首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Polarized and unpolarized neutron scattering was used to measure the wave vector- and frequency-dependent magnetic fluctuations in the normal state (from the superconducting transition temperature, Tc = 35 kelvin, up to 350 kelvin) of single crystals of La1.86Sr0.14CuO4. The peaks that dominate the fluctuations have amplitudes that decrease as T-2 and widths that increase in proportion to the thermal energy, kBT (where kB is Boltzmann's constant), and energy transfer added in quadrature. The nearly singular fluctuations are consistent with a nearby quantum critical point.  相似文献   

2.
The diffusion of hydrogen atoms across solid oxide surfaces is often assumed to be accelerated by the presence of water molecules. Here we present a high-resolution, high-speed scanning tunneling microscopy (STM) study of the diffusion of H atoms on an FeO thin film. STM movies directly reveal a water-mediated hydrogen diffusion mechanism on the oxide surface at temperatures between 100 and 300 kelvin. Density functional theory calculations and isotope-exchange experiments confirm the STM observations, and a proton-transfer mechanism that proceeds via an H(3)O(+)-like transition state is revealed. This mechanism differs from that observed previously for rutile TiO(2)(110), where water dissociation is a key step in proton diffusion.  相似文献   

3.
A quantum-cascade long-wavelength infrared laser based on superlattice active regions has been demonstrated. In this source, electrons injected by tunneling emit photons corresponding to the energy gap (minigap) between two superlattice conduction bands (minibands). A distinctive design feature is the high oscillator strength of the optical transition. Pulsed operation at a wavelength of about 8 micrometers with peak powers ranging from approximately 0.80 watt at 80 kelvin to 0.2 watt at 200 kelvin has been demonstrated in a superlattice with 1-nanometer-thick AlInAs barriers and 4.3-nanometer-thick GaInAs quantum wells grown by molecular beam epitaxy. These results demonstrate the potential of strongly coupled superlattices as infrared laser materials for high-power sources in which the wavelength can be tailored by design.  相似文献   

4.
The adsorption, diffusion, and clustering of water molecules on a Pd(111) surface were studied by scanning tunneling microscopy. At 40 kelvin, low-coverage water adsorbs in the form of isolated molecules, which diffuse by hopping to nearest neighbor sites. Upon collision, they form first dimers, then trimers, tetramers, and so on. The mobility of these species increased by several orders of magnitude when dimers, trimers, and tetramers formed, and decreased again when the cluster contained five or more molecules. Cyclic hexamers were found to be particularly stable. They grow with further exposure to form a commensurate hexagonal honeycomb structure relative to the Pd(111) substrate. These observations illustrate the change in relative strength between intermolecular hydrogen bonds and molecule-substrate bonds as a function of water cluster size, the key property that determines the wetting properties of materials.  相似文献   

5.
The neutral muonic helium atom may be regarded as the heaviest isotope of the hydrogen atom, with a mass of ~4.1 atomic mass units ((4.1)H), because the negative muon almost perfectly screens one proton charge. We report the reaction rate of (4.1)H with (1)H(2) to produce (4.1)H(1)H + (1)H at 295 to 500 kelvin. The experimental rate constants are compared with the predictions of accurate quantum-mechanical dynamics calculations carried out on an accurate Born-Huang potential energy surface and with previously measured rate constants of (0.11)H (where (0.11)H is shorthand for muonium). Kinetic isotope effects can be compared for the unprecedentedly large mass ratio of 36. The agreement with accurate quantum dynamics is quantitative at 500 kelvin, and variational transition-state theory is used to interpret the extremely low (large inverse) kinetic isotope effects in the 10(-4) to 10(-2) range.  相似文献   

6.
Chemical reactivity is conventionally understood in broad terms of kinetic versus thermodynamic control, wherein the decisive factor is the lowest activation barrier among the various reaction paths or the lowest free energy of the final products, respectively. We demonstrate that quantum-mechanical tunneling can supersede traditional kinetic control and direct a reaction exclusively to a product whose reaction path has a higher barrier. Specifically, we prepared methylhydroxycarbene (H(3)C-C-OH) via vacuum pyrolysis of pyruvic acid at about 1200 kelvin (K), followed by argon matrix trapping at 11 K. The previously elusive carbene, characterized by ultraviolet and infrared spectroscopy as well as exacting quantum-mechanical computations, undergoes a facile [1,2]hydrogen shift to acetaldehyde via tunneling under a barrier of 28.0 kilocalories per mole (kcal mol(-1)), with a half-life of around 1 hour. The analogous isomerization to vinyl alcohol has a substantially lower barrier of 22.6 kcal mol(-1) but is precluded at low temperature by the greater width of the potential energy profile for tunneling.  相似文献   

7.
The current-perpendicular-to-plane magnetoresistance (CPP-MR) has been investigated for the layered manganite, La2-2xSr1+2xMn2O7 (x = 0.3), which is composed of the ferromagnetic-metallic MnO2 bilayers separated by nonmagnetic insulating block layers. The CPP-MR is extremely large (10(4) percent at 50 kilo-oersted) at temperatures near above the three-dimensional ordering temperature (Tc approximately 90 kelvin) because of the field-induced coherent motion between planes of the spin-polarized electrons. Below Tc, the interplane magnetic domain boundary on the insulating block layer serves as the charge-transport barrier, but it can be removed by a low saturation field, which gives rise to the low-field tunneling MR as large as 240 percent.  相似文献   

8.
Zhao A  Li Q  Chen L  Xiang H  Wang W  Pan S  Wang B  Xiao X  Yang J  Hou JG  Zhu Q 《Science (New York, N.Y.)》2005,309(5740):1542-1544
We report that the Kondo effect exerted by a magnetic ion depends on its chemical environment. A cobalt phthalocyanine molecule adsorbed on an Au111 surface exhibited no Kondo effect. Cutting away eight hydrogen atoms from the molecule with voltage pulses from a scanning tunneling microscope tip allowed the four orbitals of this molecule to chemically bond to the gold substrate. The localized spin was recovered in this artificial molecular structure, and a clear Kondo resonance was observed near the Fermi surface. We attribute the high Kondo temperature (more than 200 kelvin) to the small on-site Coulomb repulsion and the large half-width of the hybridized d-level.  相似文献   

9.
The electrical properties of individual bundles, or "ropes," of single-walled carbon nanotubes have been measured. Below about 10 kelvin, the low-bias conductance was suppressed for voltages less than a few millivolts. In addition, dramatic peaks were observed in the conductance as a function of a gate voltage that modulated the number of electrons in the rope. These results are interpreted in terms of single-electron charging and resonant tunneling through the quantized energy levels of the nanotubes composing the rope.  相似文献   

10.
Low-temperature scanning tunneling microscopy was used to selectively break the N-H bond of a methylaminocarbyne (CNHCH3) molecule on a Pt(111) surface at 4.7 kelvin, leaving the C-H bonds intact, to form an adsorbed methylisocyanide molecule (CNCH3). The methylisocyanide product was identified through comparison of its vibrational spectrum with that of directly adsorbed methylisocyanide as measured with inelastic electron tunneling spectroscopy. The CNHCH3 could be regenerated in situ by exposure to hydrogen at room temperature. The combination of tip-induced dehydrogenation with thermodynamically driven hydrogenation allows a completely reversible chemical cycle to be established at the single-molecule level in this system. By tailoring the pulse conditions, irreversible dissociation entailing cleavage of both the C-H and N-H bonds can also be demonstrated.  相似文献   

11.
Wu T  Werner HJ  Manthe U 《Science (New York, N.Y.)》2004,306(5705):2227-2229
A full-dimensional quantum dynamics simulation of a hydrogen atom reacting with methane on an accurate ab initio potential energy surface is reported. Based on first-principles theory, thermal rate constants are predicted with an accuracy comparable to (or even exceeding) experimental precision. The theoretical prediction is within the range of the significantly varied experimental rate constants reported by different groups. This level of accuracy has previously been achieved only for smaller, three-or four-atom reactive systems. Comparison with classical transition state theory confirms the importance of quantum mechanical tunneling for the rate constant below 400 kelvin.  相似文献   

12.
Protonated and deuterated ices (H2O and D2O) compressed to a maximum pressure of 210 gigapascals at 85 to 300 kelvin exhibit a phase transition at 60 gigapascals in H2O ice (70 gigapascals in D2O ice) on the basis of their infrared reflectance spectra determined with synchrotron radiation. The transition is characterized by soft-mode behavior of the nu3 O-H or O-D stretch below the transition, followed by a hardening (positive pressure shift) above it. This behavior is interpreted as the transformation of ice phase VII to a structure with symmetric hydrogen bonds. The spectroscopic features of the phase persisted to the maximum pressures (210 gigapascals) of the measurements, although changes in vibrational mode coupling were observed at 150 to 160 gigapascals.  相似文献   

13.
A two-dimensional antiferromagnetic structure within a pseudomorphic monolayer film of chemically identical manganese atoms on tungsten(110) was observed with atomic resolution by spin-polarized scanning tunneling microscopy at 16 kelvin. A magnetic superstructure changes the translational symmetry of the surface lattice with respect to the chemical unit cell. It is shown, with the aid of first-principles calculations, that as a result of this, spin-polarized tunneling electrons give rise to an image corresponding to the magnetic superstructure and not to the chemical unit cell. These investigations demonstrate a powerful technique for the understanding of complicated magnetic configurations of nanomagnets and thin films engineered from ferromagnetic and antiferromagnetic materials used for magnetoelectronics.  相似文献   

14.
Tunneling electrons from a low-temperature (5 kelvin) scanning tunneling microscope were used to control, through resonant electronic excitation, the molecular dynamics of an individual biphenyl molecule adsorbed on a silicon(100) surface. Different reversible molecular movements were selectively activated by tuning the electron energy and by selecting precise locations for the excitation inside the molecule. Both the spatial selectivity and energy dependence of the electronic control are supported by spectroscopic measurements with the scanning tunneling microscope. These experiments demonstrate the feasibility of controlling the molecular dynamics of a single molecule through the localization of the electronic excitation inside the molecule.  相似文献   

15.
Multidentate, noncovalent interactions between small molecules and biopolymer fragments are central to processes ranging from drug action to selective catalysis. We present a versatile and sensitive spectroscopic probe of functional groups engaged in hydrogen bonding in such contexts. This involves measurement of the frequency changes in specific covalent bonds upon complex formation, information drawn from otherwise transient complexes that have been extracted from solution and conformationally frozen near 10 kelvin in gas-phase clusters. Resonances closely associated with individual oscillators are easily identified through site-specific isotopic labeling, as demonstrated by application of the method to an archetypal system involving a synthetic tripeptide known to bind biaryl substrates through tailored hydrogen bonding to catalyze their asymmetric bromination. With such data, calculations readily converge on the plausible operative structures in otherwise computationally prohibitive, high-dimensionality landscapes.  相似文献   

16.
Self-assembled devices composed of periodic arrays of 10-nanometer-diameter cobalt nanocrystals display spin-dependent electron transport. Current-voltage characteristics are well described by single-electron tunneling in a uniform array. At temperatures below 20 kelvin, device magnetoresistance ratios are on the order of 10%, approaching the maximum predicted for ensembles of cobalt islands with randomly oriented preferred magnetic axes. Low-energy spin-flip scattering suppresses magnetoresistance with increasing temperature and bias-voltage.  相似文献   

17.
The Cassini Ultraviolet Imaging Spectrometer (UVIS) observed the extinction of photons from two stars by the atmosphere of Titan during the Titan flyby. Six species were identified and measured: methane, acetylene, ethylene, ethane, diacetylene, and hydrogen cyanide. The observations cover altitudes from 450 to 1600 kilometers above the surface. A mesopause is inferred from extraction of the temperature structure of methane, located at 615 km with a temperature minimum of 114 kelvin. The asymptotic kinetic temperature at the top of the atmosphere determined from this experiment is 151 kelvin. The higher order hydrocarbons and hydrogen cyanide peak sharply in abundance and are undetectable below altitudes ranging from 750 to 600 km, leaving methane as the only identifiable carbonaceous molecule in this experiment below 600 km.  相似文献   

18.
Measurement of the far-infrared vibration-rotation tunneling spectrum of the perdeuterated water tetramer is described. Precisely determined rotational constants and relative intensity measurements indicate a cyclic quasi-planar minimum energy structure, which is in agreement with recent ab initio calculations. The O-O separation deduced from the data indicates a rapid exponential convergence to the ordered bulk value with increasing cluster size. Observed quantum tunneling splittings are interpreted in terms of hydrogen bond rearrangements connecting two degenerate structures.  相似文献   

19.
Jérome D 《Science (New York, N.Y.)》1991,252(5012):1509-1514
The upper temperature for superconductivity in organic conductors has increased from 1 kelvin in 1980, when the phenomenon was discovered in the quasi-one-dimensional cation radical salt tetramethyltetraselenafulvalene phosphorus heptafluoride to 12 kelvin in a new series of organic salts that show nearly two-dimensional electronic properties. These superconductors are attracting interest because of the wide range of new phenomena that they exhibit, including the competition between various ground states, the influence of a magnetic field on a quasi-one-dimensional conductor, the quantization of the Hall effect in a three-dimensional material, the giant magnetoresistance effects related to the two-dimensional nature of the Fermi surface of some materials, and the coherent voltage oscillation of a spin-modulated ground state. Furthermore, there is reason to believe that organic conductors with high superconducting transition temperatures could be produced in the near future. The recent finding of superconductivity in "fullerene" doped with alkali metals supports this optimism.  相似文献   

20.
Insertion of a thin nonmagnetic copper Cu(001) layer between the tunnel barrier and the ferromagnetic electrode of a magnetic tunnel junction is shown to result in the oscillation of the tunnel magnetoresistance as a function of the Cu layer thickness. The effect is interpreted in terms of the formation of spin-polarized resonant tunneling. The amplitude of the oscillation is so large that even the sign of the tunnel magnetoresistance alternates. The oscillation period depends on the applied bias voltage, reflecting the energy band structure of Cu. The results are encouraging for the development of spin-dependent resonant tunneling devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号