首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The growth and Zn-, Fe- and P-contents of higher plants in relation to Zn-supply The influence of varied supply of zinc was studied on nine different plant species growing in water culture under controlled experimental conditions. The results of the trials were as follows: 1. The vegetative development of the plant was enhanced by increasing supply of zinc in the nutrient solution. Visible symptoms of zinc deficiency were observed in all plants tested up to a level of 10 μg Zn/l in the nutrient medium. Latent zinc deficiency is to be expected when the zinc supply lies between 10 and 100 μg/l. Normal plant development was recorded in the 100 μg/l Zn/l treatment. 2. The zinc content of all plant organs (except in the trial series without zinc) rose with increasing zinc supply. Zinc contents differed greatly depending on plant species. In onions deficiency symptoms appeared during plant development at a zinc content below 7.8 ppm in the dry matter of the leaves. The corresponding value for flax was 21.5 ppm Zn. The range of latent zinc deficiency was characterized by zinc contents between 13.8 and 37.5 PPm. The optimal zinc content differs depending on plant species. For these very varied Zn-treatments and different species, values between 15.8 and 52.0 were found. 3. Leaf Zn content does not always provide a reliable measure of the Zn-nutritional status of the plant. This is, because zinc contents are extremely dependent upon plant species, the age of the plant, and experimental conditions, etc. 4. A higher zinc concentration was measured in older than in younger leaves. 5. The phosphorus contents in all organs were depressed by increasing zinc supply in the nutrient solution. The leaves of the plants in the trial series without zinc had the heighest phosphorus content. The P:Zn ratio at optimal plant growth differs between species. In the control plants this ratio, measured in the younger leaves, was 100 in millet and 262 in soybean. When the symptoms of zinc deficiency are very pronounced, these values lie above 1000. Zinc deficiency does not occur if the P:Zn ratio is below 250 (except in Cotton and beans). 6. Increasing zinc supply led to a decrease in the iron content in the plant organs of all species tested. The iron content was particularly high in those plants which did not receive any zinc.  相似文献   

2.
The relationship between the total amount of micronutrients absorbed by the above-ground plant tissue and the occurrence of visible micronutrient deficiency symptoms in two strawberry cultivars as influenced by elevated phosphorus (P) levels in fertigation solution was investigated. The plants were cultured with a fertilizer solution containing 0, 0.5, 1, 2, 4, or 6 mM P and tissue nutrient content were determined at 120 days after transplanting. Young leaves of the plants grown with nutrient solution P levels higher than 4 mM and 2 mM, respectively, in ‘Keumhyang’ and ‘Seonhong’, developed interveinal chlorosis. Tissue concentrations (mg·kg?1 dry weight) of metallic micronutrients [iron (Fe), copper (Cu), manganese (Mn), and zinc (Zn)] in both cultivars did not decrease, but the total amount absorbed by the aboveground plant tissue decreased in the treatments in which nutrient deficiencies were observed. These results indicate that total amount of micronutrients is a better indicator of P-induced micronutrient deficiency.  相似文献   

3.
Sour orange (Citrus aurantium L.) seedlings were grown for 3 months in diethylenetriamine pentaacetate (DTPA)‐buffered nutrient solutions to study the effect of Zn stress on the plants’ sensitivity to high boron concentration in the root environment. There were three zinc treatments: 21 μM Zn (LOW Zn‐DTPA), 69 μM Zn (NORMAL Zn‐DTPA) in the nutrient solution, or 12 weekly foliar sprays with ZnSO4 (FOLIAR‐Zn). In the FOLIAR‐Zn treatment, the nutrient solution contained 21 μM Zn. Zn activities calculated with a chemical equilibrium model, Geochem PC, and expressed as pZn=‐log(Zn+2), were 10.2 and 9.7 in the LOW Zn‐DTPA and NORMAL Zn‐DTPA nutrient solutions, respectively. One half of the plants in each Zn treatment were grown in 51 μM B (NORMAL‐B) and the other half in 200 μM B (HIGH‐B) nutrient solution. Seedlings grown in LOW Zn‐DTPA/NORMAL‐B nutrient solution developed Zn deficiency symptoms such as: reduced shoot growth, small and chlorotic leaves, and white roots with visibly shorter and thicker laterals than in Zn sufficient plants. The HIGH‐B treatment decreased shoot growth, leaf and stem dry weight, leaf area, and induced severe leaf B toxicity on seedlings grown in the LOW Zn‐DTPA nutrient solution but the effect was either absent or less pronounced in the NORMAL Zn‐DTPA or FOLIAR‐Zn treatments. Seedlings in the LOW Zn‐DTPA FOLIAR‐Zn treatments but they had lower B concentration on a whole plant basis indicating less B uptake per unit of dry weight. The FOLIAR‐Zn and NORMAL Zn‐DTPA treatments were equally effective in alleviating leaf B toxicity symptoms. The FOLIAR‐Zn treatment, however, was less effective than the NORMAL Zn‐DTPA treatment in alleviating the deleterious effect of high B on leaf dry weight even though the B concentrations in leaves, stems, and roots of the foliar‐sprayed seedlings were similar to the NORMAL Zn‐DTPA seedlings. Leaf concentrations of phosphorus, potassium, magnesium, iron, mangenese, and copper were within the optimal range for citrus with the exception of Ca which was low. Although B and particularly Zn treatments modified the concentration of some of these elements in leaves and roots, these changes were too small to explain the observed growth responses. The observation that B toxicity symptoms in Zn‐deficient citrus could be mitigated with Zn applications is of potential practical importance as B toxicity and Zn deficiency are simultaneously encountered in some soils of semiarid zones.  相似文献   

4.
This study was conducted to determine how the range of sulfur (S) supply (from deficient to luxuriant) interacted with possible toxic zinc (Zn) levels. Rocket seedlings were grown for 30 d at three Zn (1, 75, and 150 μM) and three S (0.03, 0.5, and 1.5 mM) concentrations in nutrient solution under controlled conditions. Plant leaves did not show symptoms of S deficiency or Zn toxicity, which was confirmed by pigment determination. Treatments affected only leaf area and shoot dry-weight percentage. The accumulation of Zn was greater in roots than in shoots and increased linearly with Zn supply. Shoot S concentration was affected by S deficiency, whereas nitrogen concentration was least at the greatest S and Zn concentrations.  相似文献   

5.
Genotypic variation to zinc (Zn) deficiency in barley indicates that selection for Zn efficiency is possible. Sahara (Zn-efficient) and Clipper (Zn-inefficient) were evaluated at different Zn nutrition in soil and chelator-buffered nutrient. Zinc deficiency symptoms appeared first in Clipper and later in Sahara. At 0.8 mg Zn/kg soil, shoot and root Zn concentration and content were higher in Sahara than Clipper. The root:shoot dry matter ratio of genotypes increased as Zn application decreased. The 4th and 5th leaf elongation were depressed greater in Clipper than Sahara by Zn deficiency. The genotypes responses to Zn in solution and soil were consistent in all parameters except root growth. In contrast to soil, root drymatter was greater in Clipper than Sahara in solution under Zn deficiency. Shoot Zn concentration and content can be used in assessment of barley genotypes, and may be useful criteria in screening large genotypes aimed at developing molecular markers for Zn efficiency.  相似文献   

6.
The lower and upper critical boron levels in cotton (Gossypium herbaceum-Etawa), which are not estimated, were determined to provide guideline values for estimating the boron status from deficiency to toxicity. Cotton plants were grown under greenhouse conditions in complete nutrient solution containing boron at levels ranging from 0 to 50 ppm. Plants were harvested after 40 days and analysed for B, Zn, Fe, Mn and Cu. The lower critical levels for boron in roots, young leaves and old leaves were 103, 61 and 78 ppm, while critical nutrient toxicity levels were 129, 80 and 91 ppm, respectively. For the Gossypium herbaceum-Etawa cultivar, the maximum growth was obtained when 1 ppm boron was applied as H3BO3 in the nutrient solution. High boron concentrations in the nutrient solution were associated with low content of Zn, Fe and Mn in the plants, while boron and Cu concentrations increased with boron supply. Significant correlations were found between B treatments and most response parameters measured.  相似文献   

7.
The effects of Zn‐stress on pH of the nutrient medium and the occurrence of Zn deficiency symptoms were examined in 12 cotton and 10 peanut cultivars widely grown in several parts of India. It was found that many of the cotton cultivars were able to reduce the pH, but however unable to recover from Zn deficiency. In contrast, all the peanut cultivars tested did not develop Zn‐chlorosis when subjected to Zn‐stress, although the pH reduction was less significant. The study with these crop cultivars revealed that Zn‐stress tolerance response was not related to pH changes in general. The mechanism by which the peanut cultivars made Zn available and thus averted the onset of Zn‐chlorosis was therefore not adaptive to the changes in pH. This feature appeared to be different from the pattern of correlative pH reduction and recovery from Fe‐chlorosis observed in several Fe‐stress tolerant crop cultivars.  相似文献   

8.
Iron deficiency stress causes a severe reduction in plant growth. Although Fe deficiency causes an imbalance in divalent heavy metal nutrients, the mechanisms underlying the growth reduction caused by this imbalance remain unclear. We investigated Zn uptake and accumulation in maize under Fe-deficient conditions. Under Fe-deficient conditions, Zn uptake was 15-fold higher and Zn accumulation was 16-fold higher than that under normal nutrient conditions. The Zn content of maize leaves under Fe-deficient conditions was >0.4 mg g−1 dry weight, which was higher than the content of plants grown in a nutrient solution containing 50 µM ZnCl2. Plant growth under conditions of both Fe and Zn deficiency was significantly higher than that under only Fe-deficient conditions. Moreover, Fe deficiency increased the thiol content of the plant. These results indicate that Fe deficiency causes excess uptake and accumulation of Zn, and that the stress resulting from the Zn overload accelerates growth reduction in maize.  相似文献   

9.
  【目的】  对比大、中量养分短期缺乏下脐橙新、老叶片中11种必需元素含量及变化,并分析缺素导致的营养元素间的相互影响。  【方法】  以一年生枳砧纽荷尔脐橙幼苗为试材进行了砂培试验。以完全营养液为对照 (CK),设置缺氮 (?N)、缺磷 (?P)、缺钾 (?K)、缺钙 (?Ca)和缺镁 (?Mg)处理,测定不同处理脐橙叶片(老叶和新叶)生长指标及矿质元素含量。  【结果】  所有缺素处理均导致叶片叶绿素含量降低,生物量减少,以缺氮处理最为显著。缺氮降低了叶片N、Ca、Cu、Mo含量;缺磷降低了叶片P、K、Mo含量;缺钾降低了叶片K含量;缺钙降低了叶片N、Cu、Zn、Mo含量但增加了P含量;缺镁降低了叶片Ca、Mg、Zn、Mo含量但增加了K含量。以必需矿质元素为变量分别对各处理老叶和新叶进行主成分分析,老叶中第一主成分 (PC1)明显将缺钾处理与其他处理区分开,与对照相比,缺钾老叶离子组成变化为N (?3%)、P (+1%)、K (?71%)、Ca (+11%)、Mg (+39%)、B (+16%)、Mn (+11%)、Fe (+32%)、Cu (?7%)、Zn (+14%)、Mo (?63%);新叶中PC1明显将缺氮处理与其他处理区分开,缺氮新叶离子组成变化为N (?53%)、P (+8%)、K (+7%)、Ca (?14%)、Mg (+11%)、B (+55%)、Mn (+51%)、Fe (?14%)、Cu (?57%)、Zn (+4%)、Mo (?25%)。老叶和新叶中元素含量呈正相关的元素是N-Cu、N-Ca、Mg-Mn和Cu-Mo,呈负相关的是K-Zn。  【结论】  脐橙幼苗老叶对钾的短期缺乏反应最敏感,缺钾会显著降低老叶中K和Mo含量并增加Mg和Fe含量,而新叶对氮素的短期缺乏最敏感,缺氮显著降低新叶中N、Ca、Cu和Mo含量。短期缺少P、Ca和Mg对脐橙幼苗叶片中的养分含量影响较小。  相似文献   

10.
A short-term experiment was carried out to study the effects of exogenous nitric oxide (NO) on some growth parameters and mineral nutrients of maize grown at high zinc (Zn). Maize seedlings were planted in pots containing perlite and subjected to 0.05 or 0.5 mM Zn in nutrient solution. Nitric oxide (0.1 mM) was sprayed to the leaves of maize seedlings. High Zn reduced total dry matter, chlorophyll (Chl.) content and leaf relative water content (RWC), but increased proline content and membrane permeability. Foliar application of NO significantly increased chlorophyll content, RWC and growth of plants treated with high Zn, and significantly reduced their membrane permeability and proline contents. High Zn resulted in increased leaf and root Zn, but lower concentrations of leaf phosphorus (P), and iron (Fe). Foliar application of NO lowered leaf and root Zn and increased leaf and root nitrogen (N) and leaf Fe in the high Zn plants. These results clearly demonstrated that externally-applied NO induced growth improvement in maize plants was found to be associated with reduced membrane permeability under high zinc. Results can be concluded that NO may be involved in nutritional and physiological changes in plants subjected to high Zn.  相似文献   

11.
A typical symptom of iron (Fe) deficiency in plants is yellowing or chlorosis of leaves. Heavy metal toxicity, including that of zinc (Zn), is often also expressed by chlorosis and may be called Fe chlorosis. Iron deficiency and Zn toxicity were evaluated in soybean (Glycine max [L.] Merr.) at two levels each of Zn (0.8 and 40 μM), Fe (0 and 20 μM), and sulfur (S) (0.02 and 20 mM). Reduction in dry matter yield and leaf chlorosis were observed in plants grown under the high level of Zn (toxic level), as well as in the absence of Fe. Zinc toxicity, lack of Fe, and the combination of these conditions reduced dry matter yield to the same extent when compared to the yield of the control plants. The symptoms of Zn toxicity were chlorosis in the trifoliate leaves and a lack of change in the orientation of unifoliate leaves when exposed to light. The main symptoms of Fe deficiency were chlorosis in the whole shoot and brown spots and flaccid areas in the leaves. The latter symptom did not appear in plants grown with Fe but under Zn toxicity. It seems that Fe deficiency is a major factor impairing the growth of plants exposed to high levels of Zn. Under Zn toxicity, Fe and Zn translocation from roots to shoots increased as the S supply to the plants was increased.  相似文献   

12.
The knowledge of nutrient mobility is an important tool to define the best fertilizer management and diagnosis techniques. Patterns of boron (B) mobility in plants have been reviewed, but there is very little information on B distribution and mobility in cotton. An experiment was conducted to study plant growth and B distribution in cotton when the nutrient was applied in the nutrient solution or to the leaves, and when a temporary deficiency was imposed. Cotton (Gossypium hirsutum, Latifolia, cv. IAC 22) was grown in nutrient solutions where B was omitted or not for 15 days. Boron was applied to young or mature cotton leaves in some of the minus B treatments. Root growth decreased when the plants were transferred to B solutions, but there was a full recovery when B was replaced in the nutrient medium. Boron deficiency, even when temporary, reduced cotton shoot dry matter yields, plant height and flower and fruit set, and these could not be prevented by foliar application of B. Because of decreased dry matter production, leaves of deficient cotton plants actually showed higher B concentrations than non deficient leaves. This would be misleading when a mature leaf is sampled for diagnosis. If there is any B mobility in cotton phloem, it is very low.  相似文献   

13.
不同氮素形态对干旱胁迫杉木幼苗养分吸收及分配的影响   总被引:2,自引:1,他引:1  
【目的】干旱胁迫是限制植物生长的重要非生物因素之一,而适宜的氮素营养可以提高植物的抗旱性。本文探讨了供应不同形态氮源对干旱条件下杉木[Cunninghamia lanceolata (Lamb.) Hook]幼苗养分吸收及分配的影响。【方法】采用水培试验,供试杉木材料为2个无性系幼苗(7–14号和8–8号),在营养液中添加10%(w/v)PEG-6000进行干旱胁迫。营养液中的氮源处理包括硝态氮、铵态氮、硝铵混合氮,氮素浓度均为4.571mmol/L,每个品种均设6个处理。培养20天后,测定了杉木幼苗根、茎、叶的养分含量及生物量。【结果】与正常水分供应相比较,干旱胁迫条件下供应铵态氮可促进叶片N、K以及茎叶P、K的吸收,供应混合氮可促进根部K的吸收;供应铵态氮可促进根、茎对Ca的吸收,对叶片Ca无明显作用。干旱胁迫对根部Fe、Mn、Cu、Zn吸收量影响显著,氮素供应不同程度地降低了干旱胁迫下各器官Mg、Fe、Mn和Cu吸收量,表现为抑制吸收,但添加铵态氮比硝态氮的降低幅度小。3个氮源处理均降低了干旱条件下根部Zn吸收量,但没有降低甚至增加了茎、叶中Zn的吸收量,说明氮营养可调节Zn在各器官间的分配,缓解干旱导致的缺锌现象。不同器官之间各养分吸收量差异显著,3个氮源处理中,N和P吸收量表现为叶>根>茎,K和Ca为叶>茎>根,Fe、Cu为根>叶>茎,Mg、Mn和Zn在各器官之间的分配规律不一。铵态氮吸收量均表现为叶>根>茎,且各器官铵态氮吸收量显著高于硝态氮,说明杉木具有明显的喜铵特性。【结论】在干旱胁迫下,氮素供应形态显著影响杉木幼苗对养分的吸收及在各器官中的分配,作用效果因家系品种和元素种类而异。总体来讲,铵态氮提高干旱胁迫下杉木幼苗养分吸收的效果好于硝态氮,杉木可以认为是喜铵植物。  相似文献   

14.
利用螯合–缓冲营养液对小麦苗期磷–锌关系的研究   总被引:1,自引:0,他引:1  
采用螯合缓冲营养液培养技术(Chelator-buffer culture solution),对小麦幼苗植株的磷锌营养进行了探讨。结果表明,高磷条件下小麦出现的缺锌黄化与磷中毒症状之间存在着明显区别,本研究结果支持高磷条件下作物出现的黄化是锌缺乏症状而非磷中毒的观点。与缺磷相比,正常供磷促进了小麦的生长,但过量磷对小麦生长有阻碍作用,而且锌的供应加剧了促进或抑制的程度。正常供应磷、锌条件下,小麦幼苗根系或地上部的磷、锌含量、吸收量及转运率均处于相对较高的水平,其余各处理则因为磷或锌供应量不适宜而使植株的磷、锌营养受到不同程度的影响。另外,磷锌相互拮抗的作用方式及大小程度不同:磷主要影响小麦根系对锌的吸收,而锌对小麦磷营养的影响主要是通过对其从根系向地上部转运的抑制来实现的;磷对锌的影响要明显大于锌对磷的影响,磷素水平在小麦的磷、锌营养平衡中起着更为重要的作用。磷锌拮抗作用只在双方供应不适宜的情况下发生,而且相互作用的方式及程度存在明显差异。  相似文献   

15.
Little is known about the effect of varying levels of potassium (K) on the mineral element concentration, growth, and gas exchange, characteristics of woody ornamental plants. The commercially important woody ornamental species Hibiscus rosa‐sinensis L. cv. Leprechaun was evaluated for K response in a series of three experiments with full strength Hoagland's nutrient solution, which supplied 0 to 10 mM K. Plants grown with 4 mM K in nutrient solution (2.4% leaf tissue K) had the greatest shoot growth and root extension. Gas exchange rates (net photosynthesis, transpiration, and stomatal conductance) were also highest at 4 mM K compared to the control (0 mM K /0.6% leaf tissue K), 0.2, 2.0 and 10 mM K treatments. The application of 4 mM K increased net photosynthesis and tranpiration by 2.1 fold and stomatal conductance by 4.5 fold over 0 mM K controls. Increasing K in nutrient solution correlated positively with tissue K, manganese (Mn), and zinc (Zn), but negatively with nitrogen (N), phosphorus (P), calcium (Ca), and magnesium (Mg). There was a stronger sink for K in yonger leaves (the first to fourth fully expanded leaf from the shoot apex) which had higher K concentration than older leaves (the eighth to twelfth fully expanded leaf from the shoot apex). However, with increasing K in nutrient solution, K concentration in leaf tissue increased regardless of leaf age, and the difference between the younger and older leaf was constant. Daily application of 10 mM K resulted in 6.9% leaf tissue K and caused a decrease in plant total dry matter, net photosynthesis, compared to 4 mM K treated plants. However, these parameters remained higher in 10 mM K plants, which retained high ornamental quality than in 0 mM controls. Plants fertilized with 10 mM K, had the highest leaf tissue K and Zn, but lowest P, Ca, Mg, iron (Fe), copper (Cu) and boron (B). Nevertheless, the 10 mM K treated plants exhibited no morphological differences or deficiency symptoms; rather those plants had similar vegetative vigor and flower bud formation rate as those at 4 mM K.  相似文献   

16.
A standard and a high manganese (Mn) level (10 and 160 μM) were combined with a standard and a high zinc (Zn) level (4 and 64 μM) in the nutrient solution supplied to cucumber in closed‐cycle hydroponic units to compensate for nutrient uptake. The concentrations of all nutrients except Mn and Zn were identical in all treatments. The objectives of the experiment were to establish critical Zn and Mn levels in both nutrient solutions and leaves of cucumber grown hydroponically, to assess the impact of gradual Zn and/or Mn accumulation in the external solution on nutrient uptake and gas exchange, and to find whether Mn and Zn have additive effects when the levels of both ions are excessively high in the root zone. The first symptoms of Mn and Zn toxicity appeared when the concentrations of Mn and Zn in the leaves of cucumber reached 900 and 450 mg kg–1 in the dry weight, respectively. Excessively high Mn or/and Zn concentrations in the leaves reduced the fruit biomass production due to decreases in the number of fruits per plant, as well as the net assimilation rate, stomatal conductance, and transpiration rate, but increased the intercellular CO2 levels. Initially, the Mn or Zn concentrations in the recirculating nutrient solution increased rapidly but gradually stabilized to maximal levels, while the corresponding concentrations in the leaves constantly increased until the end of the experiment. The uptake of Mg, Ca, Fe, and Cu was negatively affected, while that of K and P remained unaffected by the external Mn and Zn levels. The combination of high Mn and Zn seems to have no additive effects on the parameters investigated.  相似文献   

17.
The aim of this study was to induce symptoms of zinc deficiency and Zn excess and to relate the generation of reactive oxygen species (ROS) and the altered cellular redox environment to the effects of Zn stress in mulberry (Morus alba L.) cv. Kanva‐2 plants. The antioxidative responses of Zn‐stressed mulberry plants were studied by determining malondialdehyde content (MDA, a measure of lipid peroxidation) as indicator of oxidative damage and the ratio of dehydroascorbate (DHA) to ascorbic acid (AsA) as an index of the cellular redox state. The Zn‐deficiency effects appeared as faint paling and upward cupping of the young emerging leaves. The paling intensified with time, and affected leaves finally developed necrotic spots. At advanced stage of Zn deficiency, newly emerged leaves were spindle‐shaped, pale, and small in size. Apart from their stunted appearance, the plants supplied excess Zn did not show any specific visible symptom. Leaf water status of mulberry plant was affected in Zn‐stressed plants. Deficient leaves had decreased water potential (Ψ) and specific water content (SWC), contained less tissue Zn, less chloroplastic pigments, and high tissue Fe and Mn concentrations. However, excess supply of Zn was found to increase Ψ and decrease tissue Fe. Both hydrogen peroxide and MDA accumulated in leaves of Zn‐stressed plants. While the concentration of DHA did not vary in Zn‐deficient leaves, it was increased in leaves of plants supplied excess Zn. The ratio of the redox couple (DHA to AsA) was increased both in Zn‐deficient or Zn‐excess plants. The activities of superoxide dismutase (EC 1.15.1.1), catalase (EC 1.11.1.6), peroxidase (EC 1.11.1.7), and ascorbate peroxidase (EC 1.11.1.11) increased in Zn‐stressed plants. The results suggest that deficiency or excess of Zn aggravates oxidative stress through enhanced generation of ROS and a disturbed redox homeostasis in mulberry plants.  相似文献   

18.
19.
Two experiments were conducted to compare absorption of copper (Cu) from cupric chloride (CuCl2) and various types of chelated Cu in a low concentration range by cucumbers. In the first experiment, two varieties of cucumber were grown on rockwool for 40 days in a glasshouse with standard nutrient solution which contained six different concentrations of CuCl2 (0, 0.05, 0.10, 0.20, 0.40, and 0.80 μmol/L). Copper deficiency symptoms were examined during the growing period, and the total nitrogen (N), iron (Fe), manganese (Mn), zinc (Zn), and copper contents of young fully grown leaves were measured. There were no differences among treatments in the leaf contents of N and Mn. Copper contents increased and Zn decreased with increasing Cu levels. The content of Cu at the three low Cu treatments (including no Cu addition) were in the deficient range (48–65 μmol/kg dry matter). The zero Cu level had paler green leaves than other treatments. No differences were apparent between varieties. The second experiment was carried out under exactly the same conditions as the first, but on the basis of the results of the first experiment, Cu treatments were 0, Cu‐EDDHA at 0.4, Cu‐DTPA at 0.4, Cu‐EDTA at 0.4, Cu‐NTA at 0.4, CuCl2 at 0.4 μmo/L as Cu2+. After the experiment, the total N, Fe, Mn, Zn, and Cu contents of young, fully grown leaves were measured. There were no differences between treatments in the leaf contents of Cu except zero Cu level. They were in the range of 101–119 μmol/kg dry matter. At no Cu addition treatment, the Cu content was only 31 μmol/kg dry matter which is considered to be the deficiency level. For the other examined elements, there were no differences among the treatments and varieties. From these data it was concluded that the availability of these chelated Cu types were the same as CuCl2 under the conditions of the experiments conducted.  相似文献   

20.
选择 土为供试土壤, 进行盆栽玉米试验, 设定0和5.0 mg·kg-1两个锌处理, 按土壤饱和持水量的40%~45%和70%~75%在玉米的4叶1心期实施干旱和正常水分处理。生长50 d后, 测定不同土壤水分与锌供应状况下植株生物量和锌含量, 利用透射电子显微镜观察完全伸展新叶的超微结构变化, 以期揭示不同土壤水分供应下, 植物对施锌的响应机理。结果表明: 土壤水分供应充足条件下, 与不施锌相比, 施锌玉米地上部生物量和总干重分别增加78%和52%, 根系和地上部锌含量和锌吸收量增加较多; 而干旱条件下, 施锌对玉米生物量无显著影响。干旱条件下缺锌玉米叶片维管束鞘细胞中叶绿体结构基本保持完好, 淀粉粒和基质片层清晰可见, 但叶肉细胞中叶绿体膜受损, 基质片层结构出现皱缩, 基粒片层减少; 施锌玉米叶片维管束鞘细胞中叶绿体结构保持完好, 叶绿体周围的线粒体数目较多, 叶肉细胞中叶绿体中脂肪颗粒增多, 叶片维管束鞘细胞与叶肉细胞之间可见清晰的胞间连丝。土壤水分充足处理下, 缺锌叶片细胞膜出现皱缩, 维管束鞘细胞叶绿体淀粉粒增多, 片层结构受损, 严重时维管束鞘细胞中内溶物消失, 残存的叶绿体中仅有淀粉粒和少许片层; 叶肉细胞中叶绿体可见淀粉粒, 但片层结构少, 有些出现断裂、收缩。土壤水分充足条件下, 施锌玉米维管束鞘核叶肉细胞结构清晰, 叶绿体结构完整。结论认为: 锌对干旱胁迫下玉米叶片细胞结构的破坏有一定的缓解作用; 但土壤水分正常供应下, 缺锌导致细胞结构受损程度比干旱情况下更严重。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号