place within the grass blades during ensilage have received little attention.
In two factorial experiments Italian ryegrass (cv. Lemtal) and cocksfoot (indigenous) were ensiled in laboratory silos (capacity 0·2 kg) with the grass under pressure (700 Pa) and subjected to two treatments (with or without 3·31 t-1 85% formic acid) and two silos from each treatment opened on eight sampling dates(1,2,3,4,7,10,14 and 21 d).
For each sampling date transverse sections of grass laminae were examined and changes in the cross sections of the protoplasts and of cells, as defined by the cell walls, were recorded. These data were used to calculate the ratios of protoplast to cell volumes at each sampling date.
Each silage was analysed for dry matter, pH, lactic acid, VFA, ammonia and glucose. The distance settled by the silage (a measure of decrease in silage volume) and the silage conductivity were also recorded.
Both of the untreated grasses yielded silages with typical lactic acid levels and pH values. In all of the silages there was a marked shrinkage of the plast within the space defined by the cell wall. The ratio of protoplast to cell volume eventually stabilized at 0·4. The formic acid-treated grasses reached this level by day 1 but a longer period was required by untreated grasses.
It is suggested that the decrease in silage volume is related to the lactic acid content of the liquid phase due to their close relationship in silages produced from untreated grasses ( r = 0·97***).  相似文献   

8.
The effects of two commercial cellulase/hemicellulase enzymes derived from Trichoderma reesei on silage fermentation and aerobic stability were investigated in three laboratory-scale experiments. In Experiment 1, perennial ryegrass ( Lolium perenne ) was treated with enzyme A at the rates of 0. 0·125, 0·250, 0·500 and 0·750 cm3 kg-1. In Experiment 2, Italian ryegrass ( Lolium multiflorum ) was treated with the same enzyme at the rates of 0, 0·250 and 0·500 cm3 kg-1 and with 85% formic acid (3·5 cm3 kg-1). In Experiment 3, perennial ryegrass was ensiled untreated, with enzyme A (0·250 and 0·500 cm3 kg-1) and with 0·200 and 0·400 cm3 kg-1 enzyme B which also contained glucose oxidase. All silages were well preserved. Aerobic deterioration was related to numbers of lactate assimilating yeasts. In Experiment 1, all silages were stable over a 4-day period. In Experiment 2, enzyme A treatment delayed the temperature rise compared with the untreated control ( P <0·05), whereas the formic acid-treated silage was stable. In Experiment 3, the temperature rise in the silage treated with the higher level of enzyme B occurred one day later than in the other silages ( P <0·05).  相似文献   

9.
Three grass silages were made from perennial ryegrass ensiled without additive application (U) or with the application of formic acid (F) or an enzyme mixture of hemicellulases and cellulases (E).
Analysis of silages showed that both untreated and enzyme-treated silages had higher lactic acid concentrations than formic acid-treated silage. Enzyme-treated silage had lower levels of ADF and NDF but higher concentrations of residual WSC than other silages.
The silages were fed to growing steers supplemented with either rapeseed meal (RSM) (60 g kg−1 silage DM) or fishmeal (FM) at a level isonitrogenous with RSM diets, so providing six diets (UR, UF, ER, EF, FR, FF). Organic matter intakes were similar, but ADF intakes were significantly ( P < 0·001) lower with enzyme-treated silage diets (UR, 1163; UF, 1160; ER, 1104; EF, 1035; FR, 1216; FF, 1213), as were intakes of NDF ( P < 0·01) (UR, 1946; UF, 1955; ER, 1877; 1772; FR, 2031; FF, 2041). Apparent whole tract digestibilities of organic matter were significantly ( P < 0·001) higher with enzyme-treated silages (UR, 0·644, UF, 0·644; ER, 0·668; EF, 0·678; FR, 0·633; FF, 0·633). Liveweight gains were generally higher with treated silage diets and RSM supported a greater response than FM (UR, 0·496; UF, 0·498; ER, 0·567; EF, 0·489; FR, 0·543; FF, 0·506) with both enzyme and formic acid-treated silages, although none of these differences were significant.  相似文献   

10.
In a two-year experiment, three silages were prepared from herbage treated either with an inoculant at 1·25 × 105 organisms (g fresh material (FM))−1. formic acid (850 g kg−1) at 4 1 (t FM)−1, or no additive (untreated). In Experiment 1, unwilted and in Experiment 2, wilted silages were investigated and had mean dry matter (DM) and water soluble carbohydrate (WSC) concentrations at ensiling of 171 g kg−1 and 17·6 g (kg FM)−1 and 263 g kg−1 and 25·1 g (kg FM)−1, respectively. In Experiment 1, 45 and in Experiment 2, 54 individually fed cows were used to evaluate the silages in three-treatment, randomized-block design experiments. During weeks 4-12 of lactation the cows were offered silages ad libitum and during weeks 15-26 a constant amount of silage was fed. There were few major differences in chemical composition of the resulting silages. Formic acid had no effect on silage digestibility. Inoculant treatment increased digestibility when the grass had been wilted. The use of formic acid resulted in increased silage DM intake of 9% during weeks 4-12 of lactation in Experiment 1 but not in Experiment 2. The inoculant gave no increase in silage DM intake over the control in Experiment 1 but increased silage DM intake by 7% in Experiment 2. There was no significant response in milk yield to formic acid. In Experiment 2 the response in milk yield to inoculant treatment was significant both in weeks 4-12 of lactation (4%) and in weeks 15-26 of lactation (5%). It is concluded that the response in milk yield to the use of a specific inoculant appears to be mediated through increased intake of metabolizable energy (ME).  相似文献   

11.
Use of freshly cultured lactic acid bacteria as silage inoculants   总被引:10,自引:0,他引:10  
The use of freshly cultured lactic acid bacteria in comparison with conventional freeze-dried preparations as inoculants for grass silage was examined. Perennial ryegrass was ensiled in laboratory silos, either untreated or treated with formic acid, or a commercial freeze-dried strain of Lactobacillus plantarum , or a fresh culture of the same strain of L. plantarum , or fresh cultures of Pediococcus pentosaceous , or Lactococcus lactis alone or in combination with L. plantarum. All inoculants were applied at a rate of 106 colony-forming units g−1 fresh matter, with the mixtures containing a 1:l ratio of each species. Herbage treated with freshly cultured inoculants exhibited shorter lag times, in relation to the initiation of pH decline, than those associated with untreated or freeze-dried inoculant-treated herbages. Treatment of herbage with inoculants containing L. plantarum increased the initial speed of pH decline. In comparison with silages made with freeze-dried L. plantarum , in measurements made during the initial 14 d of ensilage, those inoculated with fresh cultures bad significantly (P<0·05) higher lactic acid concentrations and significantly (P·0.05) lower pH values. Both P. pentosaceous and L. lactis initiated a rapid fermentation, but compared to L. plantarum alone, or mixtures of L. plantarum with P. pentosaceous or L. lactis , these cultures demonstrated intermediate rates of lactic acid production and pH decline. All mature (105 d) silages were of good quality with pH values of four or less, low ammonia-N concentrations (<100gkg−1 total N) and no detectable levels of clostridia or butyric acid. Results suggested that the main advantage of freshly cultured inoculants over their freeze-dried counterparts may lie in their metabolic state when added to herbage.  相似文献   

12.
Eight grass silages were made from two contrasting varieties of perennial ryegrass, four silages each from a late-cut early-maturing (high dry matter, HDM) variety and from an early-cut, late-maturing (low dry matter, LDM) variety. The grass was ensiled without additive (untreated), or with formic acid, or with one of two enzyme mixtures of hemicellulases and cellulases (enzyme 1 and enzyme 2) for a period of 130 d.
Formic acid-treated silage had lower levels of lactic acid at both levels of dry matter than the other silages. Enzyme treatment of grass prior to ensilage resulted in reduced levels of cellulose, acid-detergent fibre and neutral-detergent fibre in LDM silages and lower acid-detergent fibre and neutral-detergent fibre in the HDM silages compared with the corresponding untreated and formic acid-treated silages. Voluntary intakes (g DM d−1) of untreated and enzyme-treated silages were significantly ( P <0·01) lower at both digestibilities compared with formic acid-treated silages (LDM: untreated, 982; formic, 1069; enzyme 1, 868; enzyme 2, 937; HDM: untreated, 931; formic, 1027; enzyme 1, 943; enzyme 2, 914). The organic matter, carbohydrate and nitrogen digestibility coefficients of LDM silages were significantly ( P <0·001) higher than those of HDM silages. There were no significant differences in any component digestibility related to silage additive.
Comparison of digestibility coefficients for constituents of the LDM silages fed to sheep or steers showed no differences between species.  相似文献   

13.
Four grass silages, all made in mid-July from second-harvest perennial ryegrass swards, were compared in a 16-week feeding experiment with twelve Ayrshire cows. Two silages were unwilted and two wilted. All the silages received formic acid ('Add-F') at the rate of 3 litres t-1 either with formalin at the rate of 1 litre t-1 or without formalin. The unwilted and wilted silages had mean dry matter (DM) concentrations of 200 and 243 g kg-1, and in vitro D-values of 0·293 and 0·272 respectively. The silages were offered ad libitum plus 6 kg concentrates per cow per day. The daily intakes of unwilted and wilted silage DM were 10·2 and 9·2 kg per cow respectively on the formic acid treatment, and 10·2 and 9·2 kg on the formic acid + formalin treatment. The mean daily milk yield on the unwilted silage treatments was 19·2 kg per cow which was significantly higher than the yield of 17·2 kg per cow on the wilted silage treatments. The formalin had no significant effect on milk yield. The four silage treatments had small and non-significant effects on milk composition. It is concluded that the unwilted silages, which had excellent fermentation characteristics, were superior to the wilted silages as a feed for dairy cows.  相似文献   

14.
Seven laboratory-scale experiments were carried out to study the effects of cellulases/hemicellulases on silage fermentation of herbage from mixed swards of timothy ( Phleum pratense ), meadow fescue ( Festuca pratensis ) and red clover ( Trifolium pretense ). Enzyme-treated silage (approximately 3500 HEC units kg−1 grass) reached a low pH sooner, had lower end pH, contained less NH3-N and more lactic acid than did the untreated silage ( P < 0·05). Applied with an inoculant, these effects were even stronger. With easily ensiled crops (experiments 1, 2, 5 and 6) preservation was first of all improved by inoculation of lactic acid bacteria; however, for the low-sugar crops (experiments 3, 4 and 7) enzyme treatment was more significant. The enzymes derived from Aspergillus spp. gave more acetic acid than the enzymes from Trichoderma reesei. The Trichoderma enzymes liberated 4·8 g WSC kg−1 FM gamma-irradiated grass during 60 d at pH 4·3 ( P < 0·05). On average, for all silages enzyme treatment increased the sum of residual sugar and fermentation products by 3·7 g kg−1 FM (21 g kg−1 DM) compared with the silages not treated with enzymes ( P < 0·001). Enzyme treatment increased the instantly degradable part of the feed, but total in sacco and in vitro digestibilities were not affected.  相似文献   

15.
Data from twenty-two comparisons carried out at ADAS Experimental Husbandary Farms are used to compare untreated and formic acid-treated silages. Additive treatment led to an improved fermentation in some crops, particularly those of low DM concentration (<262 g kg-1). Where this occurred there were associated benefits in silage digestibility (+0·234 units), intake (+16%) and the growth rate of young cattle (+0·28 kg d-1). Where the fermentation of the untreated silage was good, both digestibility and animal performance associated with treated and untreated silages were similar. It is suggested that the justification for using formic acid in a commercial situation is thus restricted to occasions where the untreated crop would be liable to develop a clostridial fermentation. These may be when crops contain less than 35 g water-soluble carbohydrate kg-1.  相似文献   

16.
Two 2×2 factorial experiments are described in which a bacterial inoculant being developed as a silage additive and containing a strain of Lacto-bacillus plantarum (Ecosyl, ICI plc) was evaluated at two harvests (18 July and 30 September 1985) of two swards (perennial ryegrass and permanent pasture) in difficult ensiling conditions. On each occasion erbage was ensiled with and without inoculant using two 0·5–t capacity steel tower silos per treatment. The contents of the two replicate silos per treatment were combined for feeding to cross-bred wethers in digestibility and metabolizable energy (ME) partition studies.
Overall, inoculated herbage declined in pH post-harvest at a faster rate than control herbage (p<0·001) and three out of the four inoculated silages had lower pH, ammonia-N, acetate and alcohol and higher residual soluble carbohydrate content (p<0·001) than control. Significantly higher digestibility of nutrients (P<0·05) was found in three of the inoculant-treated silages and these also had significantly higher ME values than control (P<0·001), (10·58 and 8·77 MJ kg tol DM−1 for the treated and untreated silages respectively). The use of inoculant on herbage of only moderate ensiling potential therefore, produced significant improvements in fermentation quality and feeding value over control.  相似文献   

17.
Field-wilted lucerne was chopped with a forage harvester at 33 ± 1·5, 43 ± 2·0 and 54 ± 1·8% dry matter, treated and ensiled in laboratory silos during four cuttings in each of two years. Treatments were control (C), sugar addition at 2% of fresh weight (S), inoculum applied at 3 × 105 bacteria g−1 herbage (I), and sugar and inoculum combined (IS). Duplicate silos were opened and analysed after 1, 2, 3, (4 or 5), 7, 14 and 60 d of fermentation. The initial rate of proteolysis of lucerne protein decreased with increasing dry matter (DM) content of the lucerne, and was not influenced by the year, cutting or silage treatment. Inoculation increased ( P <0·05) the rate of pH decline for all silage dry matters, and shortened the lag time prior to pH decline with 33 and 43% dry matter silages. Sugar addition had no effect on rate of pH decline or lag time. Inoculation and sugar addition both lowered final pH, acetic acid, ammonia (NH3), free amino acids (FAA) and soluble non-protein N (NPN) in silages ( P <0·01) and increased lactic acid content with 33 and 43% dry matter silages. Only inoculation was beneficial at 54% DM with no difference between I and IS. The influence of forage characteristics (epiphytic lactic acid bacteria, buffer capacity and sugar:buffer capacity ratio) on treatment effectiveness varied with dry matter content.  相似文献   

18.
Determination of microbial protein in perennial ryegrass silage   总被引:1,自引:0,他引:1  
The microbial matter fraction was determined in perennial ryegrass silages of different dry-matter (DM) contents, ensiled with or without Lactobacillus plantarum . 15N-Leucine and the bacterial cell wall constituent diaminopimelic acid (DAPA) were used as markers for microbial-N. Perennial ryegrass crops with DM contents of 202, 280 or 366 g kg−1 fresh weight were ensiled in laboratory-scale silos and stored for 3 to 4 months. At different times after ensiling, silages were analysed and microbial fractions were isolated. Microbial-N concentration determined with 15N-leucine reached a maximum during the first week of ensilage. It remained unchanged thereafter, except in silage with a DM content of 280 g kg−1 in which it decreased ( P  < 0·01) by 32% during storage. After 3 to 4 months ensilage, microbial-N concentration varied from ≈0·3 to ≈1·7 g kg−1 DM. A negative relationship was observed between microbial-N concentration and silage DM content. Inoculation resulted in an approximately twofold increase ( P  < 0·001) in microbial-N concentration. Microbial-N concentrations determined with DAPA were 1·14–2·07 times higher than those determined with 15N-leucine. However, 19–35% of the DAPA in silage occurred in a soluble form, indicating that this fraction of DAPA was not associated with intact bacteria.  相似文献   

19.
Abstract The ensiling characteristics of safflower ( Carthamus tinctorius ) wilted to 290 and 411 g dry matter (DM) kg−1 fresh material were studied in 1·5 l glass jars. The experiment included a control and the application of Lactobacillus plantarum at 3·3 × 105 colony-forming units (cfu) per g of crop. After 60 days of ensiling, the pH of safflower silages was 4·6 and 4·0 in the control and inoculated silages respectively, with corresponding values for lactic acid, the major fermentation product, of 20 and 45 g kg−1 DM. The silages from the anaerobic jars were stable upon aerobic exposure. It is concluded the safflower silage has potential as an alternative fodder in semiarid regions.  相似文献   

20.
Ensiling of manured crops—effects on fermentation   总被引:1,自引:0,他引:1  
The quality of silage from crops fertilized with cattle manure and an inorganic fertilizer was compared in experiments from 1985 to 1989. Manure was spread either as farmyard manure (FYM, 25t ha−1) or as slurry (20-50t ha−1). Crops were direct cut (approximately 200 g DM kg−1) or wilted (approximately 300 g DM kg−1), precision chopped and ensiled in experimental silos. Silage was treated with 4 kg 85% fonnic acid t−1 fresh matter (FM), an inoculant or no additives. The use of manure, particularly FYM, resulted in more Bacillus spores on crops at harvest compared with fertilized crops. Clostridium spores increased as a result of manuring in 1989 only on FYM-treated crops. Differences in the chemical composition of crops were usually small between fertilizer treatments. The quality of silage from slurry-dressed crops, compared with that of silage from fertilized crops, varied between years. The FYM resulted in reduced silage quality, i.e. high pH values (> 4·5), high ammonia N (> 150 g kg−1 total N) and butyric acid (> 6·3 g kg−1 water) concentrations, and high numbers of Bacillus (105 g−1 FM) and Clostridium spores (105 g−1 FM). The concentration of lactic acid was low (≤ 12 g kg−1 water). Wilting and additives generally improved silage quality and reduced the differences between treatments. However, the efficiency of the inoculant on farmyard manured crops was limited.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号