首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 218 毫秒
1.
作物蒸腾作用是基质水分传输的主要驱动力,建立了基于基质含水率变化量的温室番茄作物蒸腾量估算模型和预测模型,并进行对比分析。使用校准后的EC5基质含水率传感器,记录第1次灌溉后与第2次灌溉前基质实时含水率变化量,使用称量法测量作物实时蒸腾量。通过基质含水率变化量与基质栽培槽体积的多元线性回归运算,建立番茄单株日蒸腾量估算模型;将基质含水率变化量、空气温度、空气湿度和光照强度作为输入,利用GABP神经网络算法,建立番茄单株日蒸腾量预测模型。将试验所得温室作物日蒸腾量估算模型和预测模型分别与温室作物实际日蒸腾量进行线性回归分析,结果表明,基于基质含水率变化量建立的估算模型在苗期、花期的预测精度分别为0. 972 9、0. 979 6,预测模型的预测精度分别为0. 991 5、0. 989 0,两者之间差异不大,但估算模型运算速度远高于预测模型的运算速度,估算模型对于温室灌溉管理具有推广应用价值。  相似文献   

2.
针对温室番茄无法按需灌溉问题,提出了随机森林(Random forest,RF)结合门控循环单元(Gated recurrent unit,GRU)神经网络的温室番茄结果前期蒸腾量预测方法,并开发了一套基于番茄蒸腾量的智慧灌溉系统.基于物联网实时获取数据,采用RF算法对影响温室番茄蒸腾量的变量进行特征重要性排序,选取作...  相似文献   

3.
针对目前温室环境系统中,环境监测数据只能反映当前环境状况,无法预测温室环境变化趋势,导致温室环境控制效果差的问题,提出一种基于Elman神经网络的温室环境因子预测方法。以采集的温室内温度、湿度以及二氧化碳浓度的历史数据作为预测模型的输入,建立Elman神经网络预测模型,进而实现精确的温室环境因子变化预测。结果表明,Elman模型优于BP和RBF模型,温度、湿度和二氧化碳浓度预测结果的均方误差分别为0.003 9、0.005 9和0.028 3,决定系数分别为0.991 5、0.967 8和0.973 9。该模型预测结果较理想,可以为温室环境调控提供一定的决策支持。  相似文献   

4.
【目的】准确预测果树需水量。【方法】对采集地果园环境数据进行主成分分析,筛选出影响果树蒸腾量的关键因子。建立以长短时记忆(LSTM)神经网络为基础的预测模型来预测果树蒸腾量。为提高预测的精度,在LSTM神经网络的基础上加入了注意力(Attention)机制,形成Attention-LSTM预测模型。【结果】将改进的模型与其他模型的预测精度进行对比,仿真试验表明,该模型的预测精度最高,RMSE和MSE分别为0.487和0.062。【结论】该预测模型可以准确预测果树蒸腾量,从而实现果园精准灌溉并提高水果产量,具有一定的实际意义。  相似文献   

5.
构建日光温室环境预测模型,准确预测温室环境变化有助于精准调控作物生长环境,促进果蔬生长。而温室小气候环境数据多参数并存、耦合关系复杂,且具有时序性和非线性,难以建立准确的预测模型。针对以上问题,提出一种基于麻雀搜索算法(SSA)优化的长短期记忆网络(LSTM)温室环境预测模型,实现了温室环境数据的精准预测。实验结果表明,采用SSA自动进行参数选优的方式,解决了LSTM模型参数手动选择的难题,大幅缩短模型训练时间,且最优的网络参数能够发挥模型的最佳性能。对日光温室内空气温湿度、土壤温湿度、CO2浓度和光照强度6种环境参数进行预测,SSA-LSTM平均拟合指数高达97.6%,相比BP、门控循环单元(GRU)、LSTM,其预测拟合指数分别提升8.1、4.1、4.3个百分点,预测精度明显提升。  相似文献   

6.
采用试验测量法,以温室环境参数为变量,建立了不同时间尺度下番茄蒸腾量和椰糠水分蒸发量回归模型以分析温室无土栽培番茄蒸腾规律和椰糠水分蒸发规律。结果表明,1h、1d时间尺度下番茄蒸腾量回归模型的决定系数分别为0.673 8、0.801;68d(整个试验周期)时间尺度下,1号番茄累积蒸腾量与累积有效积温、累积辐射积的拟合决定系数分别为0.998 4、0.993 6。1d时间尺度下,椰糠水分蒸发量特性方程的回归系数为0.891;58d(整个试验周期)时间尺度下,椰糠累积水分蒸发量与累积有效积温和累积辐热积回归方程的决定系数分别为0.999和0.992 7。随着时间尺度增大,番茄蒸腾量和椰糠水分蒸发量与环境参数的相关性显著提高。  相似文献   

7.
为提高猪舍氨气浓度预测的精度和效率,提出了基于经验模态分解和长短时记忆神经网络(EMD-LSTM)的猪舍氨气浓度预测模型。首先,将猪舍氨气浓度时间序列数据进行经验模态分解,得到不同时间尺度下的固有模态分量(IMF);然后,对IMF建立LSTM氨气浓度预测模型;最后,将各分量的预测结果相加求和作为猪舍氨气浓度的最终预测值。将本文提出的预测模型应用于江苏省宜兴市实验基地某养猪场的氨气浓度预测中,并与Elman模型、循环神经网络(RNN)模型、LSTM模型和EMD-LSTM模型进行了对比实验,结果表明,基于EMD-LSTM模型的预测精度较高,预测结果与真实值相比较,平均绝对误差、平均绝对百分误差和均方根误差为0. 072 3 mg/m~3、0. 6257%和0. 094 5 mg/m~3。  相似文献   

8.
孙泉  耿磊  赵奇慧  杨佳昊  吕平  李莉 《农业机械学报》2022,53(S1):270-276,308
为研究温室内番茄冠层作物水分胁迫指数(CWSI)问题,通过布设多参数传感器,实时获取温室内外各环境参数。利用灰度关联分析,计算各环境参数与番茄冠层CWSI的关联度,根据关联度对环境参数进行排序,同时考虑对模型精度的影响,最终从9个环境参数中选取7个作为模型输入,建立基于LightGBM的温室番茄冠层CWSI预测模型。结合贝叶斯算法优化其中的关键参数,将模型预测结果与通过Jones经验公式计算出的CWSI做相关性分析,在相同的运算环境下,分别与GBRT和SVR模型对比。试验结果表明,基于贝叶斯优化LightGBM模型的决定系数(R2)、平均绝对误差(MAE)、均方根误差(RMSE)和运算时间分别为0.9601、0.0218、0.0314和0.0518s,与GBRT和SVR模型相比,其R2分别提高2.14%和14.05%,MAE分别降低0.0093和0.0612,RMSE分别降低0.0097和0.0591,时间分别缩短0.0459s和0.0612s。表明本研究提出的LightGBM模型性能更有效地提高了温室番茄冠层CWSI的预测精度,为实现温室番茄按需灌溉提供了参考。  相似文献   

9.
研究了温室内草皮蒸腾量和小气候的关系,用彭蔓公式计算参考作物腾发量,用20cm蒸发皿测定温室内的水面蒸发力,并和测定的草皮蒸腾量进行对比。试验结果表明,草皮蒸腾量与温室小气候的回归系数(R^2)为0.938,明显高于蒸腾量与蒸发皿水面蒸发量的回归系数(R^2)0.8683和蒸发量与彭蔓公式计算的参考作物腾发量的回归系数0.7944,以温室小气候计算温室内的作物蒸腾量要优于以参考作物腾发量计算作物蒸腾量和蒸发皿水面蒸发量的方法。温室内草皮的蒸腾量与温室小气候线性相关,可以此计算温室内作物的蒸腾量。  相似文献   

10.
为实现温室作物参考作物蒸散量(ET_0)的准确计算和预测,利用BP神经网络对获取的数据进行非线性回归,利用思维进化算法自动寻优,进而获取BP神经网络算法中较优的权值和阈值,最终建立了基于思维进化算法优化BP神经网络的参考作物蒸散量预测模型(MEA-BP)。结果表明,优化后的BP神经网络的最大相当误差有原来的13%下降到了7.2%,平均相对误差由原来的6.8%下降到了3.4%。研究了在气象数据缺失情况下模型的预测效果,当模型输入参数为4个时,平均绝对误差约为在0.2 mm(预测值约3~6 mm),模型的有效系数和相关系数基本在0.9以上;当模型输入参数为3个时,平均绝对误差约为0.25 mm,模型的有效系数和相关系数基本在0.8以上。因此,在输入参数保证3个及以上,同时包含有显著影响因子有效光照时长时,该模型的整体计算精度以及整体的实用性较好,能够为作物灌水量的预测提供参考。  相似文献   

11.
通过田间试验,对温室膜下滴灌茄子冠层叶片蒸腾速率的变化规律进行了深入研究。通过分析温室内地面温度、相对湿度、植株冠层温度、气压、水面蒸发、太阳辐射等6个环境参数与茄子蒸腾速率的综合影响关系,确定了网络拓扑结构为6-9-1。并应用MATLAB软件,选择Levenberg-Marquardt(L-M)优化算法,建立了基于Back Propagation(BP)神经网络的温室膜下滴灌茄子蒸腾速率预测模型。经模型验证得出,BP神经网络模型预测值与蒸腾速率实测值间拟合效果较好,平均相对误差为0.029 8,达到预测精度要求。该研究成果对温室膜下滴灌作物需水规律及需水量研究具有较好的参考价值。  相似文献   

12.
BP神经网络与GA-BP农作物需水量预测模型对比   总被引:2,自引:0,他引:2  
农作物需水量预测是制定合理灌溉制度的重要依据.针对BP神经网络的不足,利用遗传算法(GA)具有全局搜索能力强的特点,建立基于GA-BP神经网络的农作物需水量预测模型.以广州辣木农庄试验田农作物作为研究对象,结果表明:基于BP神经网络农作物需水量预测模型测试集均方误差和确定性系数分别为0.037和0.648;GA-BP神经网络农作物需水量预测模型测试集均方误差和确定性系数分别为0.013和0.882,GA-BP农作物需水量预测模型收敛速度、确定性系数和性能均优于BP农作物需水量预测模型.  相似文献   

13.
递归神经网络(RNN)模型近年来在许多任务上表现出了优良的性能。运用具有长短期记忆(LSTM)单元的递归神经网络构建模型和通过时间反向传播(BPTT)算法更新网络权重解决长期降雨量的预测问题,较好地解决了高维数、非线性和局部极小问题。选取了前馈神经网络模型(FNN)、小波神经网络(WNN)模型和整合移动平均自回归(ARIMA)模型3种模型进行验证比较。仿真结果表明,递归神经网络模型优于其他模型,训练结果与实际值接近,预测精度较高。预测结果为农业用水管理、合理制定灌溉制度提供了重要的科学依据。  相似文献   

14.
为了实现气象资料缺失情况下参考作物蒸散量(ET0)精确计算和预测,以攀枝花站点为例,构建非线性自回归滤波器(NARX)模型预测ET0.以Penman-Monteith模型计算的ET0作为预测标准,将日最高温、日最低温、日照时数、风速和相对湿度作为模型的输入参数,建立11种不同气象因子组合的NARX模型,并与Hargreaves-Samani模型、Irmak-Allen模型、Makkink模型、Priestley-Taylor模型的计算结果进行比较.结果表明:不同气象因子输入下的NARX模型模拟精度表现出明显的差异.其中,基于全部气象因子的NARX-1模型的RMSE,MAE和MBE分别为0.425 mm/d,0.320 mm/d和0.069 mm/d,NSE为0.920,GPI排名第11,精度最差;而基于风速的NARX-9模型精度最高,其RMSE,MAE和MBE分别为0.285 mm/d,0.237 mm/d和0.019 mm/d,NSE为0.964,GPI排名第1.在输入相同气象参数情况下,基于温度和日照时数的NARX-4模型模拟精度优于Irmak-Allen,Makkink,Priestley-Taylor模型;基于温度的NARX-7模型模拟精度明显高于Hargreaves-Samani模型.因此,可将NARX模型作为四川西南山地缺失较多气象资料情况下计算ET0的推荐模型,为农田精准灌溉提供科学依据.  相似文献   

15.
参考作物腾发量(ET0)是估算作物腾发量的关键参数,其准确预测对提高作物需水预报精度具有十分重要的意义。Elman神经网络是BP网络的改进结构,具有适应时变性的特点;最小二乘支持向量机(LS-SVM)是支持向量机(SVM)的一种优化算法,它基于结构风险最小化准则,可兼顾模型的经验风险和推广能力。将两种方法应用于参考作物腾发量预测中,并以铁岭市为例,对比分析LS-SVM模型与Elman模型的预测值。结果表明:LS-SVM模型学习速度快,具有比Elman模型更高的模拟性能和预测精度,更适合参考作物腾发量的预测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号