首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study aims to explain the effects of silicon (Si) foliar application on gas exchange characteristics, photosynthetic pigments, membrane stability and leaf relative water content of different wheat cultivars in the field under drought stress conditions. The experiment was arranged as a split-split plot based on randomized complete block design with three replications. Irrigation regime (100%, 60%, and 40% F.C.), silicon (control and Si application) and wheat cultivars (Shiraz, Marvdasht, Chamran, and Sirvan) were considered as main, sub and sub-sub plots, respectively. This study was carried out at the Research Farm of the Collage of Agriculture, Shiraz University, Iran, during 2012–2013 growing season. The results showed that foliar application of silicon increased the leaf relative water content, photosynthesis pigments (chlorophyll a, b and total chl and carotenoids), chlorophyll stability index (CSI) and membrane stability index (MSI) in all wheat cultivars, especially in Sirvan and Chamran (drought tolerant cultivars), under both stress and non-stress conditions. However, more improvement was observed under drought stress as compared to the non-stress condition. In contrast, these parameters decreased under drought stress. Si significantly decreased electrolyte leakage in all four cultivars under drought stress conditions. Furthermore, the intercellular carbon dioxide (CO2) concentration (Ci) increased under drought stress. Si application decreased Ci especially under drought stress conditions. Net photosynthesis rate (A), transpiration rate (E) and stomatal conductance (gs) were significantly decreased under drought conditions. Under drought, Si applied plants showed significantly higher leaf photosynthesis rate, transpiration rate, and stomatal conductance. Intrinsic water use efficiency (WUEi) and carboxylation efficiency (CE) decreased in all cultivars under drought stress. However, the silicon-applied plants had greater WUEi and CE under drought stress. The stomatal limitation was found to be higher in stressed plants compared to the control. Exogenously applied silicon also decreased stomatal limitation. Overall, application of Si was found beneficial for improving drought tolerance of wheat plants.  相似文献   

2.
Role of exogenously-applied silicon (Si) on antioxidant enzyme activities was investigated in wheat under drought stress using a completely randomized factorial design with four replications. Drought stress significantly enhanced activities of ascorbate peroxidase, peroxidase, superoxide dismutase and catalase, and elevated accumulation of osmotically active molecules, soluble sugars and proline. Si application further enhanced activities of enzymes involved in oxidative defense system and accumulation of osmotically active molecules in drought-stressed plants. Under drought stress conditions, water shortage decreased protein content in all cultivars; however, application of Si increased it. Pollen area ratio was lower than 1 for cvs. Shiraz and Marvdasht under drought, but greater than 1 for cvs. Chamran and Sirvan. Water-limited regimes resulted in decreased leaf Ψw in all cultivars, but Si supply was effective in improving Ψw under water-limited regimes. Water shortage increased leaf K, Mg, and Ca concentrations. Under drought stress, Si-treated plants had higher K concentration than the none-treated plants.  相似文献   

3.
To investigate the effects of irrigation regimes on assimilate remobilization, water use efficiency (WUE), relative water content (RWC), photosynthesis and yield of five wheat cultivars, a field experiment was conducted at Shiraz University during the 2008 and 2009 growing seasons. The experimental design was a randomized complete block and treatments were arranged as split-plot in three replicates. There were four levels of water regime including well-watered [irrigation based on 100% field capacity (FC)], excess watered (125% FC), mild drought (75% FC) and severe drought (50% FC) stress, and four bread wheat cultivars (Shiraz, Bahar, Pishtaz and Sistan) and a durum wheat (Yavaros). In all cultivars, progressed leaf senescence at 30 days after anthesis (DAA), was associated with a reduction in chlorophyll content. The reduction was more pronounced in Shiraz and Yavaros than Pishtaz and Sistan. With increasing temperature and remobilization of assimilate to grain, net photosynthesis and stomatal conductance were decreased significantly at 18 DAA compared with 8 DAA. Sistan and Pishtaz cultivars maintained higher RWC than sensitive cultivars of Shiraz and Yavaros under drought stress. The higher WUE in Pishtaz and Sistan was attributed to the effectiveness of a small amount of water in alleviating severe stress during the sensitive stages of growth. Under mild drought stress, controlled soil drying could enhance remobilization efficiency of assimilates in Pishtaz and Sistan and under severe drought, these cultivars had the highest grain yield compared with the other cultivars. Reduction of assimilates remobilization to the grain and 1000-grain weight, caused lower grain yield in Shiraz under severe drought. Overall, controlled soil drying in Sistan and Pishtaz might result in better mobilization of pre-stored assimilates to the grain in arid areas, where a rapid depletion of water resources is threatening crop production.  相似文献   

4.
ABSTRACT

Drought is a major constraint for agricultural productivity worldwide, and it is likely to further increase. Different strategies are required to mitigate drought stress in plants. In a two-year study that conducted at agronomic research area of the Islamia University of Bahawalpur, we investigated the role of rhizobacteria (RB) and cytokinins (Ck) on drought tolerance, nutrient uptake, yield, and physiological parameters in wheat under drought stress at different developmental stages (tillering, anthesis, and grain filling). Thirteen treatments used were well-watered control plants without RB or Ck, drought at tillering, anthesis, or grain filling without or with RB alone, Ck alone, or combination of both (RB+Ck). In both years, and at the different stages, measured parameters were highest in the well-watered plants but lowest in drought-stressed plants. Application of RB and Ck to drought-stressed plants increased these parameters in the order RB+Ck > RB > Ck. In some cases, under drought stress, there was no difference between inoculation with RB and application of Ck. It was concluded that the combined application of RB and Ck could play a significant role in improving wheat yield and also alleviation of stress under drought condition.  相似文献   

5.
Chitosan and its components have beneficial effects on a wide variety of plant species. Yet, their effects on wheat plants under drought stress are not well known. So, a field experiment was laid out in order to evaluate the effect of chitosan nanoparticles (NPs) on wheat. The wheat seeds were sown in plots. Then, the chitosan NPs were added to them through soil and foliar application at tillering, stem elongation, and heading stages. Results indicated that the drought stress significantly decreased majority of the studied traits compared to the normal irrigation. Application of the NPs especially 90?ppm increased leaf area (LA), relative water content (RWC), chlorophyll content, photosynthesis rate, catalase (CAT), and superoxide dismutase (SOD) activities, yield, and biomass compared to the control. Finally, our results highlight that usage of the chitosan NPs especially 90?ppm can mitigate adverse effects of drought in the wheat under drought stress.  相似文献   

6.
A pot experiment investigated the effects of root diseases (Pythium and Rhizoctonia) under drought conditions at either tillering or anthesis stages on the water-use efficiency (WUE), water relations, and yield components of wheat cultivars Janz and Mulgara. The pathogens reduced transpiration in Janz during drought at tillering and in both cultivars during the period of recovery after drought at anthesis. However, the pathogens did not affect WUE. WUE did not differ between well-watered plants and those droughted at tillering but it was reduced by 80% by drought at anthesis. Un-infected plants of cultivar Janz subjected to drought at tillering had a higher total water potential (Ψw) and osmotic potential (Ψs) than diseased plants. However, Ψs of un-inoculated plants that were droughted at anthesis was lower than diseased plants in the period following anthesis. Yield components were significantly higher in well-watered than droughted plants and higher in cv. Mulgara than cv. Janz. The pathogens affected transpiration during tillering, but not at later stages, when roots developed beyond the inoculation point. Although the pathogens caused damage to the roots, the effects on water relations parameters were minor. This suggests that wheat can tolerate moderate levels of these root diseases under drought.  相似文献   

7.
Crop productivity in future may be limited due to water scarcity. However, foliar spray of plant growth promoters may boost crop production even in adverse environments. In the present study, foliar application of one natural (moringa leaf extract, 3% MLE) and four synthetic (Polydol, Multisol, Classic, and Asahi Star) were applied at tillering, jointing, booting, and heading growth stages of wheat (Triticum aestivum L.) during severe, moderate, and light drought and well‐watered condition. No spray and water spray were taken as controls. Results showed significant reduction in growth parameters such as total dry matter production, mean crop growth rate, net assimilation rate, leaf area index, and duration due to drought employed at various phenophases of wheat. However, improvement in these parameters was observed after foliar application of growth promoters, whereas interactive effects between factors were found non‐significant. The activities of catalase (CAT), superoxide dismutase (SOD), and peroxidase (POD) were more accelerated under drought treatments from exogenously supplied growth promoters. Foliar application of promoters significantly alleviated drought‐induced reduction of yield and related traits. Grain weight (15%) and grain yield (27%) were improved due to exogenously applied MLE under moderate drought stress treatments relative to controls. Furthermore, 16% higher grain yield and 17% saving of irrigation water over fully irrigated and without promoter treatment (farmers' practice) was recorded from foliar‐applied MLE under skipped irrigation at jointing. In conclusion, foliar‐applied MLE may ameliorate drought‐induced deleterious effects by enhancing antioxidant activities under drought stress.  相似文献   

8.
In many regions, drought during flowering and grain‐filling inhibits micronutrient acquisition by roots resulting in yield losses and low micronutrient concentrations in cereal grains. A field and a greenhouse experiment were conducted to study the effect of foliar applications of zinc (Zn), boron (B), and manganese (Mn) at late growth stages of winter wheat (Triticum aestivum L.) grown with or without drought stress from booting to maturity. Foliar applications of Zn, B, and Mn did not affect grain yield in the absence of drought. However, under drought, foliar application of Zn and B in the field increased grain yield (15% and 19%, respectively) as well as raising grain Zn and B concentration, while Zn and Mn sprays in the greenhouse increased grain yield (13% and 10%, respectively), and also increased grain Zn and Mn concentrations. Furthermore, under drought stress both in the field and greenhouse experiment the rate of photosynthesis, pollen viability, number of fertile spikes, number of grains per spike, and particularly water‐use efficiency (WUE) were increased by late foliar application of micronutrients. These results indicate that by increasing WUE foliar application of Zn, B, and Mn at booting to anthesis can reduce the harmful effects of drought stress that often occur during the late stages of winter wheat production. These findings therefore are of high relevance for farmers' practice, the extension service, and fertilizer industry.  相似文献   

9.
The effects of urea foliar application rates at different growth stages of wheat on protein and yield of winter wheat were evaluated in a factorial experiment. Time of application and amounts of urea foliar application rates were the treatments. Urea was applied at four stages including tillering, jointing, anthesis, and grain filling, and urea foliar application rates were 22.5, 45, 67.5, and 90 kg ha?1 (12.5, 25, 37.5, and 50% of total urea application). Our data demonstrated that urea application time had significant effects on grain weight, number of seeds per spike, plant height, and protein content. Furthermore, total dry weight, grain weight, harvest index, 1000-seed weight, plant height, and protein content were significantly affected by amounts of urea foliar application. The effects of time?×?rate of urea foliar application on grain yield, 1000-seed weight, and plant height were significant.  相似文献   

10.
The objective of this study was to determine the effect of foliar salicylic acid (SA) applications on growth, chlorophyll, and mineral content of cucumber grown under salt stress. The study was conducted in pot experiments under greenhouse conditions. Cucumber seedlings were treated with foliar SA applications at different concentrations (0.0, 0.25, 0.50, and 1.00 mM). Salinity treatments were established by adding 0, 60, and 120 mM of sodium chloride (NaCl) to a base complete nutrient solution. The SA was applied with spraying two times as before and after transplanting. Salt stress negatively affected the growth, chlorophyll content and mineral uptake of cucumber plants. However, foliar applications of SA resulted in greater shoot fresh weight, shoot dry weight, root fresh weight, and root dry weight as well as higher plants under salt stress. Shoot diameter and leaf number per plant increased with SA treatments under salt stress. The greatest chlorophyll content was obtained with 1.00 mM SA treatment in both saline and non-saline conditions. Leaf water relative content (LWRC) reduced in response to salt stress while SA raised LWRC of salt stressed cucumber plants. Salinity treatments induced significant increases in electrolyte leakage. Plants treated with foliar SA had lower values of electrolyte leakage than non-treated ones. In regard to nutrient content, it can be interfered that foliar SA applications increased almost all nutrient content in leaves and roots of cucumber plants under salt stress. Generally, the greatest values were obtained from 1.00 mM SA application. Based on these findings, the SA treatments may help alleviate the negative effect of salinity on the growth of cucumber.  相似文献   

11.
  【目的】  在干旱和半干旱地区,缺磷常导致作物产量下降。研究不同水分状况下,磷素施用次数对花后小麦旗叶和穗部维持光合效能及胚乳细胞分裂能力的影响,为科学施用磷肥提供理论依据。  【方法】  以冬小麦品种‘新冬23号’和‘新冬20号’为试验材料开展裂区田间试验。设干旱胁迫 (DT,灌水量为5625 m3/hm2) 和适水灌溉 (WT,灌水量为9000 m3/hm2) 两个水分处理;每个水分条件下,设置3个磷肥 (P2O5 105 kg/hm2) 施用次数处理:P1 (在小麦返青期一次性施用)、P2 (在小麦返青和拔节期分别追施50%)、P3 (在小麦返青、拔节和灌浆期按40%∶30%∶30%比例追施)。在小麦开花后7、14、21、28、35天,取样测定旗叶叶绿素和DNA含量、籽粒DNA含量和淀粉积累量,在成熟期测定产量及产量构成因子。  【结果】  干旱条件下,两个品种旗叶叶绿素含量均为P1处理显著高于P2和P3处理;适水条件下为P3处理显著高于P1和P2处理。干旱条件下,新冬23号小麦旗叶和籽粒DNA含量表现为P2处理显著高于P1和P3处理,而新冬20号小麦则为P1处理显著高于P2和P3处理;适水条件下两个小麦品种均为P3处理最高。干旱胁迫下,两个小麦品种籽粒总淀粉含量均以P1处理最高。两个品种千粒重在两种水分条件下均以P3处理最高。  【结论】  干旱胁迫下,不论小麦品种的产量潜力高低,返青期一次性施磷比分期施磷可提高灌浆期旗叶和穗部叶绿素和DNA含量,有利于光合作用产物的积累和细胞分化,最终形成较高的籽粒千粒重和淀粉积累量。适水条件下,分3次施磷有利于维持旗叶和穗部叶绿素以及DNA含量,增加淀粉含量和粒重。因此,小麦磷肥的施用方法应依据水分状况而定。  相似文献   

12.
干旱胁迫下冬小麦产量结构与生长、生理、光谱指标的关系   总被引:13,自引:1,他引:12  
通过控制生育期水分条件形成不同程度的干旱胁迫,对冬小麦生长、产量及生理指标和冠层高光谱反射率对干旱胁迫的反应进行监测,建立冬小麦减产率与生长、生理及冠层光谱反射率的相关模型。研究结果表明:不同生育期冬小麦干物质积累速度随水分胁迫程度的增大而减小;叶绿素含量与水分条件的关系不同于其他参数,表现为中等水分条件下叶绿素含量最大,严重水分胁迫下叶绿素含量最低;不同水分条件下光合速率呈两种不同日变化特征,且正常供水处理的光合速率明显高于严重干旱处理。光合速率和增强植被指数(EVI)同冬小麦减产率相关性较强,能够建立较好的关系模型用于小麦产量预测。  相似文献   

13.
Terminal drought stress (drought at reproductive growth stage) has been considered a severe environmental threat under changing climatic scenarios and undoubtedly inhibits sunflower production. A field study was conducted to explore the potential role of foliar applied boron (B) (0, 15, 30, 45 mg L?1) at late growth periods of sunflower in alleviating the adversities of terminal drought stress (75, 64, 53 mm DI) grown from inflorescence emergence to maturity stages. The plant water relations such as leaf relative water content (RWC), water potential (Ψw), osmotic potential (Ψs), and turgor pressure (Ψp) were increased significantly with B foliar sprays while exposed to terminal drought stress. Foliar B application considerably improved the nitrogen and B concentrations in leaf and seed tissues, and also chlorophyll a and b pigments under terminal drought stress conditions. Drought-induced proline accumulation prevented the damages caused by drought stress, nevertheless, B foliar spray increased its contents. Compared to well-watered conditions, terminal drought stress substantially declined the growth performance in terms of reduced leaf area index (LAI), crop growth rate (CGR), net assimilation rate (NAR), and total dry matter (TDM) production; however, foliar B supply (30 mg L?1) might be helpful for improving drought tolerance in sunflower with reduced growth losses.  相似文献   

14.
Efficacy of 1?mM humic (HA) and salicylic (SC) acids on SC 260 and SC 705 corn seedlings to alleviate drought stress via polyethylene glycol was studied via hydroponics at Shiraz University, Iran in a factorial, randomized design, with four replicates each. Under stress, SC 260 had higher electrolyte leakage compared to SC 705, and exogenous application of HA combined with SA decreased SC 705 electrolyte leakage. As a general trend, photosynthetic pigment content, relative water content, root and shoot length, mean number and diameter of central and peripheral root metaxylem, and K+ accumulation were higher in SC 705 treated with HA and SA compared to SC 260. Application of HA with SA could be an effective and low cost approach to ensure seedling establishment and plant growth in fields affected by soil drought in the early season, especially for the SC 705 corn hybrid in semi-arid regions.  相似文献   

15.
A sand culture experiment was carried out to study the effects of sulfur deprivation on heat stress tolerance of two cluster bean (Cymopsis tetragonoloba L. Taub) cultivars (GC-1 and Pusa Nau Bahar (PNB)). Three weeks old sulfur-starved and sulfur-supplemented plants were subjected to heat stress (45°C/35°C) treatment for 24 h. Total dry weight, chlorophyll content, Chlorophyll a:b ratio, electrolyte leakage, malondialdehyde (MDA) accumulation, H2O2 content, sugar, glucose-6-phosphate (G-6-P), fructose-6-phosphate (F-6-P), ascorbate and glutathione concentrations and antioxidant enzyme activity (superoxide dismutase (SOD) and catalase (CAT)) were monitored, at the end of the heat stress treatment. Heat stress enhanced and sulfur starvation depleted the contents of sugar metabolites, but the accumulation of sugar, G-6-P and F-6-P were not related with heat stress tolerance. Antioxidant enzyme activities of SOD and CAT were influenced significantly more by sulfur starvation than heat stress. The results showed that under heat stress, the addition of sulfur helps to mitigate the oxidative damage in both the cultivars. However, GC-1 was more heat tolerant as it was characterized by significantly higher total dry weight, chlorophyll content, ascorbate and glutathione content and lower H2O2, MDA, electrolyte leakage than PNB.  相似文献   

16.
氮肥缓解苗期干旱对小麦根系形态建成及生理特性的影响   总被引:2,自引:1,他引:1  
为揭示氮肥缓解苗期干旱对小麦根系生长的影响,以高产高蛋白品种Spitfire(S)和抗旱品种Drysdale(D)为材料,采用沙培方式研究了不同氮素处理(180和22.5 kg·hm-2)和水分处理(干旱和正常浇水)对苗期小麦根系形态建成和生理生长的影响。结果表明,苗期干旱下增施氮肥减小了2个品种小麦根系总根长、根系表面积、总根体积、根尖数和分枝数,显著增加了根系直径和根系活力,S品种根系干重减小7.0%,而D品种根系干重增加12.0%。施高氮还降低了干旱下2个品种小麦根系可溶性糖含量,并提高了游离氨基酸含量,且耐旱性品种D变化幅度较大,2个品种根系可溶性蛋白含量的变化均不明显。此外,增施氮肥能促进根系对氮素的吸收,提高根系硝酸还原酶(NR)活性和含氮量。综上,在苗期干旱下增施氮肥能够促进小麦根系生长,提高根系活力和NR活性,以增强根系对氮素的吸收同化能力,促进氮代谢水平,从而提高小麦的抗旱性,但不同耐旱品种对干旱下增施氮肥的响应程度存在差异。本研究结果为通过增施氮肥有效缓解干旱进而提高小麦产量提供了理论依据。  相似文献   

17.
The response of different wheat cultivars to drought imposed after three and six weeks of seedling emergence was evaluated in the wire house. The seeds of recommended local wheat cultivars were sown in plastic pots. The drought stress decreased the water relation, nutrient uptake and grain yield of all the wheat cultivars. The early drought stress significantly reduced the nitrogen (N) uptake by 38% while late drought stress decreased nitrogen uptake by 46%. The phosphorus (P) and potassium (K) uptake were decreased by 49% and 37% under early drought stress, respectively while their uptake was decreased by 51% each under late drought stress. Grain yield was reduced by 24% under early drought stress while it was reduced by 60% under late drought stress. Water deficit at early growth stages reduced grain weight by 10% while it was reduced by 35% under water deficit at later stages of growth.  相似文献   

18.
钾营养对不同基因型小麦幼苗NaCl胁迫的缓解作用   总被引:2,自引:0,他引:2  
在温室砂培条件下,研究了钾营养对NaCl胁迫下不同基因型小麦幼苗生长、植株可溶性糖、丙二醛(MDA)含量及几种抗氧化酶活性的影响。结果表明,100.mmol/L.NaCl胁迫下,施入5~10.mmol/L.K+可提高小麦幼苗茎叶及根的生长及含水量;耐盐品种DK961可溶性糖含量随外界K+浓度的提高出现先升高后降低的趋势,而盐敏感品种JN17则随溶液K+浓度的提高一直降低;两品种电解质外渗量及MDA含量都比对照增加,但随外界K+浓度的升高呈现先降低后升高的趋势,以10.mmol/L.K+时最接近对照;两品种超氧物歧化酶(SOD)、过氧化氢酶(CAT)、过氧化物酶(POD)活性随外界K+浓度升高都是先升高后降低,以Na+/K+比值为10∶1最好,并且对POD活性的影响更显著。表明根据NaCl胁迫程度不同,按Na+/K+比值为10∶1的比例施用钾肥可最大限度地降低NaCl胁迫对小麦幼苗造成的伤害,促进小麦生长。  相似文献   

19.
Ashraf  M.  Mahmood  T.  Azam  F. 《Biology and Fertility of Soils》2003,38(4):257-260
Foliar uptake of 15NH3 applied at two growth stages (tillering and anthesis) and the subsequent 15N-labelled vegetative-N distribution in different plant components at maturity was investigated in three rice cultivars, IR-6, NIAB-6 and Bas-385. Rice plants absorbed 22–30% and 18–24% of the 15NH3 applied at tillering and anthesis stages, respectively. Of the total 15NH3 absorbed at tillering stage, IR-6 and Bas-385 showed higher recovery (71%) in different plant components at maturity as compared to NIAB-6 (48% recovery). At maturity, percent recovery of the 15NH3 absorbed at anthesis stage was almost comparable in different cultivars, but it was lower (46–55%) than that absorbed at the tillering stage. Recovery of the absorbed 15NH3-N in the soil was negligible and ranged from 0.3–1%. At maturity, the cultivars IR-6 and Bas-385 showed a higher loss (45–53%) of 15NH3 absorbed at anthesis than at the tillering stage (29% loss), whereas for NIAB-6, the corresponding figures were comparable for the two growth stages (tillering, 51% loss; anthesis, 49% loss). Results indicated a variable potential of the tested rice cultivars for foliar uptake of atmospheric 15NH3 and distribution of 15N-labelled vegetative-N in different plant components.  相似文献   

20.
为探究不同熟性冬小麦品种库源分配对刈割的响应,在温室控制条件下,选取陇东地区常用的中熟(‘宁麦5号’和‘陇育4号’)和晚熟(‘西峰27号’和‘陇育1号’)冬小麦品种,测定不同品种冬小麦不刈割(对照)以及分蘖期刈割(留茬2 cm)后再生生长早期叶面积指数,花期和成熟期的物质分配构成。研究结果表明:不同熟期冬小麦刈割再生后的叶面积指数、光合产物分配均有所不同。刈割后再生生长早期,4个品种叶面积指数较未刈割均显著下降;再生至花期中熟品种‘宁麦5号’和‘陇育4号’的叶面积指数仍显著降低27%和17%,晚熟品种‘西峰27号’略降低6%,‘陇育1号’则上升7%。中熟品种‘宁麦5号’和‘陇育4号’再生至花期地上生物量降低18%和11%,晚熟品种‘陇育1号’上升13%;各品种再生至花期地下生物量较未刈割均呈下降趋势,并且中熟品种的下降幅度小于晚熟品种,但晚熟品种在成熟期出现增加趋势,‘陇育1号’显著增加26%。再生至花期中熟品种各部分可溶性碳水化合物含量均降低,而晚熟品种‘陇育1号’各部分可溶性碳水化合物含量增加2%~12%。可见晚熟品种‘陇育1号’再生至花期可溶性碳水化合物含量及干物质向叶、穗分配增加,资源再分配、源库协调能力强,为后期籽粒产量形成奠定了良好的基础,较中熟品种更适于在分蘖期利用青饲草、成熟期收获籽粒的利用方式。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号