首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The distribution and metabolic fate of [14C]-daminozide in silver maple and American sycamore seedlings were studied by use of autoradiography, ion-exchange chromatography, thin-layer chromatography (t.l.c.), and liquid scintillation spectrometry. Within one day after treatment with [14C]-daminozide, radioactivity was detected in all parts of the plant. The 14C concentrated in meristematic regions of the leaves. Ion-exchange and thin-layer chromatographic analyses of the 50% methanol extracts indicated that no detectable metabolites of daminozide were formed in any of the plant parts but approximately 20% of the applied 14C, most of it in the stem tissue, was not extractable by aqueous methanol.  相似文献   

2.
Aqueous suspensions and oil emulsions of a commercial [14C]diflubenzuron (N-[[(4-chlorophenyl)amino]carbonyl]-2,6-difluorobenzamide) formulation (Dimilin W-25) remained on the leaf surface of greenhouse-treated plant tissues. Absorption, translocation, and metabolism of the [14C]diflubenzuron were not significant. Less than 0.05% of the applied 14C was found in newly developed plant tissues 28 days after spray treatment. [14C]Diflubenzuron was degraded in soil. After 91 days, biometer flask studies showed that 28% of the 14C incorporated into the soil as [14C]diflubenzuron was recovered as 14CO2. Major dichloromethane-soluble soil residues were identified as unreacted [14C]diflubenzuron and [14C]4-chlorophenylurea. A minor unknown degradation product cochromatographed with 2,6-difluorobenzoic acid. Insoluble 14C-residues increased with time and represented 67.8% of the residual 14C in the soil 89 days after treatment. Cotton plants grown for 89 days in [14C]diflubenzuron-treated soil contained only 3% of the 14C applied to the soil. Small quantities of acetonitrile-soluble [14C]4-chlorophenylurea were isolated from the foliar tissues. Root tissues contained small amounts of [14C]diflubenzuron and trace quantities of a minor 14C-product that chromotographed similarly to 2,6-difluorobenzoic acid. Most of the 14C in the plant tissues (84–93%) was associated with an insoluble residue fraction 89 days after treatment.  相似文献   

3.
Perfusion of 14C-(ring)-parathion or 14C-(ring)-paraoxon with blood through isolated, intact rat livers resulted in the rapid degradation of these insecticides. Degradation was negligible in the absence of rat liver (controls), thus demonstrating the capacity of the liver per se to effectively degrade these compounds. Of the total radiocarbon recovered after liver perfusion with [14C]parathion, 33 % could be attributed to unchanged [14C]parathion (similarly distributed between the liver and the blood) while 67.9 % was degraded to water soluble compounds and 2.5% was converted to organic soluble paraoxon and traces of p-nitrophenol. Nearly all of the [14C]paraoxon, however, was degraded by the intact rat liver, resulting in water soluble products that amounted to 98.5% of the total radiocarbon recovered. Unexplained losses of radiocarbon with the perfusion apparatus used were lower in the presence of rat liver which degraded the insecticides to more water soluble compounds. The water soluble degradation products produced from [14C]parathion and [14C]paraoxon were non-toxic to mosquito larvae (Aedes aegypti L.). These ring-labelled products were found to be conjugated p-nito-phenol. Nearly all of the water soluble radiocarbon was located in the perfused blood, while only small amounts (1.8 to 3.0% of recovered) were excreted via the bile or were associated with the liver tissue (1.3 to 1.8 % of recovered).  相似文献   

4.
Sugar beet plants were grown in the field, after in-furrow application of [14C]aldicarb (3 kg of aldicarb ha?1) at planting. The ripe sugar beet plants were harvested, and the blades and petioles of the leaves were analysed separately. In the whole leaves, 15% of the 14C (all the percentages of 14C are relative to the total 14C incorporated into the whole leaves) was insoluble in ethanol+ water (1+1 by volume), 31% was organo-soluble (and thus unconjugated in the leaves), and 54% was water-soluble (mainly conjugated to plant constituents). The weights and concentrations (as aldicarb equivalents) of various identified metabolites of aldicarb, incorporated into the leaves, were determined; no aldicarb, as such, was detected.  相似文献   

5.
The absorption, distribution, and metabolic fate of [14C]ethephon in flue-cured tobacco (Nicotiana tabacum L.) was studied using autoradiography, thin-layer chromatography, high-voltage paper electrophoresis, and liquid scintillation spectrometry. Labeled ethephon penetrated mature leaf tissue easily and was translocated primarily in an acropetal direction. No 14C activity was detected in any other plant part except the treated leaf. The first day after treatment, most of the translocated 14C was detected in the midrib, and after 2 days radioactivity was noticed in veinal areas distal to the point of application. Four days later, however, 14C was detected in slight amounts only in the midrib, indicating that [14C]ethephon was rapidly degraded by the leaf tissue. Depending on leaf position on the stalk, as much as 92% of the radioactivity had disappeared from the leaf tissue during the first day after treatment, and as little as 5% of the applied radioactivity was recovered 4 days later. Methanol-extracted plant residues contained insignificant amounts of 14C. All of the 14C in methanol extracts was present in the form of a labeled compound with an Rf value corresponding to that of ethephon, indicating the absence of any detectable metabolites of the parent compound. Smoke analysis of cigarettes showed that more [14C]ethylene than 14CO2 was recovered in the main stream, whereas the trend was reversed in the case of side stream smoke.  相似文献   

6.
Intact mitochondria, isolated from red coxal muscle of the American cockroach (Periplaneta americana L.), were incubated in the presence of 1,1,1-trichloro-2,2-bis(4-chloro[14C]phenyl)ethane ([14C]DDT) to isolate a suspected binding site for DDT in the membrane sector of the mitochondrial ATPase. The requirements for the binding of DDT were compared with those for the binding of dicyclohexyl[14C]carbodi-imide([14C]DCCD), a potent inhibitory probe of mitochondrial ATPase activity. [14C]DDT appeared to bind to a proteolipid of the membrane sector, which also binds [14C]DCCD. Exchange experiments, with [14C]DCCD, [14C]DDT and unlabelled DDT at different concentrations, indicated that DDT and DCCD may be acting on a similar protein. This protein may act as the energy transducing protonophore required for the synthesis and hydrolysis of ATP in coupled mitochondria. Inhibition of mitochondrial ATPase activity may be a consequence of DDT and DCCD binding to this proteolipid protonophore, resulting in the disruption of energy transduction in muscle and nerve.  相似文献   

7.
The biomineralization of [14C]glyphosate, both in the free state and as 14C-residues associated with soybean cell-wall material, was studied in soil samples from four different agricultural farming systems. After 26 days, [14C]carbon dioxide production from free glyphosate accounted for 34–51% of the applied radiocarbon, and 45–55% was recovered from plant-associated residues. For three soils, the cumulative [14C]carbon dioxide production from free glyphosate was positively correlated with soil microbial biomass, determined by substrate-induced heat output measurement and by total adenylate content. The fourth soil, originating from a former hop plantation, and containing high concentrations of copper from long-term fungicide applications, did not fit this correlation but showed a significantly higher [14C]carbon dioxide production per unit of microbial biomass. Although the cumulative [14C]carbon dioxide production from plant-associated 14C-residues after 26 days was as high as from the free compound, it was not correlated with the soil microbial biomass. This indicates that the biodegradation of plant-associated herbicide residues, in contrast to that of the free compound, involves different degradation processes. These encompass either additional steps to degrade the plant matrix, presumably performed by different soil organisms, or fewer degradation steps since the plant-associated herbicide residues are likely to consist mainly of easily degradable metabolites. Moreover, the bioavailability of plant-associated pesticide residues seems to be dominated by the type and strength of their fixation in the plant matrix. ©1997 SCI  相似文献   

8.
The degradation and formation of major chlorinated metabolites of terbuthylazine and atrazine in three soils (loamy clay, calcareous clay and high clay) were studied in laboratory experiments using molecules labelled with 14C on the s-triazine ring. Soil microcosms were treated with the equivalent of 1 kg ha-1 of herbicide and incubated in the dark for 45 days at 20(±1)°C. The quantity of [14C]carbon dioxide evolved in the soils treated with atrazine was negligible and could not be attributed to mineralization of the parent molecule. The mineralization of terbuthylazine accounted for 0·9–1·2% of the initial radioactivity. In the soils studied, the extrapolated half-lives varied from 88 to 116 days for terbuthylazine and 66 to 105 days for atrazine, with no significant differences for the three soils and the two molecules. The deethyl metabolites of the two s-triazines and the deisopropyl-atrazine metabolite appeared during the incubation in the three soils. The completely dealkylated metabolite was not detected in any of the soils. After 45 days of incubation, the non-extractable soil residues for the high clay, loamy clay and calcareous clay soils represented for terbuthylazine, 33·5, 38·3 and 43·1% and for atrazine, 19·8, 20·8 and 22·3% of the initial radioactivity. © 1997 SCI.  相似文献   

9.
Sugar beet plants were grown in the field, after in-furrow application of [14C]- aldicarb (3 kg of aldicarb ha?1) at planting. The ripe sugar beet plants were harvested, and the roots were analysed. The roots were fractionated according to a procedure similar to the normal beet-sugar manufacturing process. Expressed as a proportion of the total radioactivity incorporated into the root, the pulp contained 29.7%, the lime cake 9.7%, the crystallised sugar 17.7% (which gave, with the radioactivity found in the sugar in the molasses, a total of 20.7% of the radioactivity in the total sugar), and the molasses, 42.9%. A part of the labelled carbon from the radio- active aldicarb and its metabolites had thus been metabolised and incorporated into sugar molecules. Except for the radioactivity in the sugar and in the lime cake from the processing, the proportion of radioactive non-conjugated organosoluble compounds was very low (2.6%), and perhaps partially corresponded to the very low amount of aldoxycarb (aldicarb sulphone) in the root (less than 0.001 mg of [14C]-aldicarb equivalents kg?1 fresh weight). Hydrolysis of the molasses yielded free radioactive 2-methyl-2-(methylsulphinyl)propan-1-ol (3.1%), 2-mesyl-2-methyl-propan-I-ol (8.9%) and 2-mesyl-2-methylpropionic acid (12.0%) which had been conjugated to plant constituents in the root. The corresponding concentrations (expressed as mg of [14C]aldicarb equivalents kg?1 fresh weight of root) were 0.004, 0.011, and 0.016, respectively. No aldicarb, aldicarb sulphoxide or aldoxycarb (nor the corresponding nitrile, generated from aldicarb during the fractionation procedure) was liberated by the hydrolysis, indicating the absence of conjugates of these compounds in the root.  相似文献   

10.
The bacterium Azospirillum lipoferum is able to survive in high concen-trations of the organochlorine acaricide dicofol [1,1-bis-(4-chlorophenyl)-2,2,2-trichloroethanol]. It accumulates this chemical in the cell envelope where it is protected against hydrolysis. We investigated the nature of cell envelope molecules with which [14C]dicofol is associated; no indication of [14C]dicofol–saccharide bonds was found. We concluded that about 80% of the total [14C]dicofol found in the cells was associated with lipids and the remaining 20% with proteins. Electrophoresis did not indicate any correlation of a specific protein band with [14C]dicofol radioactivity peaks. After Folch partition, [14C]dicofol distribution in TLC analysis showed 60% of [14C]dicofol–lipid bonds related to neutral lipids, 20% to phospholipids and the remaining 20% of the bonds associated with other lipids. Experimental results suggested that [14C]dicofol associates mainly with membrane domains near proteins and that this association influences membrane fluidity as well as enzymatic activity. © 1998 SCI  相似文献   

11.
The uptake and translocation of 14C-ring-labeled asulam (methylsulfanilcarbamate) and bromacil (5-bromo-3-sec-butyl-6-methyluracil), were compared after root application to maize (Zea mays L.) and bean (Phaseolus vulgaris L.). Autoradiographs showed the distribution of bromacil throughout these and other plant species, and the retention of asulam in the roots. The recovery of both compounds in quantitative radioassays was between 90 and 100%. The absorption of bromacil and asulam was rather similar. Absorption of bromacil increased up to 20% of the applied dose in bean plants after 2 days of exposure, and up to 11% in maize plants after 4 days. Absorption of asulam in bean plants was 22% of the applied dose after 2 days, and 8% in maize plants after 4 days. The pattern of distribution of bromacil and asulam was completely different. After 4 h of exposure of the roots about half of the absorbed bromacil had accumulated in the shoots, while two-thirds or more was translocated to the shoots after exposure periods of 1 to 4 days. Not more than one-eighth of the absorbed asulam was found in the shoots. In consequence, the bromacil content in the transpiration stream relative to that in the ambient solution was much higher than that of asulam. The leakage of asulam from bean and maize roots into herbicide-free nutrient solution was lower than that of bromacil. The reasons for these differences are not yet clear. There was only some metabolism of asulam in maize, but not in bean plants. No metabolites of bromacil were detected in the two plant species.  相似文献   

12.
The uptake and translocation of [14C]asulam (methyl 4-aminophenyl-sulphonylcarbamate), [14C]aminotriazole (1-H-1,2,4-triazol-3-ylamine) and [14C]glyphosate (N-(phosphonomethyl)glycine) were assessed in Equisetum arvense L. (field horsetail), a weed of mainly horticultural situations. Under controlled-environment conditions, 21°C day/18°C night and 70% r. h., the test herbicides were applied to 2-month-old and 2-year-old plants. Seven days following the application of 0.07-0.09 °Ci (1.14mg) of the test herbicides to young E. arvense, the accumulation of 14C-label (as percentage of applied radioactivity) in the treated shoots, untreated apical and basal shoots was as follows: [14C]asulam, 13.2, 0.18 and 1.02%; [14C] aminotriazole, 67.2, 3.65 and 1-91%; [14C]glyphosate, 35.9, 0.06 and 0.11%. The equivalent mean values for the accumulation of 14C-label in 2-year-old E. arvense were [14C]asulam, 12.0, 1-15 and 1.74%; [14C]aminotriazole, 58.6, 9.44 and 4.12%; [14C]glyphosate, 33.1, 0.79 and 2.32%. In the latter experiment, test plants received 0.25-0.30 °Ci (4mg) of herbicide, they were assessed after a 14-day period and the experiment was carried out at 3-week intervals between 2 June and 25 August on outdoor-grown plants. Irrespective of test herbicide or time of application, very low levels of 14C-label accumulated in the rhizome system. Only 0.2% of the applied radioactivity was recovered in 2-year-old plants and 0.4% in 2-month-old plants. In the young plants [14C]asulam accumulated greater amounts and concentrations of 14C-label in the rhizome apices and nodes than [14C]aminotriazole or [14C]glyphosate treatments. Inadequate control of E. arvense under field conditions may be due to limited basipetal translocation and accumulation of the test herbicides in the rhizome apices and nodes.  相似文献   

13.
The penetration of two model seed oil compounds, [14C]triolein (TRI) and [14C]methyl oleate (MEO) through plant cuticles and their effects on the penetration of [14C]quizalofop-ethyl and [14C]fenoxaprop-ethyl were investigated. Experiments were carried out using isolated cuticles from rubber plant (Ficus elastica Roxb.) leaves and from tomato (Lycopersicon esculentum Mill,) and pepper (Capsicum annuum L.) fruits. Chemicals were deposited in droplets on to cuticle discs maintained on agar blocks under controlled conditions. TRI and MEO were used at 1% (V/V). The transfer of radiolabel through cuticles was negligible for TRI and varied from 6 to 13% after 72 h, according to species, for MEO, The penetration results obtained for quizalofop-ethyl (0.084 mg mL-1) and fenoxaprop-ethyl (0.189 mg mL-1) were very similar and varied according to species. The greatest diffusion intoagar was observed for pepper (12.8% and 10.7% after 72 h, for quizalofop-ethyl and fenoxaprop-ethyl respectively), the lowest for rubber plant cuticles (1.4 and 1.3% respectively). Addition of MEO produced significant increases in the penetration of quizalofop-ethyl and fenoxaprop-ethyl through rubber plant and tomato cuticles. TRI had an enhancing effect on the two herbicides only with rubber plant cuticles. Results are discussed with particular consideration of the variations between plant species and the possible mode of action of seed oil adjuvants.  相似文献   

14.
When the petioles of detached tobacco leaves (10–17 cm2) were incubated in aqueous solutions containing [14C]metalaxyl, uptake of the fungicide was dependent on the temperature and photoperiod. Detached leaves took up 78% more [14C]metalaxyl at 26°C than at 16°C. The rate of uptake in the light at 21°C was linear, but after an additional 20h in the dark, there was only twice as much fungicide in the leaves. Different sized leaves contained the same amount of fungicide per cm2 area. Uptake by detached leaves of the 14C-labelled anilide lactones ofurace and RE-26940 [2-methoxy-N-(tetrahydro-2-oxo-3-thienyl)acet-2′,6′-xylidide] was similar to that of metalaxyl. At the concentration of metalaxyl (66 ng ml?1) that controlled blue mould (Peronospora tabacina) on detached tobacco leaves, the amount of fungicide in the leaves was found to be 7.25 ng. Autoradiography showed that the distribution of [14C]metalaxyl in detached leaves after incubation for 23h was uniform, although higher concentrations of the label were present in the smaller veins of the leaves.  相似文献   

15.
Intestinal absorption (enterohepatic circulation) and biliary secretion of 14C from a metabolite of carbaryl isolated from rat bile, 5,6-dihydro-5,6-dihydroxy[14C]carbaryl glucuronide, and its aglycone were observed: Lincomycin and kanamycin sulfate were also given to rats to determine the effect of an altered intestinal microflora on the above processes. Net absorption of 14C from the glucuronide occurred in the small intestine and cecum of control rats (68.5%); 10% of the infused 14C was secreted in the bile. Antibiotic treatment affected the site of absorption and the biliary secretion of 14C from the glucuronide since net 14C absorption occurred only in the small intestine of antibiotic-treated rats (32.5%) and biliary secretion accounted for less than 1% of the infused 14C. The site of absorption of 14C from the aglycone and biliary secretion of 14C (17%, control rats; 14%, antibiotic-treated rats) were not affected by antibiotic treatment. Carbon-14 from the aglycone was absorbed primarily in the small intestine (89.3%, control rats; 84.2%, antibiotic-treated rats). The results indicate that the intestinal microflora influence the enterohepatic circulation and biliary secretion of the glucuronic acid conjugate of 5,6-dihydro-5,6-dihydroxycarbaryl.  相似文献   

16.
The biliary secretion of 14C was observed in conscious, bile-fistulated rats given single oral doses of [14C]carbaryl (1.5, 30, and 300 mg/kg). Over 94% of the 14C was absorbed after 12 hr. From 15 to 46% of the 14C was secreted in bile, 10–40% in urine, and less than 1% in feces 12 hr after dosing. Three metabolites were isolated from bile and identified by mass and/or NMR spectrometric methods. These metabolites were: 5,6-dihydro-5,6-dihydroxycarbaryl glucuronide (12–18% of the biliary 14C), a conjugate(s) of carbaryl (12% of the biliary 14C), and conjugated isomers of hydroxy-carbaryl (2% of the biliary 14C). The majority of the biliary 14C remains to be identified.  相似文献   

17.
Sugar beet plants were grown in the field, after in-furrow application of [14C]aldicarb (3 kg of aldicarb ha?1) at planting. Some plants (the growing plants) were harvested 99 days after sowing and the rest (the ripe plants) 196 days after sowing. The percentages of the weights of [14C]aldicarb equivalents (the total aldicarb plus aldicarb sulphoxide and sulphone, plus all the other metabolites of [14C]aldicarb which contain 14C, expressed as aldicarb equivalents) incorporated into the beet plants, relative to the weight applied to the soil, were 2.8 and 1.8, respectively for the growing and ripe plants. The concentrations of [14C]aldicarb equivalents (mg kg?1 fresh weight) in the growing and ripe plants, respectively were: blades of the external leaves, 3.16 and 0.93; blades of the internal leaves, 0.63 and 0.68; petioles of the external leaves, 0.51 and 0.26; petioles of the internal leaves, 0.15 and 0.05; crowns, 0.14 and 0.15; roots, 0.16 and 0.13. The proportions of the extractable aldicarb plus aldicarb sulphoxide and aldicarb sulphone determined by gas-liquid chromatography (expressed as aldicarb equivalents) relative to [14C]aldicarb equivalents, in the external and internal leaf blades of the growing beets, were 56 and 60%, respectively; these values declined to 25 and 19%, respectively in the ripe plants. The proportion was 21 % or less in all other parts of the growing and ripe plants.  相似文献   

18.
A rat, given a single oral dose of [14C] cymoxanil, 1-(2-cyano-2-methoxyimino-[2-14C]-acetyl)-3-ethylurea, eliminated 91% of the radioactivity within 72 h. The urine contained 71%, the faeces 11%, and the expired air about 7% of the radiolabel; no 14C residue was found in the internal organs. Greater than 70% of the radioactivity in the urine was identified. The major metabolite was characterised as glycine, both free and conjugated, as hippuric acid and phenylaceturic acid [N-(phenylacetyl)-glycine], and probably in the form of polypeptides of low molecular weight. The other metabolites identified included 2-cyano-2-methoxyiminoacetic acid, 2-cyano-2-hydroxyiminoacetic acid and 1-ethylimidazolidine-2, 4, 5-trione. The minor metabolites included succinic acid and 2-oxoglutaric acid which indicated reincorporation of metabolic 14C. Cymoxanil, as such, was not detected in the urine.  相似文献   

19.
Using radiotracer methodology and dissection techniques it was demonstrated that [14]chlorpyrifos and/or its 14C-labeled metabolite(s) concentrated mainly in the gut tissues and malpighian tubules of American cockroaches, Periplaneta americana (Linnaeus), following sorption from a treated surface. Significantly lower (P ≤ 0.10) amounts of 14C were present in testes samples and no radioactive material was detected in brain tissue. After 41.5–48 hr of exposure of adult male American cockroaches to sublethal concentrations of [14C]chlorpyrifos, radioactivity was detected in the hemolymph of all cockroaches tested. The hemolymph accounted for 30.83% of the total sorbed 14C. A parabiotic experiment confirmed translocation of chlorpyrifos and/or its 14C-labeled metabolite(s) in hemolymph.  相似文献   

20.
Foliar-applied [14]cymoxanil, 1-(2-cyano-2-methoxyimino-[2-14C]acetyl)-3-ethylurea was rapidly metabolised in grapes, tomatoes and potatoes, Furthermore, the metabolism of this fungicide was unusual in that the metabolites were found to be naturally occurring compounds, with glycine as the major metabolite. Significant levels of radioactivity were found in other amino-acids, sugars, starch, fatty acids and lignin, indicating incorporation of carbon-14 via the various metabolic pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号