首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This study examined a panel of 110 UK field isolates of feline calicivirus (FCV) for susceptibility to cross-neutralisation by a panel of eight antisera raised in cats infected with FCV strains F9, 255, FCVG1 and FCV431. The pairs of antisera raised against F9 or 255, neutralised 20 and 21 per cent or 37 and 56 per cent of field strains of virus respectively. In contrast, the pairs of antisera raised against the newer vaccine strains FCVG1 or FCV431 neutralised 29 and 70 per cent or 67 and 87 per cent of field strains respectively. Antisera raised against the two newer strains, namely FCVG1 and FCV431, neutralised a greater proportion of field strains of calicivirus than antisera raised against the older FCV vaccine strains F9 and 255.  相似文献   

2.
3.
Two visits, six weeks apart, were made to a cat rescue shelter and single oropharyngeal swabs were taken from all the compliant cats. Feline calicivirus was isolated from 14 of 45 swabs (31 per cent) taken on the first visit and 12 of 46 swabs (26 per cent) taken on the second visit. Nucleotide sequences were obtained for nine isolates from the first visit, six isolates from the second visit, and for the vaccine virus used in the cattery. Distance analysis showed that the majority of the isolates could be assigned to one of two groups. All the isolates obtained from cats sharing the same pen or isolates obtained from the same cat on successive visits, were less than 5 per cent distant, whereas most of the isolates from cats in different pens were more than 20 per cent distant. Phylogenetic analysis showed that at least seven distinct field isolates were present in the cattery. The only good evidence for virus transmission within the cattery was a case in which two viruses isolated from cats in different pens had sequences that were less than 5 per cent distant.  相似文献   

4.
Canine distemper (CD) is a highly contagious disease with a worldwide distribution. Genetic diversity in genes encoding the haemagglutinin (H) and fusion (F) virus envelope proteins have been implicated in the increasing incidence of CD. Unlike the H gene, little is known about the genetic variability of the F gene in this virus. In the present study sequence analysis of the complete coding region of the F protein from CD virus isolates from Taiwan were carried out. Phylogenetic analysis demonstrated that the majority of isolates were similar to those found in neighbouring China and Japan, but were genetically distinct from vaccine strains. Remarkable variations were found scattered throughout the pre-peptide region (residues 1–135). The sequence identity of this region between locally sourced strains and between these strains and vaccine strains was 89% and 64 to 67%, respectively. Analysis suggested a novel strain of distant genetic lineage was present in dogs in the geographically isolated city of Hualien.  相似文献   

5.
Isolation rates of feline herpesvirus (FHV) and feline calicivirus (FCV) from oropharyngeal swabs, taken from 6866 cats in 1980 to 1989 were studied retrospectively. FCV was isolated from 1364 (19.9 per cent) and FHV from 285 (4.2 per cent). The ratio of FCV:FHV isolations varied from 1.3:1 to 15:1 in individual years with an overall ratio of 4.8:1. Isolation of both viruses was fairly uniform for each year and there was no breed or sex disposition to either virus. Of 872 cats shedding FCV and 213 cats shedding FHV, of known age, 447 (51.3 per cent) with FCV and 140 (65.7 per cent) with FHV were under one year old, compared to only 35.3 per cent of the whole population sampled. For the years 1985 to 1989, more information was obtained about the cases. Of 4626 cats tested, 1180 (25.5 per cent) had acute upper respiratory tract disease (URTD) of which 348 (29.5 per cent) were shedding FCV and 162 (13.7 per cent) FHV. A further 597 had chronic URTD and of these, 102 (17.1 per cent) were shedding FCV and 18 (3 per cent) FHV. In 120 cases of suspected vaccine reaction/breakdown, FCV was isolated from 34 (28.3 per cent) and FHV from only two (1.7 per cent). FHV was not isolated from any of 412 cases presenting with chronic gingivitis/stomatitis alone; 181 (43.9 per cent) were shedding FCV and when cats with other signs in addition to chronic gingivitis were included, this proportion increased to 70.4 per cent.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Two groups of feline panleukopenia virus (FPV), feline calicivirus (FCV), and feline herpesvirus-1 (FHV-1) seronegative cats (five cats per group) were administered one of two modified live feline viral rhinotracheitis, calicivirus, and panleukopenia virus (FVRCP) vaccines and the serological responses to each agent were followed over 28 days. While all cats developed detectable FPV and FCV antibody titers; only two cats developed detectable FHV-1 antibody titers using the criteria described by the testing laboratory. For FPV and FHV-1, there were no differences in seroconversion rates between the cats that were administered the intranasal (IN) FVRCP vaccine and the cats that were administered the parenteral FVRCP vaccine on any day post-inoculation. For FCV, the cats that were administered the IN FVRCP vaccine were more likely to seroconvert on days 10 and 14 when compared to cats that were administered the parenteral FVRCP vaccine.  相似文献   

7.
Feline calicivirus (FCV) is a highly infectious pathogen in cats and widely distributed worldwide with high genetic variation. Full-length open reading frame 2 of 5 from recently isolated Korean FCV isolates were sequenced and compared with those of global isolates. The results of phylogenetic analysis supported dividing global FCV isolates into two genogroups (type I and II) and demonstrated the presence of genogroup II in Korea, indicating their geographic spread in East Asia. High sequence variations in region E of the FCV isolates emphasizes that a novel vaccine needs to be developed to induce protective immunity against various FCV strains.  相似文献   

8.
Feline caliciviruses (FCVs) are potential etiologic agents in feline idiopathic lower urinary tract disease (I-LUTD). By means of a modified virus isolation method, we examined urine obtained from 28 male and female cats with nonobstructive I-LUTD, 12 male cats with obstructive I-LUTD, and 18 clinically healthy male and female cats. All cats had been routinely vaccinated for FCV. Two FCVs were isolated; I (FCV-U1) from a female cat with nonobstructive I-LUTD, and another (FCV-U2) from a male cat with obstructive I-LUTD. To determine the genetic relationship of FCV-U1 and FCV-U2 to other FCVs. capsid protein gene RNA was reverse transcribed into cDNA, amplified, and sequenced. Multiple amino acid sequence alignments and phylogenetic trees were constructed for the entire capsid protein, hypervariable region E, and the more conserved (nonhypervariable) regions A, B, D, and F. When compared to 23 other FCV isolates with known biotypes, the overall amino acid sequence identity of the capsid protein of FCV-U1 and FCV-U2 ranged from 83 to 96%; identity of hypervariable regions C and E ranged from 58 to 85%. Phylogenetically, FCV-U1 clearly separated from other FCV strains in phenograms based on nonhypervariable regions. In contrast, FCV-U2 consistently segregated with the Urbana strain in all phenograms. Clustering of isolates by geographic origin was most apparent in phenograms based on nonhypervariable regions. No clustering of isolates by biotype was apparent in any phenograms. Our results indicate that FCV-UI and FCV-U2 are genetically distinct from other known vaccine and field strains of FCV.  相似文献   

9.
A serological survey of 6250 sera from cattle, sheep and goats in seven Caribbean and two South American countries showed that antibody to bluetongue virus was widely distributed in each species throughout the survey area. Overall prevalences of antibody were 70 per cent in cattle, 67 per cent in sheep and 76 per cent in goats as assessed by an immunodiffusion test. Within countries the percentage prevalences were Jamaica 77, St Kitts/Nevis 70, Antigua 76, St Lucia 82, Barbados 61, Grenada 88, Trinidad and Tobago 79, Guyana 52 and Surinam 84. No clinical cases of bluetongue have been confirmed in the area surveyed and there are no virus isolates available to indicate which serotype(s) of virus is/are causing the infection(s).  相似文献   

10.
We analysed genogroups of four feline calcivirus (FCV) isolates (FCV-S, H10, Ao198-1 and ML89) obtained from cats that experienced FCV infection after having been vaccinated against FCV. New PCR primer sets (8F/8R, Ao-S/Ao-A, cp-S/cp-A) were also designed, since the conventional Seal primer failed to amplify the target sequences in two samples. The genogroups of the four isolates as well as eight global and 17 domestic strains were determined by phylogenetic analysis of their amino acid sequences. One out of the four strains (25%) isolated in this study, H10, was grouped into genogroup I, along with the vaccine strains F9 and FCV-255. The other three isolates (75%) belonged to genogroup II. Thus, there were more isolates in genogroup II than in genogroup I. However, the antibody values of the four isolates against cat anti-F9 antisera were significantly decreased. There may be no relationship between the neutralizing antibody titre and genogroup. Amino acid sequence alignment of the four isolates showed that only a single amino acid in region C, which is involved in neutralization epitopes, was different in ML89 strain from that of F9. The other three strains, H10, Ao198-1 and FCV-B, shared the same amino acid sequence with F9. Alignment of amino acids for linear epitopes in the F9 strain, which are located at regions D and E, showed variations in 5' hypervariable region (HVR) of E, whereas D and conE had only synonymous substitutions i.e. no change in the amino acid sequence. This mutation in 5' HVR of region E suggested a vaccine breakdown, as the region is known to be essential for antigenicity. The genogroup II FCV is likely to be the cause of the FCV infection in this study, while the vaccine strains belong to genogroup I. Thus, the existing vaccine may need reevaluation for its effectiveness.  相似文献   

11.
Despite vaccination against Infectious bronchitis virus (IBV) with the Massachusetts type vaccine viruses H120 and H52 in the Netherlands, an increasing number of properly vaccinated flocks have suffered from the disease since 1978. In the years 1978-1982, the virus was isolated from 162 IBV suspected flocks. Cross-virus-neutralization tests showed that the majority (67 per cent) of these isolates belonged to serotypes other than the Massachusetts type, the Connecticut-, Florida-, Iowa 97-, Iowa 609- and JMK serotype. The majority of these Dutch isolates could be divided into 4 serogroups, called D207, D212, D3128 and D3896. Only a few isolates were not related to these serotypes. A survey of 328 flocks for antibody against these serotypes demonstrated that antibody against one or more of these novel serotypes were present in most of the flocks. Experiments demonstrated that vaccination with the H120 vaccine virus was not able to protect chickens against the adverse effects of a challenge with the novel serotypes.  相似文献   

12.
The prevalence of feline calicivirus (FCV), feline leukaemia virus (FeLV) and feline immunodeficiency virus (FIV) antibodies were assessed in 78 British and 18 North American household cats with chronic stomatitis and in appropriate controls. In British cats, FCV was significantly (P less than 0.005) more prevalent in both hospital (92 per cent) and general practice (79 per cent) cases compared to their controls (19 per cent in both cases). A similar difference in prevalence of FCV was noted in North American cats where 50 per cent of cases were positive compared to 0 per cent of controls (P less than 0.01). FeLV prevalence was low in all chronic stomatitis populations. A significantly higher prevalence of antibody to FIV was found in British hospital cases (81 per cent) compared with time-matched controls (16 per cent) (P less than 0.001): a similar rate was found in the general practice cases (75 per cent) for which no controls were available. In the North American sample, FIV antibody status was similar in cases (54 per cent positive) and their age, sex and breed matched controls (50 per cent). The possible role of FCV and FIV in the pathogenesis of feline chronic stomatitis is discussed.  相似文献   

13.
We have determined the first complete genome sequence and capsid gene sequences of feline calicivirus (FCV) isolates from the UK and Australia. These were compared with other previously published sequences. The viruses used in the comparisons were isolated between 1957 and 1995 from various geographical locations and obtained from cats showing a range of clinical signs. Despite these diverse origins, comparisons between all strains showed a similar degree of sequence variation within both ORF1 (non-structural polyprotein) and ORF2 (major capsid protein) (amino acid distances of 7.7-13.0% and 8.8-18.6%, respectively). In contrast, ORF3 (putative minor structural protein) sequences indicated a more heterogenous distribution of FCV relatedness (amino acid distances of 1.9-17.9%). Phylogenetic analysis suggested that, unlike some other caliciviruses, FCV isolates within the current data set fall into one diverse genogroup. Within this group, there was an overall lack of geographic or temporal clustering which may be related to the epidemiology of FCV infection in cats. Analysis of regions of variability in the genome has shown that, as well as the previously identified variable regions in ORF2, similar domains exist within ORFs 1 and 3 also, although to a lesser extent. In ORF1, these variable domains largely fall between the putative non-structural protein functional domains.  相似文献   

14.
Feline calicivirus (FCV) is characterised by a high degree of antigenic variation potentially compromising vaccine efficacy. Inclusion of several FCV strains or antigens in current vaccines could be a means to improve protection against antigenically distinct isolates. This study evaluated the synergy between two FCV strains (FCVG1 and FCV431) by comparing immunity induced by either strain with that provided by a combination of the two strains against an heterologous challenge with antigenically distant FCV strains (FCV393 and FCV220). Thirty-two SPF kittens were randomly allocated to four groups of eight cats in each group. Groups B, C and D cats were vaccinated once subcutaneously with strains FCVG1, FCV431, and FCVG1 + FCV431, respectively. Each kitten received a total dose of 10(3.4) CCID50 of FCV. Control group A was not immunised. On day 31, four cats from each group were challenged oronasally with FCV220 and four cats with FCV393. Following challenge, the cats were monitored for clinical signs, viral shedding and antibody responses. FCV220 and FCV393 induced severe clinical signs in control cats typical of FCV infection. Immunisation with both strains mixed together induced higher neutralizing antibody titres against FCV220 and FCV393 strains on average. Protection was observed in all groups, however combination of the two strains resulted in a better clinical protection and reduction of virus shedding after heterologous challenge. A moderate correlation was observed between neutralizing antibody titres at the time of challenge and protection against clinical signs. These results indicated that vaccines combining antigens from different FCV strains may induce a broader heterologous protection.  相似文献   

15.
Four types of commercially available feline calicivirus (FCV) vaccine were compared in terms of their efficacy on the basis of the ability of the sera of specific-pathogen-free cats immunized by two injections of each type of vaccine to neutralize FCV field isolates. Each vaccine immune serum neutralized relatively well strains F4, F9, and 255, which were FCV laboratory strains. As to 36 strains of field isolates, however, vaccines A, B, C, and D immune sera did not neutralize 18-20 of the strains (50.0%-55.6%), 19-22 of the strains (52.8%-61.1%), 22-25 of the strains (61.1%-69.4%), and 8-16 of the strains (22.2%-44.4%), respectively. These results indicate that there is much difference in neutralizing antigenicity between the existing vaccine strains and the FCV strains that are prevalent in Japan, suggesting the need for improvement of FCV vaccines.  相似文献   

16.
Although prevention of feline calcivirus (FCV) infection by vaccination has been attempted, and isolation of FCV, development of the disease, and a few fatal cases in vaccinated cats have been reported. Fifteen FCV strains isolated from cats that had been vaccinated with commercially available FCV vaccines (F9, FCV-255, and FC-7) were genogrouped. Molecular analysis of viral genomes involved the construction of a phylogenetic tree of capsid genes using the NJ method. Cat anti-F9 serum and rabbit anti-FCV-255 serum were used for virus neutralization tests. Molecular phylogenetic analysis of the amino acid sequences of 15 virus isolates and those of the previously published and GenBank-deposited 9 global and 14 Japanese strains showed that 8 (53%) of the 15 virus isolates as well as the vaccine strains F9 and FCV-255 belonged to genogroup I (GAI), and 7 (47%) belonged to genogroup II (GAII). Of the 8 GAI strains, 2 were isolated from cats that had been vaccinated with an F9 strain live vaccine, 5 from cats vaccinated with an FCV-255-derived vaccine, and 1 from a cat vaccinated with an FC-7-derived vaccine. Of the 7 GAII strains, 5 were isolated from cats that had been vaccinated with the F9 strain live vaccine, 1 from a cat vaccinated with the FCV-255-derived vaccine, and 1 from a cat vaccinated with the FC-7-derived vaccine. These results indicate that more vaccine breakdown strains isolated from the cats vaccinated with the F9 strain-derived vaccine belong to GAII than to GAI, whereas more vaccine breakdown strains isolated from the cats vaccinated with the FCV-255 strain-derived vaccine belong to GAI than to GAII, and that when the FC-7 strain-derived vaccine is used, the vaccine breakdown strains belong almost equally to GAI and GAII. Thus, the genogroups of virus isolates varied with the vaccine strain used (p < 0.05). On the other hand, the neutralizing titres of feline anti-F9 serum and rabbit anti-FCV-255 serum against the 15 isolates were very low, showing no relationships between neutralizing antibody titres and genogroups. The DNA sequence identities between the virus isolates and the vaccine strains were low, at 70.6–82.9%, and no strains were found to have sequences derived from the vaccine strains. Alignment of amino acid sequences showed that the GAI or GAII virus isolates from the F9-vaccinated cats differed at position 428 of the 5’ hypervariable region (HVR) of capsid region of the F9 strain, whereas those from the FCV-255-vaccinated cats differed at positions 438, 453, and 460 of the 5’HVR of capsid region E of the F9 strain. We speculate that these differences influence genogrouping. The amino acid changes within the F9 linear epitopes common to G A I and G A II were noted at positions 450, 451, 457 of 5’HVR of the capsid region E in the isolates from F9-derived vaccine-treated cats, and 449, 450, and 451 of 5’HVR of capsid region E in the isolates from FCV-255-derived vaccine-treated cats, suggesting that these amino acid changes are involved in escapes. These results suggest that alternate vaccination with the F9 and FCV-255 strains or the use of a polyvalent vaccine containing GAII strains serves to inhibit development.  相似文献   

17.
Two groups of feline panleukopenia (FPV), feline calicivirus (FCV) and feline herpesvirus 1 (FHV-1) seronegative kittens (six cats per group) were administered one of two feline viral rhinotracheitis, calcivirus and panleukopenia (FVRCP) vaccines subcutaneously (one inactivated and one modified live) and the serological responses to each agent were followed over 49 days (days 0, 2, 5, 7, 10, 14, 21, 28, 35, 42, 49). While the kittens administered the modified live FPV vaccine were more likely to seroconvert on day 7 after the first inoculation than kittens administered the inactivated vaccine, all kittens had seroconverted by day 14. In contrast, FHV-1 serological responses were more rapid following administration of the inactivated FVRCP vaccine when compared with the modified live FVRCP vaccine. There were no statistical differences between the serological response rates between the two FVRCP vaccines in regard to FCV.  相似文献   

18.
19.
20.
The ability to discriminate between various classical swine fever virus (CSFV) strains and isolates is a prerequisite for following the spread of the virus after an outbreak. To determine the relatedness between Russian CSFV isolates from different geographical regions, three fragments of the viral genome (5' NTR, the variable region of the E2 gene and a fragment of the NS5B gene) were sequenced and used for genetic typing. Thirty-one field isolates were obtained from CSF outbreaks which occurred between 1994 and 1999. In addition, three attenuated strains were included in the study, namely the LK and CS vaccine strains, and the moderately virulent 238H isolate. The vaccine strains have been used in Russia for more than 30 years. Our results showed that all field isolates are in subgroup 1.1 together with Alfort 187 and with the highly virulent strain Shimen. In contrast, the CS and LK vaccine strains belong to subgroup 1.2. While there is no evidence for the reversion of the two vaccine strains to wild type, it is feasible that the highly virulent Shimen strain, which has been used as a challenge strain for many years, contributed to field strain generation. The Russian field isolates from the 1990s can be distinguished from the CSF virus isolates which occurred in the EU Member States in the same decade, as here all outbreaks were caused by CSF viruses belonging to subgroup 2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号