首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Brachiaria spp. have been grown in a variety of cropping systems and are often terminated with herbicides, which may cause nitrogen (N) loss from the soil-plant system. In this study ammonia (NH3-N) loss by shoots and N balance in a soil-plant system were determined after desiccation of palisade grass (Brachiaria brizantha (Hochst. ex A. Rich) Stapf, cv. Marandu), signalgrass (Brachiaria decumbens Stapf), humidicola (Brachiaria humidicola (Rendle) Schweick) and Congo grass (Brachiaria ruziziensis Germain et Evrard). The grasses were grown in pots filled with an Oxisol in a greenhouse. Sixty days after planting, the plants were desiccated with glyphosate. Analyses were performed on plant and soil at desiccation and then at 7, 14, 21 and 28 days after desiccation in order to assess NH3-N losses by shoots and to estimate the N balance in the system. Total nitrogen (Total-N) concentration in shoots and roots of brachiarias decreased after desiccation, thereby reducing the amount of N in plants of the four brachiaria species. However, as most of the N lost by plants was released into the soil, N losses from the soil-plant system were small compared with the total N in the system: 1.2, 0.5, 0.4 and 1.4% for palisade grass, signalgrass, humidicola and Congo grass, respectively. N losses as NH3 from the soil-plant system after desiccation with glyphosate varied among brachiaria species, ranging from 0.8 to 2.0 g m?2 kg?1, and accounted for 30–80% of total loss.  相似文献   

2.
Aluminum‐resistant Brachiaria decumbens Stapf cv. Basilisk (signalgrass) and closely related, but less resistant Brachiaria ruziziensis Germain & Evrard cv. Common (ruzigrass) both accumulated high concentrations of aluminum (Al) in roots. Approximately two thirds of the total Al was complexed by soluble low‐molecular‐weight ligands, suggesting that it had been taken up into the symplasm. We therefore investigated whether these species might employ Al‐chelating organic acids for internal detoxification of Al taken up by root apices, the primary site of Al injury. Unlike root apices of other Al‐resistant plant genotypes, which secrete organic‐acid anions to detoxify Al externally, apices of Brachiaria species accumulated organic acids within the tissue. A comparison with whole roots showed that this preference for accumulation (as opposed to secretion) was restricted to apices. Citric acid, and to a lesser extent trans‐aconitic acid, accumulated in a uniform dose‐dependent manner in root apices of both species as their Al content increased under Al‐toxic growth conditions. Their accumulation was accompanied by a stimulation of malate synthesis in Al‐resistant B. decumbens, while it occurred at the expense of malate in Al‐sensitive B. ruziziensis. These data suggest a role of organic acids in the internal detoxification of Al in root apices of both Brachiaria species, presumably contributing to their comparatively high basal level of Al resistance. Yet internal detoxification of Al by organic acids does not appear to be the principal mechanism responsible for the superior resistance of B. decumbens.  相似文献   

3.
Plants affect soil phosphorus (P) solubility through root exudates, but studies are lacking on species used as relay or cover crops in tropical environments. We evaluated the effect of cover crops on soil phosphorus (P) availability in an oxisol. Ruzigrass (Brachiaria ruziziensis), pearl millet (Pennisetum glaucum), peanut (Arachis hypogaea), crambe (Crambe abyssinica), and sorghum (Sorghum bicolor) were grown in pots with soil. Phosphorus uptake, soil inorganic and organic P, maximum P adsorption capacity, and plant root systems were assessed. When root length density is high, the efficiency of P uptake is low due to root competition. Crambe results in greater soil P availability, while peanut and sorghum decrease the soil maximum P adsorption capacity, probably by exuding or stimulating microbial production of organic acids and phenolic compounds. Hence, crambe, peanut, and sorghum are species that may be of interest to increase P use efficiency in cropping systems.  相似文献   

4.
Ruzigrass (Urochloa ruziziensis) is a cover crop that is commonly used in Brazil and exudes high concentrations of organic acids from its roots, and is therefore expected to mobilize soil organic P such as inositol phosphates. However, it is not known if this can occur only under P deficient conditions. Specifically, we aimed to test the hypothesis that the degradation of inositol phosphates is increased by growing ruzigrass at two different P levels. To investigate this, we studied soil organic P in a 9-year-old field experiment, with treatments consisting of ruzigrass or fallow during the soybean (Glycine max) off-season, with or without P addition. Organic P was extracted in NaOH-EDTA, followed by colorimetric quantification of organic P hydrolysable by phytase, and myo-inositol hexakisphosphate by hypobromite oxidation and HPLC separation. Ruzigrass dry matter yield increased by about 80% with P application. Ruzigrass reduced the concentration of phytase labile P and myo-inositol hexakisphosphate, but only in soil receiving P. A corresponding increase in unidentified inositol phosphates, presumably representing lower-order esters, was also observed after ruzigrass in soil with P application. We deduce that the degradation of inositol phosphates under ruzigrass with P application is due to greater ruzigrass productivity in the more fertile treatment, increasing the release of root exudates that solubilize inositol phosphates and promote their decomposition by phytase. We conclude that ruzigrass cover cropping can promote the cycling of recalcitrant soil organic P, but only when fertility is raised to a sufficient level to ensure a productive crop.  相似文献   

5.
Identification of plant attributes that improve the performance of tropical forage ecotypes when grown as monocultures or as grass+legume associations in low fertility acid soils will assist the development of improved forage plants and pasture management technology. The present work compared the shoot and root growth responses of four tropical forages: one grass and three legumes. The forages were grown in monoculture or in grass+legume associations at different levels of soil phosphate. Two infertile acid soils, both Oxisols, were used: one sandy loam and one clay loam. They were amended with soluble phosphate at rates ranging from 0 to 50 kg ha‐1. The forages, Brachiaria dictyoneura (grass), Arachis pintoi, Stylosanthes capitata and Centrosema acutifolium (legumes), were grown in large plastic containers (40 kg of soil per container) in the glasshouse. After 80 days of growth, shoot and root biomass production, dry matter partitioning, leaf area production, total chlorophyll content in leaves, soluble protein in leaves, root length, and proportion of legume roots in grass+legume associations were determined. The grass, grown either in monoculture or in association responded more to phosphorus supply than did the three legumes in terms of both shoot and root production. At 50 kg ha‐1 of phosphorus, the grass's yield per plant in association was greatly enhanced, compared with that of grass in monoculture. The increase in size of grass plants in association compared with that in monoculture may have been caused by reduced competition from the legumes. These differences in shoot and root growth responses to phosphorus supply in acid soils between the grass and the three legumes may have important implications for improving legume persistence in grass+legume associations.  相似文献   

6.
The effects of agricultural–pastoral and tillage practices on soil microbial populations and activities have not been systematically investigated. The effect of no-tillage (NT), no-tillage agricultural–pastoral integrated systems (NT-I) and conventional tillage (CT) at soil depths of 0–10, 10–20 and 20–30 cm on the microbial populations (bacteria and fungi), biomass-C, potential nitrification, urease and protease activities, total organic matter and total N contents were investigated. The crops used were soybean (in NT, NT-I and CT systems), corn (in NT and NT-I systems) and Tanner grass (Brachiaria sp.) (in NT-I system); a forest system was used as a control. Urease and protease activities, biomass-C and the content of organic matter and total N were higher (p < 0.05) in the forest soil than the other soils. Potential nitrification was significantly higher in the NT-I system in comparison with the other systems. Bacteria numbers were similar in all systems. Fungi counts were similar in the CT and forest, but both were higher than in NT. All of these variables were dependent on the organic matter content and decreased (p < 0.05) from the upper soil layer to the deeper soil layers. These results indicate that the no-tillage agricultural–pasture-integrated systems may be useful for soil conservation.  相似文献   

7.
Plants grown on Andisols often have an insufficient phosphorus (P) supply, since active aluminium (AI) and iron bind P in low available forms to the plants. The objectives of the present studies were to examine the differences in growth associated with the P-uptake ability among four Gramineae, to determine which P-forms are utilised, and to relate plant growth to the distribution of nutrients in soil close to the roots. Rhizosphere soil was separated from bulk soil by using a rhizobox system. Shoot and root yields and nutrient contents of maize (Zea mays L.), Sorghum bicolor (L.), Brachiaria dictyoneura (Stapf), and upland rice (Oryza sativa L.) were determined after cultivation in rhizoboxes for 105 d. Soil was sampled at increasing distances from the roots and analysed for P compounds, other nutrients, and pH. Maize gave the highest yield by using P reserves in its large seeds, resulting in the greatest depletion of K in the root soil of maize. Brachiaria showed the highest efficiency while upland rice the lowest in using soil P, respectively. The amounts of Bray-2 P and acetic acid-extractable P were significantly lower in root soil compared to bulk soil. Soil pH increased in the root soil of all crops, mainly around the Brachiaria roots.  相似文献   

8.
Abstract

Land use patterns affect soil nutrient transformation and availability. The study determined the distribution of phosphorus (P) fractions and sorption in five pasture fields composed of Andropogon gayanus, Brachiaria decumbens, Chloris gayana, Digitaria smutsii, and Stylosanthes guianensis. The objectives were to characterize P fractions in improved pastures and to determine the effect of forage species on soil P lability. Total P (Pt) across the pastures was not significantly different. Organic P (Po) accounted, on the average, for 64% of Pt. Resin‐P, considered the plant‐available P, ranged from 4 to 10 mg kg?1, suggesting acute P deficiency in the pastures. The sum of P fractions extracted by 0.5 M NaHCO3, 0.1 M NaOH, and 1.0 M HCl, together with the resin‐P, accounted for less than 35% of Pt. Factor analysis indicated that plant‐available P approximated by resin‐P was furnished by ?HCO3‐Po mineralization and HCl‐P. The highest concentrations of ?HCO3‐Po and ?OH‐Po were maintained by Brachiaria decumbens. Grouping Pi and Po fractions into labile and nonlabile fraction showed that Brachiaria decumbens maintained the greatest concentration of labile P as a proportion of its Pt. The pasture soils sorbed between 31 and 65% of added P from a standard concentration of 50 mmol kg?1. Phosphorus sorbed by soils from the pasture fields was in the order: Digitaria smutsii=Stylosanthes guianensis>Brachiaria decumbens=Chloris gayana>Andropogon gayanus, whereas resin recovery of sorbed P was greater in Brachiaria decumbens than other pastures. Between 82 and 92% of sorbed P was bound irreversibly. It was concluded that the relatively high concentration of labile P maintained by soil under Brachiaria decumbens was probably related to its capacity to sequester more carbon than the other pastures.  相似文献   

9.
Many tropical forage grasses and legumes grow well in acid soils, adapting to excess aluminum (Al) and phosphorus (P) starvation stresses by using mechanisms that are still unclear. To determine these mechanisms, responses to Al toxicity and P starvation in three tropical forages were studied: two grasses, Brachiaria hybrid cv. ‘Mulato’ (B. ruziziensis clone 44-06 × B. brizantha cv. ‘Marandú’) and Andropogon gayanus, and one legume, Arachis pintoi. The tropical grasses tolerated high levels of Al toxicity and P starvation, with the Brachiaria hybrid maintaining very low levels of Al concentration in shoots. 27Al Nuclear Magnetic Resonance spectroscopy (NMR) analysis revealed that, in the Brachiaria hybrid, Al makes complexes with some ligands such as organic-acid anions in the root symplast. The forages probably adapted to P starvation through high P-use efficiency. These experiments provide the first direct evidence we know of that organic acid anions within root tissue help detoxify Al in non-accumulator species such as the Brachiaria hybrid.  相似文献   

10.
Phosphorus (P) and zinc (Zn) availabilities are important to the nutrition of tropical forage grasses. In this manner, this study aimed to identify and quantify changes in metabolism, tillering, and root system of Brachiaria brizantha cv. ‘Marandu’ related to P and Zn availabilities. Plants of B. brizantha cv. ‘Marandu’ were grown in nutrient solution under five rates of P (0.1, 0.6, 1.1, 1.6, and 2.1 mmol L?1) and five rates of Zn (0.00, 0.75, 1.5, 2.25, and 3.00 μmol L?1), in a fractionated factorial. The interaction P x Zn rates and the Zn supply were not significant for the activity of acid phosphatase enzyme, P-use index, number of tillers, and root parameters. P-use index and enzyme activity decreased as P availability increased. The high efficiency in P use was a result of high acid phosphatase activity and P supply was essential to the development of ‘Marandu’ palisadegrass root system.  相似文献   

11.
Plants have the ability to suppress microbial nitrification process through secondary metabolites released from their root exudates or/and leaf litter. For decades, grasses were suggested to control nitrification process, and recently, Brachiaria humidicola accession 26159 (BH) as a tropical and subtropical grass has been shown to reduce nitrification rates under laboratory and soil conditions. In this study, experiments were conducted under controlled conditions in nutrient solution culture to investigate whether the reported release of natural nitrification inhibitors from root exudates of BH is an active or passive phenomenon. So different variables such as N-form (nitrate vs. ammonium), collecting medium (distilled water vs. 1 mM NH4Cl) and collecting period (6 vs. 24 hrs) were included to study the hypothesis. Results showed when root exudates were collected in distilled water there was no nitrification inhibition activity for all ammonium and nitrate grown plants. However, when collection was done in a medium containing 1 mM NH4Cl, root exudates showed significant nitrification inhibition activity similar to results obtained by Subbarao et al. The observed nitrification inhibition activity had a positive correlation to ammonium treatment particularly in collection medium, probably due to root cells damage induced by low pH and membrane depolarization under ammonium nutrition. This was more supported by application of shoot homogenates of NH4+, NO3? or NH4NO3 grown plants that showed significant nitrification inhibition activity compared to distilled water and DMPP controls in a bioassay test, independent of N-form. Potassium concentrations in root exudates (as a result of potassium leakage) were found to increase in root washings of plants, which were grown with ammonium, particularly when root exudates were collected in 1 mM NH4Cl solution. In addition, higher electric conductivity of root washings after collection of root exudates in ammonium containing medium (low pH) and also in nitrate containing medium which adjusted to pH 3 by applying H2SO4, strongly suggest that release of natural nitrification inhibitors from root exudates of B. humidicola may not be an active process, but instead it is rather a passive phenomenon by ammonium induced root physicochemical damages.  相似文献   

12.
《Journal of plant nutrition》2013,36(12):2175-2188
Abstract

The influence of soil organic matter (OM) in the uptake of cadmium (Cd) by Sorghum will be studied in order to get a better knowledge in the yield and understanding of detoxification mechanisms of soils. Plants were grown for 60 days in a greenhouse pot experiment using a contaminated soil with 4.5 and 35 mg Cd kg?1, in absence and presence of OM. An Irish peat moss (70 g kg?1 of soil) was added as OM. In the presence of OM the biomass production of root and shoot was increased with a positive correlation between biomass increment and contamination level. For experiments with 35 mg Cd kg?1 of soil the biomass production was increased of about 7 times in the presence (vs. absence) of OM. Although the presence of OM had decreased Cd root concentration by decreasing Cd bioavailability in soil, the increase of biomass in presence of OM led to an increase of about 3 times on the Cd amount in shoot, result that can be important in soil phytoremediation.  相似文献   

13.
《Soil Use and Management》2018,34(3):316-325
Tropical grasses grown as cover crops can mobilize phosphorus (P) in soil and have been suggested as a tool to increase soil P cycling and bioavailability. The objective of this study was to evaluate the effect of tropical grasses on soil P dynamics, lability, desorption kinetics and bioavailability to soya bean, specifically to test the hypothesis that introducing grass species in the cropping system may affect soil P availability and soya bean development according to soil P concentration. Three grass species, ruzi grass (Urochloa ruziziensis ), palisade grass (Urochloa brizantha ) and Guinea grass (Megathyrsus maximus ), were grown in soils with contrasting P status. Soya bean was grown after grasses to assess soil P bioavailability. Hedley P fractionation, microbial biomass P, phytase‐labile P and the diffusive gradient in thin films were determined, before and after cultivation. It was found that grasses remobilized soil P, reducing the concentration of recalcitrant P forms. The effect of grasses on changing the P desorption kinetics parameters did not directly explain the observed variation on P bioavailability to soya bean. Grasses and microorganisms solubilize recalcitrant organic P (Po) forms and tropical grasses grown as cover crops increased P bioavailability to soya bean mainly due to the supply of P by decomposition of grass residues in low‐P soil. However, no clear advantages in soya bean P nutrition were observed when in rotation with these grasses in high‐P soil. This study indicates that further advantages in soya bean P nutrition after tropical grasses may be impeded by phytate, which is not readily available to plants.  相似文献   

14.
Chiselling has been used to alleviate soil compaction but cover crops with deep, vigorous roots can improve root growth and activity of the cash crop for a longer time. The determination of root activity in addition to root mass or length may improve the understanding of plant response to compaction. The objective of this experiment was to evaluate root growth and activity as affected by the alleviation of soil compaction using mechanical and biological methods. The experiment was conducted in Botucatu, São Paulo, Brazil, from 2009 to 2011, on a clay, Typic Rhodudalf soil. Crop rotations including pear millet (Pennisetum glaucum), soybean (Glycine max), grain sorghum (Sorghum bicolor), maize (Zea mays), ruzi grass (Brachiaria ruziziensis) and castor bean (Ricinus communis) in plots, either chiselled or not. Root growth was assessed by core sampling and root activity was determined indirectly using rubidium injected at several depths as a marker. Root activity was instrumental in interpreting the effects of tillage and crop rotations on soil amelioration. Compared with the initial compacted condition, chiselling increased root growth and activity just for the first 18 months of the experiment, but crop rotations, mainly including ruzi grass and castor bean, increased root growth and activity in the soil profile from the second year on. Generally, root mass was poorly correlated with root activity, except in the case of ruzi grass. Introduction of ruzi grass plus castor bean into the cropping system improves not only root growth and activity in the soil profile but also soybean yield.  相似文献   

15.
Soil phosphorus (P) removal by harvest may be a practical remediation strategy. Small plots of bahia grass (BG) (Paspalum notatum Flügge), common bermuda grass (CB) (Cynodon dactylon (L.) Pers.), crab grass (CG) (Digitaria ciliaris (Retz.) Koel.), and switch grass (SG) (Panicum virgatum L.) were established on a coastal plain soil (Mehlich 3P, 100–500+ mg kg?1) . Yield, tissue P concentration, and uptake P were determined in 2002–2005, and surface (0–15 cm) soil P were determined in 2002 and 2005. The uptake decreased, SG > CG > BG = CB (range 230–90 kg ha?1), paralleling the decrease in surface soil P. Uptake depended on soil P (P < 0.01–0.10), with uptake > surface soil P decrease at low soil P due to uptake from subsoil but decrease > uptake at high soil P due to leaching. Soil P concentration did not affect SG tissue P nor did multiple harvests decrease its relative productivity.  相似文献   

16.
Abstract

Greenhouse experiment was conducted to evaluate the effect of arbuscular mycorrhizal fungi (AMF) on plant growth, and nutrient uptake in saline soils with different salt and phosphorus (P) levels. The following treatments were included in this experiment: (i) Soil A, with salt level of 16.6 dS m?1 and P level of 8.4 mg kg?1; (ii) Soil B, with salt level of 6.2 dS m?1 and P level of 17.5 mg kg?1; and (iii) Soil C, with salt level of 2.4 dS m?1 and P level of 6.5 mg kg?1. Soils received no (control) or 25 mg P kg?1 soil as triple super phosphate and were either not inoculated (control) or inoculated with a mixture of AM (AM1) and/or with Glomus intraradices (AM2). All pots were amended with 125 mg N kg?1 soil as ammonium sulfate. Barley (Hordeum vulgar L., cv. “ACSAD 6”) was grown for five weeks. Plants grown on highly saline soils were severely affected where the dry weight was significantly lower than plants growing on moderately and low saline soils. The tiller number and the plant height were also lower under highly saline condition. The reduced plant growth under highly saline soils is mainly attributed to the negative effect of the high osmotic potential of the soil solution of the highly saline soils which tend to reduce the nutrient and water uptake as well as reduce the plant root growth. Both the application of P fertilizers and the soil inoculation with either inoculum mixture or G. intraradices increased the dry weight and the height of the plants but not the tiller number. The positive effect of P application on plant growth was similar to the effect of AM inoculation. Phosphorus concentration in the plants was higher in the mycorrhizal plant compared to the non mycorrhizal ones when P was not added. On the other hand, the addition of P increased the P concentration in the plants of the non mycorrhizal plants to as high as that of the mycorrhizal plants. Iron (Fe) and zinc (Zn) uptake increased with AM inoculation. The addition of P had a positive effect on micronutrient uptake in soil with low level of soil P, but had a negative effect in soil with high level of soil P. Micronutrient uptake decreases with increasing soil salinity level. Inoculation with AMF decreases sodium (Na) concentration in plants grown in soil of the highest salinity level but had no effect when plants were grown in soil with moderate or low salinity level. The potassium (K) concentration was not affected by any treatment while the K/Na ratio was increased by AM inoculation only when plant were grown in soil of the highest salinity level.  相似文献   

17.
Tea (Camellia sinensis L.) is generally grown in highly weathered acidic Ultisols of the humid tropics. The low pH, large P fixing capacity and moisture content of these soils favour the dissolution of phosphate rock. Plant species differ widely in their ability to take up P from phosphate rock, and we have compared phosphate mobilization in the rhizosphere of tea with that under calliandra (Calliandra calothyrsus L.), Guinea grass (Panicum maximum L.) and bean (Phaseolus vulgaris L.) by studying the changes in the concentration of P fractions at known distances from the root surface in an acidic (pH in water 4.5) Ultisol from Sri Lanka treated with a phosphate rock. Plants were grown in the top compartment of a two-compartment device, comprising two PVC cylinders physically separated by a 24-μm pore-diameter polyester mesh. A planar mat of roots was formed on the mesh in the top compartment, and the soil on the other side of the mesh in the lower compartment was cut into thin slices parallel to the rhizosphere and analysed for pH and P fractions. All plant species acidified the rhizosphere (pH [water] difference between bulk and rhizosphere soils was 0.17-0.26) and caused more rock to dissolve in the rhizosphere (10–18%) than in the bulk soil (8–11%). Guinea grass was most effective, though the rate of acidification per unit root surface area was least (0.02μmol H+ cm?2) among the four species. Tea produced the largest rate of acidification per unit root surface area (0.08μmol H+ cm+2). All species depleted P extracted by a cation–anion exchange resin and inorganic P extracted by 0.1 M NaOH. All except tea depleted organic P extracted by 0.1M NaOH in the rhizosphere. The external P efficiencies (mg total P uptake) of Guinea grass, bean, tea and calliandra in soil fertilized with phosphate rock were 4.82 ± 0.42, 4.02 ± 0.32, 1.06 ± 0.02 and 0.62 ± 0.02, respectively, and the corresponding internal P efficiencies (mg shoot dry matter production per mg plant P) were 960 ± 75, 1623 ± 79, 826 ± 33 and 861 ± 44. This study showed that the various crops cultivated in tea lands differ in their rates of acidification, phosphate rock dissolution and P transformation in the rhizosphere. This requires testing under field conditions.  相似文献   

18.
ABSTRACT

Dissolution of phosphate rocks (PR) in soils requires an adequate supply of acid (H+) and the removal of the dissolved products [calcium (Ca2 +) and dihydrogen phosphate (H2PO4 ?)]. Plant roots may excrete H+ or OH? in quantities that are stoichiometrically equal to excess cation or anion uptake in order to maintain internal electroneutrality. Extrusion of H+ or OH? may affect rhizosphere pH and PR dissolution. Differences in rhizosphere acidity and solubilization of three PRs were compared with triple superphosphate between a grass (Brachiaria decumbens) and a legume (Stylosanthes guianensis) forage species at two pH levels (4.9 and 5.8) in a phosphorus (P)-deficient Ultisol with low Ca content. The experiment was performed in a growth chamber with pots designed to isolate rhizosphere and non-rhizosphere soil. Assessment of P solubility with chemical extractants led to ranking the PRs investigated as either low (Monte Fresco) or high solubility (Riecito and North Carolina). Solubilization of the PRs was influenced by both forage species and mineral composition of the PR. The low solubility PR had a higher content of calcite than the high solubility PRs, which led to increased soil pH values (> 7.0) and exchangeable Ca, and relatively little change in bicarbonate-extractable soil P. Rhizosphere soil pH decreased under Stylosanthes but increased under Brachiaria. The greater ability of Stylosanthes to acidify rhizosphere soil and solubilize PR relative to Brachiaria is attributed to differences between species in net ion uptake. Stylosanthes had an excess cation uptake, defined by a large Ca uptake and its dependence on N2 fixation, which induced a significant H+ extrusion from roots to maintain cell electroneutrality. Brachiaria had an excess of anion uptake, with nitrate (NO3 ?) comprising 92% of total anion uptake. Nitrate and sulfate (SO4 2 ?) reduction in Brachiaria root cells may have generated a significant amount of cytoplasmic hydroxide (OH?), which could have increased cytoplasmic pH and induced synthesis of organic acids and OH? extrusion from roots.  相似文献   

19.
31P nuclear magnetic resonance (NMR) spectroscopy, P fractionation, and a P sorption experiment were used to follow the changes in P in the A horizons (0–10 cm) of acid savanna soils, Colombia, after little P fertilization and 15 years' continuous growth of a grass (Brachiaria decumbens) and a grass/legume (B. decumbens+Pueraria phaseoloides) pasture. Ready P supply as analyzed by Bray P was low under native savanna (1.3 mg kg-1 soil) and responded moderately on pasture establishment. Concurrently, the affinity of the soil for inorganic P declined slightly after pasture establishment. 31P NMR spectroscopy revealed that P associated with humic acids was dominated by monoester P followed by diester P. Smaller proportions were observed for phosphonates, teichoic acid P, orthophosphate, and pyrophosphate. P associated with fulvic acids had lower proportions of diester P and higher contents of orthophosphate. Under native savanna the reserves of labile organic P species (phosphonates and diester P including teichoic acid P) associated with humic and fulvic acids were 12.4 and 1.1 kg ha-1, respectively, and increased to 18.1 and 1.8 kg ha-1 under grass pasture, and to 19.5 and 2.3 kg ha-1 under grass/legume pasture. These data emphasize the importance of labile organic P species in the P supply for plants in improved tropical pastures, and further indicate that humic acid P in particular responds to land-use changes within a relatively short time-scale. Earthworm casts were highly abundant in the B. decumbens+P. phaseoloides plot and were enriched in labile organic P species. We conclude that earthworm activity improves the P supply in soil under tropical pastures by creating an easily available organic P pool.Dedicated to Professor J.C.G. Ottow on the occasion of his 60th birthday  相似文献   

20.
Despite the benefits of grass cultivation and organic fertilization in mining areas undergoing reclamation, these practices may be associated to CO2 emissions and soil organic matter (SOM) losses by priming effect. In the present study, we evaluated the changes on SOM pools and C–CO2 emissions in a bauxite‐mined area under reclamation fertilized with poultry litter (PL) (0, 10, 20, and 40 Mg ha−1) and cultivated with Brachiaria brizantha . Increases of about 3·5 times in the soil labile C were observed 1 year after experiment establishment. High C–CO2 fluxes and a significant positive priming effect were observed in the presence of B. brizantha , increasing native C mineralization by nearly 4·9 times. Nevertheless, no net soil C loss was detected, probably because of the C inputs derived from B. brizantha , which offset these losses. In fact, the grass increased total organic C by 45% when fertilized with 40 Mg PL ha−1. The data obtained suggest that the cultivation of B. brizantha fertilized with PL can be a promising option for rapid recovery in SOM in areas under reclamation. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号