首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
We report the cancellation of the soliton self-frequency shift in a silica-core photonic crystal fiber with a negative dispersion slope. Numerical and experimental results show that stabilization of the soliton wavelength is accompanied by exponential amplification of the red-shifted Cherenkov radiation emitted by the soliton. The spectral recoil from the radiation acts on the soliton to compensate for the Raman frequency shift. This phenomenon may find applications in the development of a family of optical parametric amplifiers.  相似文献   

2.
Photonic band gap guidance in optical fibers   总被引:3,自引:0,他引:3  
A fundamentally different type of optical waveguide structure is demonstrated, in which light is confined to the vicinity of a low-index region by a two-dimensional photonic band gap crystal. The waveguide consists of an extra air hole in an otherwise regular honeycomb pattern of holes running down the length of a fine silica glass fiber. Optical fibers based on this waveguide mechanism support guided modes with extraordinary properties.  相似文献   

3.
一维类梳状波导是由在一维主链上周期性接枝而形成的光子晶体,利用界面响应理论可导出波导的色散关系,据此分别讨论了这种光子晶体的带隙宽度与波导接枝参数之间的关系,接枝的介电常数和长度的变化将会使对带隙的宽度发生改变,通过数值计算发现,对于不同类型的接枝,参数变化引起的带隙宽度的变化趋势基本相同,而不同的参数产生的影响则有很大差别。特别的,当参数变化至某些特定点时带隙将会消失,这和其他类型的光子晶体完全不同,带隙的消失不是因为缺陷而仅仅是因为参数改变的影响。  相似文献   

4.
We demonstrate polarization mode selection in a two-dimensional (2D) photonic crystal laser by controlling the geometry of the unit cell structure. As the band diagram of the square-lattice photonic crystal is influenced by the unit cell structure, calculations reveal that changing the structure from a circular to an elliptical geometry should result in a strong modification of the electromagnetic field distributions at the band edges. Such a structural modification is expected to provide a mechanism for controlling the polarization modes of the emitted light. A square-lattice photonic crystal with the elliptical unit cell structure has been fabricated and integrated with a gain media. The observed coherent 2D lasing action with a single wavelength and controlled polarization is in good agreement with the predicted behavior.  相似文献   

5.
We combine photonic and electronic band structure engineering to create a surface-emitting quantum cascade microcavity laser. A high-index contrast two-dimensional photonic crystal is used to form a micro-resonator that simultaneously provides feedback for laser action and diffracts light vertically from the surface of the semiconductor surface. A top metallic contact allows electrical current injection and provides vertical optical confinement through a bound surface plasmon wave. The miniaturization and tailorable emission properties of this design are potentially important for sensing applications, while electrical pumping can allow new studies of photonic crystal and surface plasmon structures in nonlinear and near-field optics.  相似文献   

6.
The measured dispersion of a low-loss, hollow-core photonic band-gap fiber is anomalous throughout most of the transmission band, and its variation with wavelength is large compared with that of a conventional step-index fiber. For an air-filled fiber, femtosecond self-frequency--shifted fundamental solitons with peak powers greater than 2megawatts can be supported. For Xe-filled fibers, nonfrequency-shifted temporal solitons with peak powers greater than 5.5 megawatts can be generated, representing an increase in the power that can be propagated in an optical fiber of two orders of magnitude. The results demonstrate a unique capability to deliver high-power pulses in a single spatial mode over distances exceeding 200 meters.  相似文献   

7.
Inhibiting spontaneous light emission and redistributing the energy into useful forms are desirable objectives for advances in various fields, including photonics, illuminations, displays, solar cells, and even quantum-information systems. We demonstrate both the "inhibition" and "redistribution" of spontaneous light emission by using two-dimensional (2D) photonic crystals, in which the refractive index is changed two-dimensionally. The overall spontaneous emission rate is found to be reduced by a factor of 5 as a result of the 2D photonic bandgap effect. Simultaneously, the light energy is redistributed from the 2D plane to the direction normal to the photonic crystal.  相似文献   

8.
We have detected a spin-dependent displacement perpendicular to the refractive index gradient for photons passing through an air-glass interface. The effect is the photonic version of the spin Hall effect in electronic systems, indicating the universality of the effect for particles of different nature. Treating the effect as a weak measurement of the spin projection of the photons, we used a preselection and postselection technique on the spin state to enhance the original displacement by nearly four orders of magnitude, attaining sensitivity to displacements of approximately 1 angstrom. The spin Hall effect can be used for manipulating photonic angular momentum states, and the measurement technique holds promise for precision metrology.  相似文献   

9.
基于耦合非线性薛定谔方程,研究了双折射光子晶体光纤中单个光脉冲的非线性传输.当输入脉冲位于反常色散区且偏振角偏离光纤快轴0°和90°时可观察到脉冲俘获现象,脉冲俘获效率在偏振角为45°时最小,当脉冲的入射角度互余时,小角度的脉冲俘获效率更高.此外,增加输入脉冲功率俘获脉冲能够获得更大的频谱偏移.  相似文献   

10.
Three-dimensional (3D) photonic crystals containing artificial point defects have been fabricated to emit light at optical communications wavelengths. They were constructed by stacking 0.7-micrometer-period gallium arsenide striped layers, resulting in a 3D "woodpile" photonic crystal. Indium-gallium arsenide-phosphide quantum-well layers emitting at a wavelength of 1.55 micrometers were incorporated in the center of the crystal. Samples having up to nine stacked layers were constructed, and artificial point-defect cavities of different sizes were formed in the light-emitting layer. Light emission was suppressed in the photonic crystal regions, whereas cavity modes were successfully observed at the point defects and were size dependent.  相似文献   

11.
Photonic crystals behave toward light waves as semiconductors do toward electron waves. Yablonovitch discusses a report by Noda et al., who have made a photonic crystal with unprecedented performance, using GaAs, the best material for integration into optoelectronic devices. According to Yablonovitch, the work thus represents a significant step toward photonic integrated circuits.  相似文献   

12.
Recently developed, high-efficiency, light-emitting diodes use two-dimensional photonic crystals to enhance the extraction of otherwise internally trapped light and multilayer reflectors to control the direction of light emission. This work describes the characterization of a naturally evolved light-extraction system on the wing scales of a small group of Papilio butterflies. The efficient extraction of fluorescence from these scales is facilitated by a two-dimensional photonic crystal slab that uses a multilayer to help control emission direction. Its light-extraction function is analogous to that of the light-emitting diode.  相似文献   

13.
The routing and interconnection of optical signals through narrow channels and around sharp corners are important for large-scale all-optical circuit applications. A recent computational result suggests that photonic crystals may offer a novel way of achieving this goal by providing a mechanism for guiding light that is fundamentally different from traditional index guiding. Waveguiding in a photonic crystal and near 100 percent transmission of electromagnetic waves around sharp 90 degree corners were observed experimentally. Bending radii were made smaller than one wavelength.  相似文献   

14.
Toader O  John S 《Science (New York, N.Y.)》2001,292(5519):1133-1135
We present a blueprint for a three-dimensional photonic band gap (PBG) material that is amenable to large-scale microfabrication on the optical scale using glancing angle deposition methods. The proposed chiral crystal consists of square spiral posts on a tetragonal lattice. In the case of silicon posts in air (direct structure), the full PBG can be as large as 15% of the gap center frequency, whereas for air posts in a silicon background (inverted structure) the maximum PBG is 24% of the center frequency. This PBG occurs between the fourth and fifth bands of the photon dispersion relation and is very robust to variations (disorder) in the geometrical parameters of the crystal.  相似文献   

15.
We experimentally demonstrate emission of two quantum-mechanically correlated light pulses with a time delay that is coherently controlled via temporal storage of photonic states in an ensemble of rubidium atoms. The experiment is based on Raman scattering, which produces correlated pairs of spin-flipped atoms and photons, followed by coherent conversion of the atomic states into a different photon beam after a controllable delay. This resonant nonlinear optical process is a promising technique for potential applications in quantum communication.  相似文献   

16.
推导出了由左右手材料构成的双层结构的转移矩阵,计算了由N个该双层结构周期性排列所形成的一雏有限长度光子晶体沿其轴线方向的态密度.计算表明:在一定条件下,禁带中出现了非寻常的态密度.这些禁带中的态密度是由左右手材料构成的一维光子晶体所特有的,它们可用于制造完全不同于常规滤波器的、频带狭窄的新型滤波器.  相似文献   

17.
Ultrabroad coherent comb-like optical spectra spanning several octaves are a chief ingredient in the emerging field of attoscience. We demonstrate generation and guidance of a three-octave spectral comb, spanning wavelengths from 325 to 2300 nanometers, in a hydrogen-filled hollow-core photonic crystal fiber. The waveguidance results not from a photonic band gap but from the inhibited coupling between the core and cladding modes. The spectrum consists of up to 45 high-order Stokes and anti-Stokes lines and is generated by driving the confined gas with a single, moderately powerful (10-kilowatt) infrared laser, producing 12-nanosecond-duration pulses. This represents a reduction by six orders of magnitude in the required laser powers over previous equivalent techniques and opens up a robust and much simplified route to synthesizing attosecond pulses.  相似文献   

18.
We report on stimulated Raman scattering in an approximately 1-meter-long hollow-core photonic crystal fiber filled with hydrogen gas under pressure. Light was guided and confined in the 15-micrometer-diameter hollow core by a two-dimensional photonic bandgap. Using a pulsed laser source (pulse duration, 6 nanoseconds; wavelength, 532 nanometers), the threshold for Stokes (longer wavelength) generation was observed at pulse energies as low as 800 +/- 200 nanojoules, followed by a coherent anti-Stokes (shorter wavelength) generation threshold at 3.4 +/- 0.7 microjoules. The pump-to-Stokes conversion efficiency was 30 +/- 3% at a pulse energy of only 4.5 microjoules. These energies are almost two orders of magnitude lower than any other reported energy, moving gas-based nonlinear optics to previously inaccessible parameter regimes of high intensity and long interaction length.  相似文献   

19.
考虑腔模与Mollow峰的中心峰共振的情况,通过解析稳态方程,讨论了处于非线性光子晶体微腔中的二能级原子在外加相干场的驱动下腔场平均光子数的分布情况。研究结果表明,当光子晶体的态密度很大时,腔场的平均光子数随着驱动场拉比频率的增加而增加,最终达到饱和。  相似文献   

20.
用传输矩阵法研究对称结构一维三元光子晶体(ABC)n(CBA)n的透射谱及内部电场分布,结果发现:随着n的增加,出现的单条透射峰越加锋锐,光子晶体内部局域场越强;当增加介质层A或C的折射率时,透射峰向长波方向移动,且随着nA的增加,光子晶体内部局域场逐渐减弱,而随着nC的增加,光子晶体内部局域场则逐渐增强.这些传输特性可为光子晶体设计和制造新型光学器件提供参考.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号