首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Synaptic rearrangement during postembryonic development in the cricket   总被引:1,自引:0,他引:1  
Synaptic rearrangement during development is a characteristic of the vertebrate nervous system and was thought to distinguish vertebrates from the invertebrates. However, examination of the wind-sensitive cercal sensory system of the cricket demonstrates that some identified synaptic connections systematically decrease in strength as an animal matures, while others increase in strength over the same period. Moreover, a single sensory neuron could increase the strength of its synaptic connection with one interneuron while decreasing the strength of its connection with another interneuron. Thus, rather than being a hallmark of the vertebrate nervous system, synaptic rearrangement is probably characteristic of the development of many if not all nervous systems.  相似文献   

2.
Wan J  Poo M 《Science (New York, N.Y.)》1999,285(5434):1725-1728
Electrical activity plays a critical role in shaping the structure and function of synaptic connections in the nervous system. In Xenopus nerve-muscle cultures, a brief burst of action potentials in the presynaptic neuron induced a persistent potentiation of neuromuscular synapses that exhibit immature synaptic functions. Induction of potentiation required an elevation of postsynaptic Ca2+ and expression of potentiation appeared to involve an increased probability of transmitter secretion from the presynaptic nerve terminal. Thus, activity-dependent persistent synaptic enhancement may reflect properties characteristic of immature synaptic connections, and bursting activity in developing spinal neurons may promote functional maturation of the neuromuscular synapse.  相似文献   

3.
The functional architecture of synaptic circuits is determined to a crucial degree by the patterns of electrical activity that occur during development. Studies with an in vitro preparation of mammalian sensory neurons projecting to ventral spinal cord neurons slow that electrical activity induces competitive processes that regulate synaptic efficacy so as to favor activated pathways over inactive convergent pathways. At the same time, electrical activity initiates noncompetitive processes that increase the number of axonal connections between these sensory and spinal cord neurons.  相似文献   

4.
Class I major histocompatibility complex (class I MHC) molecules, known to be important for immune responses to antigen, are expressed also by neurons that undergo activity-dependent, long-term structural and synaptic modifications. Here, we show that in mice genetically deficient for cell surface class I MHC or for a class I MHC receptor component, CD3zeta, refinement of connections between retina and central targets during development is incomplete. In the hippocampus of adult mutants, N-methyl-D-aspartate receptor-dependent long-term potentiation (LTP) is enhanced, and long-term depression (LTD) is absent. Specific class I MHC messenger RNAs are expressed by distinct mosaics of neurons, reflecting a potential for diverse neuronal functions. These results demonstrate an important role for these molecules in the activity-dependent remodeling and plasticity of connections in the developing and mature mammalian central nervous system (CNS).  相似文献   

5.
In order to identify genes specific for the sensory neurons of Aplysia, a miniaturized differential screening method based on the polymerase chain reaction and applicable to small amounts of tissue was used. One messenger RNA was isolated that is expressed in every mechanoreceptor sensory cluster of the Aplysia central nervous system. This messenger RNA encodes a peptide that seems to function as an inhibitory cotransmitter. The peptide selectively inhibits certain postsynaptic cells but not others and thereby allows the sensory neurons to achieve target-specific synaptic actions.  相似文献   

6.
Two-way communication between neurons and nonneural cells called glia is essential for axonal conduction, synaptic transmission, and information processing and thus is required for normal functioning of the nervous system during development and throughout adult life. The signals between neurons and glia include ion fluxes, neurotransmitters, cell adhesion molecules, and specialized signaling molecules released from synaptic and nonsynaptic regions of the neuron. In contrast to the serial flow of information along chains of neurons, glia communicate with other glial cells through intracellular waves of calcium and via intercellular diffusion of chemical messengers. By releasing neurotransmitters and other extracellular signaling molecules, glia can affect neuronal excitability and synaptic transmission and perhaps coordinate activity across networks of neurons.  相似文献   

7.
Network motifs: simple building blocks of complex networks   总被引:4,自引:0,他引:4  
Complex networks are studied across many fields of science. To uncover their structural design principles, we defined "network motifs," patterns of interconnections occurring in complex networks at numbers that are significantly higher than those in randomized networks. We found such motifs in networks from biochemistry, neurobiology, ecology, and engineering. The motifs shared by ecological food webs were distinct from the motifs shared by the genetic networks of Escherichia coli and Saccharomyces cerevisiae or from those found in the World Wide Web. Similar motifs were found in networks that perform information processing, even though they describe elements as different as biomolecules within a cell and synaptic connections between neurons in Caenorhabditis elegans. Motifs may thus define universal classes of networks. This approach may uncover the basic building blocks of most networks.  相似文献   

8.
Actin-based plasticity in dendritic spines   总被引:1,自引:0,他引:1  
Matus A 《Science (New York, N.Y.)》2000,290(5492):754-758
The central nervous system functions primarily to convert patterns of activity in sensory receptors into patterns of muscle activity that constitute appropriate behavior. At the anatomical level this requires two complementary processes: a set of genetically encoded rules for building the basic network of connections, and a mechanism for subsequently fine tuning these connections on the basis of experience. Identifying the locus and mechanism of these structural changes has long been among neurobiology's major objectives. Evidence has accumulated implicating a particular class of contacts, excitatory synapses made onto dendritic spines, as the sites where connective plasticity occurs. New developments in light microscopy allow changes in spine morphology to be directly visualized in living neurons and suggest that a common mechanism, based on dynamic actin filaments, is involved in both the formation of dendritic spines during development and their structural plasticity at mature synapses.  相似文献   

9.
This article reviews the electroresponsive properties of single neurons in the mammalian central nervous system (CNS). In some of these cells the ionic conductances responsible for their excitability also endow them with autorhythmic electrical oscillatory properties. Chemical or electrical synaptic contacts between these neurons often result in network oscillations. In such networks, autorhythmic neurons may act as true oscillators (as pacemakers) or as resonators (responding preferentially to certain firing frequencies). Oscillations and resonance in the CNS are proposed to have diverse functional roles, such as (i) determining global functional states (for example, sleep-wakefulness or attention), (ii) timing in motor coordination, and (iii) specifying connectivity during development. Also, oscillation, especially in the thalamo-cortical circuits, may be related to certain neurological and psychiatric disorders. This review proposes that the autorhythmic electrical properties of central neurons and their connectivity form the basis for an intrinsic functional coordinate system that provides internal context to sensory input.  相似文献   

10.
In 4- to 5-year-old sea lamprey larvae that had recovered from complete transection of the spinal cord, pairs of giant interneurons on opposite sides of the scar were impaled with microelectrodes. In 4 of 30 pairs, stimulation of the caudal cell elicited a monosynaptic electrochemical excitatory postsynaptic potential in the rostral cell. Fifty percent of such pairs were synaptically linked in control lampreys without transections. These results show regeneration of functional synaptic connections between individual neurons in a vertebrate central nervous system.  相似文献   

11.
The mechanisms underlying structural changes that accompany learning and memory have been difficult to investigate in the intact nervous system. In order to make these changes more accessible for experimental analysis, dissociated cell culture and low-light-level video microscopy were used to examine Aplysia sensory neurons in the presence or absence of their target cells. Repeated applications of serotonin, a facilitating transmitter important in behavioral dishabituation and sensitization, produced growth of the sensory neurons that paralleled the long-term enhancement of synaptic strength. This growth required the presence of the postsynaptic motor neuron. Thus, both the structural changes and the synaptic facilitation of Aplysia sensorimotor synapses accompanying long-term behavioral sensitization can be produced in vitro by applying a single facilitating transmitter repeatedly. These structural changes depend on an interaction of the presynaptic neuron with an appropriate postsynaptic target.  相似文献   

12.
Initiation and performance of the swimming movement in the leech (Hirudo medicinalis) are controlled by neurons organized at at least four functional levels-sensory neurons, gating neurons, oscillator neurons, and motor neurons. A paired neuron, designated as Trl, in the subesophageal ganglion of the leech has now been shown to define a fifth level, interposed between sensory and gating neurons. Cell Trl is activated by pressure and nociceptive mechanosensory neurons, which mediate bodywall stimulus-evoked swimming activity in intact leeches. In the isolated leech nervous system, brief stimulation of cell Trl elicits sustained activation of the gating neurons and triggers the onset of swimmning activity. The synaptic interactions between all five levels of control are direct. Discovery of the Trl cells thus completes the identification of a synaptic pathway by which mechanosensory stimulation leads to the swimming movements of the leech.  相似文献   

13.
A change in synaptic strength arising from the activation of two neuronal pathways at approximately the same time is a form of associative plasticity and may underlie classical or Pavlovian conditioning. A cellular analog of a classical conditioning protocol produces short-term associative plasticity at the connections between sensory and motor neurons in Aplysia. A similar training protocol produced long-term (24-hour) enhancement of excitatory postsynaptic potentials (EPSPs). EPSPs produced by sensory neurons in which activity was paired with a reinforcing stimulus were significantly larger than unpaired controls 24 hours after training. Thus, associative plasticity at the sensory to motor neuron connection can occur in a long-term form in addition to the short-term form. In this system, it should be possible to analyze the molecular mechanisms underlying long-term associative plasticity and classical conditioning.  相似文献   

14.
Activation of the N-methyl-D-aspartate (NMDA) subclass of glutamate receptors is a critical step in the selection of appropriate synaptic connections in the developing visual systems of cat and frog. Activity-dependent development of mammalian motor neurons was shown to be similarly mediated by activation of the NMDA receptor. The expression of the Cat-301 proteoglycan on motor neurons was developmentally regulated and could be specifically inhibited by blockade of the NMDA receptor at the spinal segmental level. In the adult, Cat-301 immunoreactivity on motor neurons was not diminished by NMDA receptor blockade. The NMDA receptor may regulate the expression of a class of neuronal proteins (of which Cat-301 is one example) that underlie the morphological and physiological features of activity-dependent development.  相似文献   

15.
Smell is an ancient sensory system present in organisms from bacteria to humans. In the nematode Caenorhabditis elegans, gustatory and olfactory neurons regulate aging and longevity. Using the fruit fly, Drosophila melanogaster, we showed that exposure to nutrient-derived odorants can modulate life span and partially reverse the longevity-extending effects of dietary restriction. Furthermore, mutation of odorant receptor Or83b resulted in severe olfactory defects, altered adult metabolism, enhanced stress resistance, and extended life span. Our findings indicate that olfaction affects adult physiology and aging in Drosophila, possibly through the perceived availability of nutritional resources, and that olfactory regulation of life span is evolutionarily conserved.  相似文献   

16.
The unfolded protein response (UPR), which is activated when unfolded or misfolded proteins accumulate in the endoplasmic reticulum, has been implicated in the normal physiology of immune defense and in several human diseases, including diabetes, cancer, neurodegenerative disease, and inflammatory disease. In this study, we found that the nervous system controlled the activity of a noncanonical UPR pathway required for innate immunity in Caenorhabditis elegans. OCTR-1, a putative octopamine G protein-coupled catecholamine receptor (GPCR, G protein-coupled receptor), functioned in sensory neurons designated ASH and ASI to actively suppress innate immune responses by down-regulating the expression of noncanonical UPR genes pqn/abu in nonneuronal tissues. Our findings suggest a molecular mechanism by which the nervous system may sense inflammatory responses and respond by controlling stress-response pathways at the organismal level.  相似文献   

17.
Behavioral acts elicited by stimulation of single, identifiable brain cells   总被引:4,自引:0,他引:4  
By stimulation of and recording from all of the nerve trunks and from over 50 of the large nerve cell bodies in the isolated brain of the nudibranch Tritonia gilberti a map of the axonal paths and synaptic connections has been constructed. The nervous correlates of sensory and motor activities can be monitored in single cells of the intact animal. Similarly, discrete responses in local muscles of the body wall and complex behavioral sequences such as turning and swimming are triggered by stimulation of single identifiable units.  相似文献   

18.
In developing nervous systems, many peripheral and central pathways are established by early arising populations of pioneer neurons. The growth cones of these pioneer neurons can migrate while embryonic distances are short and while intervening tissue is relatively uncomplicated. Are these pioneers necessary? In grasshopper embryos, a pair of pioneer neurons arise at the tips of limb buds and extend axons through the limb to the central nervous system. Growth cones of later arising sensory neurons migrate along the pioneer axons. After ingrowth of sensory axons, the pioneer neurons die. If the pioneer neurons are prevented from differentiating by heat shock, then the sensory growth cones that would have migrated along them are blocked and fail to reach the central nervous system. Thus, the pioneer axons are necessary for successful migration of these sensory growth cones. By crossing a segment boundary early in embryogenesis, the pioneers circumvent an incompatibility between differentiated segment boundary cells and growth cone migration. Pioneer neurons may resolve similar problems in many systems.  相似文献   

19.
An insulinlike signaling pathway controls Caenorhabditis elegans aging, metabolism, and development. Mutations in the daf-2 insulin receptor-like gene or the downstream age-1 phosphoinositide 3-kinase gene extend adult life-span by two- to threefold. To identify tissues where this pathway regulates aging and metabolism, we restored daf-2 pathway signaling to only neurons, muscle, or intestine. Insulinlike signaling in neurons alone was sufficient to specify wild-type life-span, but muscle or intestinal signaling was not. However, restoring daf-2 pathway signaling to muscle rescued metabolic defects, thus decoupling regulation of life-span and metabolism. These findings point to the nervous system as a central regulator of animal longevity.  相似文献   

20.
Luo M  Fee MS  Katz LC 《Science (New York, N.Y.)》2003,299(5610):1196-1201
Many mammalian species rely on pheromones-semiochemicals produced by other members of the same species-to communicate social status and reproductive readiness. To assess how the central nervous system integrates the complex repertoire of pheromones, we recorded from single neurons in the accessory olfactory bulb, a nucleus that processes pheromonal signals, of male mice engaged in natural behaviors. Neuronal firing was robustly modulated by physical contact with male and female conspecifics, with individual neurons activated selectively by specific combinations of the sex and strain of conspecifics. We infer that mammals encode social and reproductive information by integrating vomeronasal sensory activity specific to sex and genetic makeup.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号