首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 545 毫秒
1.
Sugar beet plants were grown in the field, after in-furrow application of [14C]aldicarb (3 kg of aldicarb ha?1) at planting. The ripe sugar beet plants were harvested, and the blades and petioles of the leaves were analysed separately. In the whole leaves, 15% of the 14C (all the percentages of 14C are relative to the total 14C incorporated into the whole leaves) was insoluble in ethanol+ water (1+1 by volume), 31% was organo-soluble (and thus unconjugated in the leaves), and 54% was water-soluble (mainly conjugated to plant constituents). The weights and concentrations (as aldicarb equivalents) of various identified metabolites of aldicarb, incorporated into the leaves, were determined; no aldicarb, as such, was detected.  相似文献   

2.
Sugar beet plants were grown in the field, after in-furrow application of [14C]- aldicarb (3 kg of aldicarb ha?1) at planting. The ripe sugar beet plants were harvested, and the roots were analysed. The roots were fractionated according to a procedure similar to the normal beet-sugar manufacturing process. Expressed as a proportion of the total radioactivity incorporated into the root, the pulp contained 29.7%, the lime cake 9.7%, the crystallised sugar 17.7% (which gave, with the radioactivity found in the sugar in the molasses, a total of 20.7% of the radioactivity in the total sugar), and the molasses, 42.9%. A part of the labelled carbon from the radio- active aldicarb and its metabolites had thus been metabolised and incorporated into sugar molecules. Except for the radioactivity in the sugar and in the lime cake from the processing, the proportion of radioactive non-conjugated organosoluble compounds was very low (2.6%), and perhaps partially corresponded to the very low amount of aldoxycarb (aldicarb sulphone) in the root (less than 0.001 mg of [14C]-aldicarb equivalents kg?1 fresh weight). Hydrolysis of the molasses yielded free radioactive 2-methyl-2-(methylsulphinyl)propan-1-ol (3.1%), 2-mesyl-2-methyl-propan-I-ol (8.9%) and 2-mesyl-2-methylpropionic acid (12.0%) which had been conjugated to plant constituents in the root. The corresponding concentrations (expressed as mg of [14C]aldicarb equivalents kg?1 fresh weight of root) were 0.004, 0.011, and 0.016, respectively. No aldicarb, aldicarb sulphoxide or aldoxycarb (nor the corresponding nitrile, generated from aldicarb during the fractionation procedure) was liberated by the hydrolysis, indicating the absence of conjugates of these compounds in the root.  相似文献   

3.
The residues of aldicarb and of its main metabolites (aldoxycarb, 2-mesyl-2-methylpropionitrile, and 2-mesyl-2-methylpropan-1-ol) were measured, by a gas-liquid chromatographic procedure, in the leaves of ripe sugar beet plants from cultures made by several farmers. The sugar beet plants had been grown in normal fields and treated at sowing with aldicarb at the usual rate of 1 kg ha?1 in the form of ‘Temik’, the commercial formulation of aldicarb which contains 10% by weight of aldicarb. The samples of sugar beet plants were taken from three fields of different soil types. The residue concentrations, ranged in order of soil type, were: sandy loam > silt loam > clay.  相似文献   

4.
The in-row application of aldicarb granules at 2 lb active ingredient (a.i.)/acre (2·24 kg/ha) at sowing gave complete control of Aphis fabae Scop. on broad beans (Vicia faba L. cv. Seville) up to 7 days before harvest and resulted in a three-fold increase in yield compared with a similar thionazin treatment. Bean plants grown from seeds which were soaked in a gamma-BHC solution at 20 ppm for 24 h prior to planting were protected from this aphid for most of the growing season almost as effectively as with the thionazin treatment. A thin-layer chromatography method was developed for the determination in plants and soil of aldicarb and its two major toxic metabolites, the sulphoxide and sulphone. Gas-liquid chromatography was used to monitor the declining levels of gamma-BHC and thionazin, and simultaneous bioassays were made with Aphis fabae on excised leaf discs from the crop. Analysis of the bean seeds and pods at harvest 90 days after sowing indicated no detectable gamma-BHC, less than 0·01 ppm of thionazin and approximately 0·09 ppm total residue of aldicarb sulphone and sulphoxide. Approximately 22% and 13% of the applied aldicarb, in the form of sulphone and sulphoxide but not the parent compound, remained in the top 6 in (152 mm) of soil at the end of 2 and 4 months respectively. Toxicity studies with Aphis fabae, Acyrthosiphon pisum Harris, and Megoura viciae Buck showed an increasing sensitivity in that order to gamma-BHC at 1 ppm in bean plants. Acute toxicity investigations with feeding Aphis fabae indicated an increasing sensitivity in the order of gamma-BHC < aldicarb sulphone < aldicarb sulphoxide < thionazin < aldicarb. Despite the high acute toxicity of thionazin to Aphis fabae it gave low protection against aphids, possibly owing to its relatively short persistence in both plants and soil when compared with aldicarb.  相似文献   

5.
Aldicarb was incubated in seven soils at 15°C and its loss was well described by first-order kinetics. Rate constants varied between 0.078 day?1 in a peaty sand to 0.35 day?1 in a clay loam. The concentration-time relationships for aldicarb, its sulphoxide and its sulphone were approximated by a computation model which was used to analyse the importance of the various consecutive and simultaneous reactions. It was computed that 91 to 100% of the aldicarb would be oxidised to its sulphoxide.  相似文献   

6.
The loss of aldicarb sulphoxide was studied in incubation experiments with soil from four plough layers and two deeper layers. The loss during the 111 days of the experiment could be described by first-order kinetics. The half-lives at 15°C ranged from 20 days in a clay loam to 46 days in a peaty sand. The loss of sulphoxide in deeper layers was considerably slower than in the corresponding top layers of a soil profile. In soil from a silty layer at 70–90 cm depth the half-life was about 53 days. In soil from a sand layer at 90–110 cm depth a loss of only about 15% was measured after 111 days of incubation. First-order rate constants for sulphoxide conversion in a clay loam at 6, 15 and 25°C were found to be 0.009, 0.033, and 0.05 day?1 respectively; in a greenhouse soil these rate constants were 0.0052, 0.019 and 0.04 day?1 respectively. The fractions of aldicarb sulphoxide that were oxidised to sulphone at 15°C in soil from plough layers were computed to range from 0.52 to 0.76.  相似文献   

7.
A study was made of the accumulation of aldicarb, ethiofencarb and dimethoate in citrus leaves and fruit; the toxicity of these insecticides to the spirea aphid (Aphis citricola Van der Goot) was also studied. The effectiveness of the treatments was affected mainly by the rate of accumulation of the toxicant in the leaves. At 18 g a.i. per tree, the greatest residues found in the leaves were 106, 12.2 and 1.3 μg 8?1 fresh weight for aldicarb, ethiofencarb and dimethoate, respectively. The concentration in mature leaves was very similar to that in young leaves. The residue levels in the mature fruits were much lower than in the leaves. The main components of the residues in the leaves were aldicarb sulphoxide [2-methyl-2-(methylsulphinyl)- propionaldehyde O-methylcarbamoyloxime], dimethoate, omethoate and ethiofencarb sulphoxide [2-(ethylsulphinylmethyl)phenyl methylcarbamate]. A laboratory study with synthetic diets showed similar toxicity for all three insecticides, whereas in detached leaves, or when taken up by citrus trees, ethiofencarb was the least toxic to the aphids.  相似文献   

8.
The breakdown of aldicarb and its oxidation products (the sulphoxide and the sulphone, aldoxycarb), under field conditions in 1976, were studied on three different types of soil (a sandy loam, a silt loam and a sandy clay loam that were normally cropped with sugarbeet). Residues were determined in leaves, stems, roots and soil, and related to aphid counts. Higher doses were needed on heavy soils in order to obtain a sufficient concentration in the leaves and thus provide an efficient treatment for aphid control. Weather conditions, especially rainfall, also affected the residue content. At harvest, the sugar beet tops used for fodder can contain residues which vary widely, depending on dosage, soil type and climatic conditions.  相似文献   

9.
When the petioles of detached tobacco leaves (10–17 cm2) were incubated in aqueous solutions containing [14C]metalaxyl, uptake of the fungicide was dependent on the temperature and photoperiod. Detached leaves took up 78% more [14C]metalaxyl at 26°C than at 16°C. The rate of uptake in the light at 21°C was linear, but after an additional 20h in the dark, there was only twice as much fungicide in the leaves. Different sized leaves contained the same amount of fungicide per cm2 area. Uptake by detached leaves of the 14C-labelled anilide lactones ofurace and RE-26940 [2-methoxy-N-(tetrahydro-2-oxo-3-thienyl)acet-2′,6′-xylidide] was similar to that of metalaxyl. At the concentration of metalaxyl (66 ng ml?1) that controlled blue mould (Peronospora tabacina) on detached tobacco leaves, the amount of fungicide in the leaves was found to be 7.25 ng. Autoradiography showed that the distribution of [14C]metalaxyl in detached leaves after incubation for 23h was uniform, although higher concentrations of the label were present in the smaller veins of the leaves.  相似文献   

10.
Aldicarb is taken up by earthworms from aqueous solution to give concentrations in the worms comparable to that in the external aqueous solutions. Uptake from waterlogged soils is similar, but much less aldicarb is taken up from drier soils. Aldicarb sulphoxide [2-methyl-2-(methylsulphinylpropionaldehyde O-methylcar-bamoyloxime], aldoxycarb and oxamyl are poorly taken up, giving concentrations in the worm of about 5% of the external aqueous concentration. In worms, aldicarb is rapidly converted to the sulphoxide which has a half-life in worms of 19 h at 15°C, and 50 h at 5°C.  相似文献   

11.
The deamination of metribuzin was studied in vitro in peroxisomes isolated from the leaves of soybean cultivars which were either metribuzin tolerant, intermediate, or sensitive. The deamination rate observed with peroxisomes from tolerant leaves was about twice the rate observed with peroxisomes from sensitive leaves. The intermediate group was also intermediate with respect to the in-vitro deamination rate. Tolerant and sensitive intact soybean plants were pulse-labeled with [14C]metribuzin via the roots for 5 h. The extractable radioactivity in roots, stems and leaves was measured and separated into metabolites after the 5 h pulse and after an additional 24 h growth in water. The level of DA (deaminated metribuzin) was always significantly higher in the stems and leaves of tolerant soybean plants (4.8–10.0% of the extracted radioactivity) than in sensitive stems and leaves (1.8–2.9%). Conjugates were rapidly formed in tolerant as well as in sensitive soybean tissues. More conjugates were found in the tolerant cultivars, especially after the 5 + 24 h incubation time. Labeled [14C]DA fed to soybean plants via the roots was conjugated two to four times faster than [14C]metribuzin. Tolerant soybean tissue conjugated [14C] DA two to three times faster than sensitive tissue. The results are interpreted as showing that, in tolerant soybean plants, metribuzin is metabolized via deamination and subsequent conjugation, in addition to the well-known direct conjugation of metribuzin parent compound.  相似文献   

12.
The correlation between intensity of lipid peroxidation and changes in antioxidant capacity of sugar beet plants (cv. ‘Drena’) infected with Rhizoctonia solani Kühn isolate (AG 2-2 IIIB group) was studied. Successful inoculation was confirmed by the presence of infection cushions in a cross section of leaf petioles. On the 7th day of the experiment, phenylalanine ammonia-lyase (PAL; EC. 4.3.1.5) activity was in negative correlation with intensified lipid peroxidation process in leaves of sugar beet plants (r= –0 .99). Also, in leaves and roots of inoculated sugar beet plants, total flavonoids content (35% and 20%, respectively) and 1,1-diphenyl-2-picrylhydrazyl (DPPH)-scavenging activity (80% and 55%, respectively) were significantly reduced. Necrotic processes resulting from R. solani infection of sugar beet plants was followed by induction of plant phenolics metabolism; however, antioxidant capacity of these plants was reduced.  相似文献   

13.
The carbamoyloxime pesticides methomyl, oxamyl and aldicarb, together with the oxidation products of aldicarb, are known to break down much more rapidly in certain anaerobic subsoils than in the aerobic topsoils from the same site. Ferrous ions have now been shown to be involved in this reaction. Oxamyl was degraded in aqueous solutions at 30°C containing 250 μg ml?1 Fe2+ with a half-life of about 10 h, independent of pH in the range of 5.65–7.66; the observed products of this reaction were N,N-dimethyl-l-cyanoformamide and methanethiol. These same products, rather than the oximino hydrolysis product observed from degradation in aerobic soils, were rapidly and quantitatively formed from oxamyl in suspensions of anaerobic reduced subsoils (Fe2+ concentration 27–41 μg ml?1 soil water), but oxamyl was rather stable in water-saturated Vredepeel subsoil (Fe2+ concentration 0.65 μg ml?1) in which the redox potential was much higher. Methomyl behaved similarly. The rates of reaction in the suspensions of anaerobic subsoils were greater than expected from the concentrations of Fe2+ in the soil water, but most of the Fe2+ present in soil was bound to the soil particles by cation exchange and this bound Fe2+ may have participated. Breakdown of aldicarb was accelerated both in solutions of Fe2+ and in the suspensions of anaerobic reduced subsoils, though the rate enhancement was less than observed with methomyl and oxamyl; 2-methyl-2-methylthiopropionitrile and 2-methyl-2-methylthiopropionaldehyde were the observed products from aldicarb in anaerobic soil but only the former was produced in Fe2+ solutions; the corresponding nitriles and aldehydes were also yielded by aldicarb sulphoxide and aldicarb sulphone in the anaerobic, reduced subsoils.  相似文献   

14.
The metabolism of 3-phenoxybenzoic acid, a common plant metabolite of deltamethrin, cypermethrin and fenvalerate, has been studied in abscised leaves of cabbage, cotton, cucumber, kidney bean and tomato plants. The [14C]-acid was readily converted into more polar conjugates by esterification with glucose, 6-O-malonylglucose, gentiobiose, cellobiose, glucosylxylose and two types of triglucose with different isomerism. Other metabolites identified were the glucosyl ether of 3-(4-hydroxyphenoxy)benzoic acid, and a 3-(2-hydroxyphenoxy)benzoic acid derivative with a total of two molar equivalents of glucose linked to the carboxyl and phenolic -OH groups. The conjugation pathways were somewhat plant-specific. The glucosylxylose ester was found only in cotton, and the cellobiose and triglucose esters were found only in tomato. All of the conjugates except the glucose and glucosylxylose esters were plant metabolites that had not been identified previously. Furthermore, this is the first report to show the presence of cellobiose and triglucose conjugates in plants. However, neither of the acetyl derivatives of the [14C]-triglucoside was identical with the synthetic deca-acetyl derivative of [1→6]-triglucoside.  相似文献   

15.
Uptake, movement, and metabolism of unformulated ioxynil and bromoxynil salts were investigated in Matricaria inodora and Viola arvensis. The morphology of these two species did not give rise to different spray retention and contact angles. After 7 days, uptake of [14C]ioxynil-Na reached 8.26% of applied 14C activity in M. inodora and 16.77% of that in V. arvensis compared with 1.54 and 3.83%, respectively, for [14C]bromoxynil-K. Over 98% of the 14C activity detected in the plant after 7 days remained in the treated leaves of V. arvensis following [14C]ioxynil-Na treatment. However, 8.7% of the 14C activity detected in [14C]ioxynil-Na-treated M. inodora was recovered from the apex and developing leaves reflecting a greater translocation. [14C]Bromoxynil-K was more mobile in both species and after 7 days 87.5 and 91.39% were detected in the treated leaves of M. inodora and V. arvensis, respectively. In both species the majority of translocated 14C activity was recovered from the apex and developing leaves. Up to 20% of the applied [14C]ioxynil-Na and [14C]bromoxynil-K was not detected within the treated plant. Extraction of treated plants revealed no detectable metabolic breakdown of ioxynil-Na to halogenated derivatives in either species. However, metabolic breakdown of bromoxynil-K was apparent in V. arvensis. No significant root exudation was detected when [14C]ioxynil-Na and [14C]bromoxynil-K were applied to hydroponically grown S. media and V. arvensis. Losses of 14C activity were due to herbicide volatility or degradation to volatile products on the leaf surface.  相似文献   

16.
The breakdown of oxamyl was studied in three downland chalk soils, a peat loam, a sandy loam, and the same sandy loam modified by adding peat. The kinetics of aldicarb degradation via its sulphoxide and aldoxycarb (aldicarb sulphone) were also studied in these two sandy loam soils. All the reactions followed first-order kinetics, the reaction being faster in the original than in the modified sandy loam. Rates of reaction were slower at low moisture contents, and decreased markedly when the temperature was reduced from 10 to 5°C though less so than from 15 to 10°C.  相似文献   

17.
The residues and metabolism of methidathion [S-(2, 3-dihydro-5-methoxy-2-oxo-1, 3, 4-thiadiazol-3-ylmethyl) O, O-dimethyl phosphorodithioate] and its secondary metabolites: demethyl-methidathion [S-(2, 3-dihydro-5-methoxy-2-oxo-1, 3, 4-thiadiazol-3-ylmethyl) O-methyl O-hydrogen phosphorodithioate] ( IV ), the sulphide (2,3-dihydro-5-methoxy-3-methylthiomethyl-1,3,4-thiadiazol-2-one) ( I ), tsulphoxide(2,3-dihydro-5-methoxy-3- methylsulphinylmethyl-1,3,4-thiadiazol-2-one) ( II ) and the sulphone (2,3-dihydro-5-methoxy-3-methylsulphonylmethyl-1,3,4-thiadiazol-2-one ( III ) were studied in laboratory-treated tomato fruit. The metabolites and residues of methidathion were determined for the applied doses of 1, 7 and 14 mg of methidathion kg?1 of fruit. Methidathion was metabolised extensively over a 14-day period. The amount of metabolites formed was a function of both the applied dose as well as the time after application. Major water-soluble metabolites were found to be IV and the cysteine conjugate S-(2,3-dihydro-5-methoxy-2-oxo-1,3,4-thiadiazol-3-ylmethyl)-L-cysteine ( VI ). The chloroform-soluble metabolites were identified as the oxygen analogue of methidathion [S-(2,3-dihydro-5-methoxy-2-oxo-1,3,4-thiadiazol-3-ylmethyl) O, O-dimethyl phosphorothioate] ( V ), the sulphoxide II , and the hydroxy compound 2,3-dihydro-3-hydroxymethyl-5-methoxy-1,3,4-thiadiazol-2-one. The oxygen analogue of methidathion ( V ) was found in small amounts, corresponding to <5% of the added methidathion. Demethyl-methidathion ( IV ) appeared to be a precursor in the formation of the cysteine conjugate VI . The sulphide I seemed to be more reactive in forming the cysteine conjugate than the sulphoxide II or the sulphone III .  相似文献   

18.
The leaching of aldicarb and thiofanox in soils (sandy loam, silt loam and sandy clay loam), and their uptake by sugarbeet plants were studied. Three irrigation levels were maintained: half, normal and double dose. The residues were determined as the sum of the insecticidal metabolites (parent compound + sulphoxide+ sulphone) for both pesticides. Leaching was greatly influenced by the amount of water added and the soil type. Under normal conditions, leaching seemed to proceed very slowly, keeping the chemicals available for uptake by the root systems for a long time. The concentration of insecticide in the leaves was highest in beets grown on sandy loam and lowest in those grown on sandy clay loam. The quantity of irrigation did not influence the residue concentration in the leaves greatly, although its influence was obvious on the total residue present (μg per plant). Increasing the water dose always resulted in a higher total residue, and a greater plant weight. The breakdown in the soils was directly related to the water dose. The experiments show that thiofanox was more stable than aldicarb and was taken up by sugarbeet to a greater extent.  相似文献   

19.
Seedlings of Solanum scabrum Mill. and Solanum ptycanthum Dun. were treated with [14C]ethalfluralin (N-ethyl-α,α,α-trifluoro-N-(methylallyl)-2,6-dinitro-p-toluidine) and [14C]trifluralin (α,α,α-trifluoro-2,6-dinitro-N,N-dipropyl-p-toluidine) supplied in nutrient solution to determine the basis for differences in response by these two species to these two herbicides. Plants of S. scabrum absorbed more [14C]ethalfluralin and [14C]trifluralin than plants of S. ptycanthum. During the first 24 h, S. scabrum seedlings, but not S. ptycanthum seedlings absorbed more [14C]ethalfluralin than did plants treated with [14C]trifluralin. More [14C]ethalfluralin than [14C]trifluralin was found in the shoots of plants of both species. Seventy-two hours after treatment with [14C]herbicides, the conversion to water-soluble metabolites was greater for [14C]ethalfluralin than for [14C]trifluralin. In the shoots of plants from both species an average of nearly 55% of the 14C recovered was found in the water-soluble fraction following [14C]ethalfluralin treatment whereas an average of only 40% was found in the water-soluble fraction following [14C]trifluralin treatment.  相似文献   

20.
The shoots of barley plants root-treated with [2,5-14C]piperazine were analysed 30 days after treatment. Methanol extraction left a solid residue which contained 31.9% of 14C (all percentages refer to the total of 14C incorporated into the shoots); further extraction with acidified methanol and dimethyl sulphoxide dissolved respectively 3.2% and 5.8% of 14C. The initial methanol extract contained radioactive piperazine (16.8%), iminodiacetic acid (8.6%), glycine (15.4%), oxalic acid (7.2%), and un-identified compounds (20.1%). In barley, piperazine is the product of the most advanced metabolism so far identified of the fungicide triforine, 1,4-bis(2,2,2-trichloro-1-formamidoethyl)piperazine; the results obtained here show that piperazine is certainly not the end-product of the metabolism of triforine in barley.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号