首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 218 毫秒
1.
超高产栽培条件下冬小麦对磷的吸收、积累和分配   总被引:7,自引:3,他引:4  
为明确超高产栽培条件下(9000 kg/hm2)冬小麦的磷素营养规律,为合理施肥提供研究依据,于20042006年冬小麦生长期间,通过田间取样,分器官测定磷素含量,研究了超高产冬小麦对磷的吸收、积累和分配特点。结果表明:在产量水平为9000 kg/hm2左右的条件下,不同品种各器官中的含磷量及全生育期中磷的总积累量存在一定差异,但一般不显著,显示出不同品种磷素营养特点的共性特征。地上部不同器官的含磷量(P2O5,下同)为0.25%~2.32%(干重)。不同生育时期含磷量最高的器官随生育进程逐渐更替,生育早期为叶鞘,中期为茎秆和穗,后期为籽粒。不同品种小麦各器官对磷的积累量,生育前期一般以叶片中最高,生育后期以籽粒中最高。小麦吸收的磷在孕穗期前主要分配在叶片中,多数品种在50%以上。成熟期磷在籽粒中的分配率最高,各品种均达到60%以上。在本研究的超高产栽培条件和产量水平下,冬小麦全生育期地上部器官中磷的最高积累量为110.8~151.4 kg/hm2,每生产100 kg籽粒吸收磷素1.25~1.66 kg。各品种对磷吸收量最高的阶段,一般都在起身到开花期之间,其次是在冬前的苗期。这表明,冬前和起身到开花期是冬小麦吸收磷的关键时期。根据上述磷的吸收积累特点,在确定施肥方案时,磷肥应以底肥为主,以促进小麦生长和对磷的吸收。  相似文献   

2.
超高产冬小麦对氮素的吸收、积累和分配   总被引:3,自引:3,他引:0  
为明确超高产(9000 kg/hm2左右)栽培条件下冬小麦的氮素营养特点,于2004~2005年、2005~2006年2个小麦生长季主要生育时期,取样分析小麦各器官氮的含量,总结出超高产冬小麦氮素的吸收、积累和分配特点。结果表明, 小麦全生育期各器官的氮含量为0.22%~3.55%(干重)。生育前期叶片中氮的含量和积累量最高,生育后期籽粒中氮的含量和积累量最高。小麦生育期间氮的总积累量为232.48~285.18 kg/hm2,每生产100 kg籽粒吸收氮2.63~3.13 kg。小麦吸收的氮孕穗期前主要分配在叶片中,一般都在50%以上, 成熟期氮在籽粒中的分配率最高,各品种均在80%以上。成熟期籽粒中积累的氮68.02%~73.31% 来自营养器官中氮的再分配。出苗到起身期、拔节到孕穗期、开花到成熟期都是小麦氮素吸收的重要阶段。根据小麦的氮素吸收积累特点,河北平原冬小麦实现9000 kg/hm2的超高产,需要土壤全氮不低于0.75 g/kg,秸秆全量还田后施N 260 kg/hm2左右。  相似文献   

3.
高产冬小麦的硼素吸收、积累和分配   总被引:2,自引:0,他引:2  
2005~2006年冬小麦生长期间,通过大田取样研究了高产冬小麦(9000 kg/hm2左右)硼素吸收、积累和分配特点。结果表明,小麦地上部不同器官中硼的含量为1.15~9.56 mg/kg(干重),表现为叶片穗部叶鞘茎秆子粒。叶片和叶鞘中硼的含量从越冬期到拔节期增加,拔节到开花期下降,开花期到成熟期有较大幅度的提高,并在成熟期与其他器官同时达到高峰。各生育时期不同器官硼的积累量均以叶片最高,孕穗期前叶片中硼的积累量逐渐增加,孕穗到成熟期逐渐降低。其他器官及全株硼的积累量基本上随生育进程逐渐增加,小麦植株硼的累吸收百分率,在越冬前、起身期、拔节期、孕穗期、开花期和成熟期依次达到了全生育期的5%、10%、30%、40%、50%左右和100%,即全生育期硼的吸收强度以生育后期(开花至成熟)最高,生育中期(起身至开花)次之,生育前期(出苗至起身)最低。小麦地上部器官一生对硼的总积累量为59.72~78.83 g/hm2,从冬前到拔节期主要分布在叶片和叶鞘中,尤其是在叶片中的分配占绝对优势。孕穗期开始硼在叶片中的分配比例下降,但全生育期硼在叶片中的分配比例始终最高,这可能有利于保持生育中后期叶片的光合能力,为实现较高的子粒产量提供物质生产基础。  相似文献   

4.
超高产栽培条件下冬小麦对锰的吸收、积累和分配   总被引:1,自引:0,他引:1  
20042~006年冬小麦生长期间,通过田间取样研究了超高产(≥9000 kg/hm2)栽培条件下冬小麦对锰的吸收、积累和分配特点。结果表明,地上部不同器官的含锰量为11.51~37.7 mg/kg(干重)。叶片的含锰量在生育期间始终最高,开花后穗部和子粒的含锰量也较高。小麦各器官对锰的积累量,生育前期以叶片中最高,生育后期以子粒最高。各品种全株的锰积累量均随生育进程而增加,在开花后10 d到成熟期达到最大值865.51~350.0 g/hm2。冬前、开花期和成熟期对锰的累进吸收百分率分别约为12%、80%和100%。小麦吸收的锰在孕穗期前主要分配在叶片中,达50%以上;成熟期锰在整个穗部(颖壳和子粒)的分配达50%以上。全生育期小麦对锰的阶段吸收量和日吸收量均为双峰曲线,第一个峰在冬前,第二个峰在起身到开花期。说明冬前和生育中期是超高产冬小麦吸收锰的关键阶段,应通过播种前浸、拌种与生育中期叶面喷施相结合,保证关键吸收阶段充足的锰供应。  相似文献   

5.
施锌对小麦开花后氮、磷、钾、锌积累和运转的影响   总被引:25,自引:7,他引:25  
为明确大田条件下施锌对小麦地上部器官氮、磷、钾、锌的积累量和转移量的影响,2001~2002年开展了田间试验。试验以专用强筋小麦(8901-11)和普通小麦(4185)两个冬小麦品种为材料,包括4个施锌水平(分别为施ZnSO4.7H2O.0、11.25、22.5和33.75.kg/hm2)。结果表明,各器官中Zn的含量变化在4.14~54.18.mg/kg,刚开花时及灌浆前期的含量以子粒>穗壳>叶片>茎秆,至接近成熟时则以子粒>叶片>穗壳>茎秆。每生产100.kg小麦子粒需要吸收Zn的范围在4.40~5.20.g之间。小麦成熟时吸收的Zn约为N或K2O的1/800~1/700,为P2O5的1/500~1/300。施锌后小麦各器官氮、磷、钾、锌的积累量及开花后向子粒的运转量增加,但施锌过多,这些营养元素的吸收、积累和运转反而受到抑制。4185开花前吸收氮和磷的能力较强,而8901-11开花后吸收氮和磷的能力较强;而吸收钾和锌的能力与吸收氮和磷的情况相反。8901-11氮、磷、钾、锌的积累量基本随施锌量增加而提高,以施硫酸锌22.5~33.75.kg/hm2的积累量最高;而4185以施硫酸锌11.25.kg/hm2的积累量最高。因此,在施用大量元素的基础上,普通小麦以施硫酸锌11.25.kg/hm2为宜,而强筋小麦以施硫酸锌22.5~33.75.kg/hm2为宜。  相似文献   

6.
不同产量水平下稻茬小麦的氮素营养指标特征   总被引:2,自引:2,他引:0  
  【目的】  明确长江中下游地区不同产量水平稻茬小麦氮营养指标变化规律,为小麦氮素营养状况实时诊断提供理论依据。  【方法】  本研究通过江苏省多年多点田间不同氮肥、播期、密度和品种试验,构建不同产量水平小麦大数据,分析不同产量水平小麦在不同生育时期的干物质积累量、植株氮积累量和植株氮浓度的变化规律,并通过计算小麦临界氮浓度,得到累积氮亏缺和氮营养指数的动态变化规律,进而明确高产稻茬小麦氮素营养指标特征。  【结果】  干物质积累量和植株氮积累量的变化趋势一致,随着小麦生育进程的推进均逐渐增加,植株氮浓度逐渐减小,累积氮亏缺和氮营养指数会出现波动。整个生育期内,干物质积累量和植株氮积累量在高产小麦和中产小麦之间的差异不显著,但二者植株氮积累量均显著高于中低产小麦,中低产小麦又显著高于低产小麦。在抽穗期、开花期和灌浆期,高产和中产小麦干物质积累量显著高于中低产小麦,中低产小麦又显著高于低产小麦。依据累积氮亏缺值判断氮素营养状况,高产和中产小麦的累积氮亏缺变化趋势一致,在起身—孕穗期,高产小麦的累积氮亏缺值由0.3 kg/hm2降低为?23.0 kg/hm2,中产小麦由7.0 kg/hm2降低为?14.6 kg/hm2,孕穗—抽穗期又呈升高趋势,高产小麦由?23.0 kg/hm2升高为?11.4 kg/hm2,中产小麦由?14.6 kg/hm2升高为2.4 kg/hm2,开花—灌浆期的波动较小。表明高产小麦氮营养除起身期之外均为过剩,中产小麦在拔节—孕穗期的累积氮亏缺小于0,其余时期累积氮亏缺均大于0,但该水平的累积氮亏缺值一直在适宜范围内波动。中低产小麦在起身—拔节期,累积氮亏缺值由14.2 kg/hm2降低为9.5 kg/hm2,之后逐渐升高,灌浆期达到最大为43.9 kg/hm2;低产小麦在起身期到灌浆期,累积氮亏缺值由17.3 kg/hm2升高为71.1 kg/hm2。表明中低产和低产的小麦氮营养水平在整个生育期内逐渐降低,且整个生育期均处于亏缺状态 (累积氮亏缺值 > 0)。在拔节期、孕穗期、抽穗期和灌浆期,高产水平的小麦植株实际氮浓度高于植株临界氮浓度,中产小麦在孕穗期的植株实际氮浓度高于临界氮浓度,而中低产和低产的小麦在整个生育期植株实际氮浓度低于植株临界氮浓度。高产和中产的小麦氮营养指数在1附近波动,其中高产小麦的氮营养指数在起身—孕穗期由0.9升高为1.1,在抽穗—灌浆期,氮营养指数呈现先降低后升高趋势,其值分别为1.0、0.9和1.0,中产小麦与高产小麦的变化趋势一致,起身—孕穗期的氮营养指数由0.8升高为1.0,之后逐渐下降,其值均小于1,抽穗—灌浆期分别为0.9、0.9和0.9。中低产和低产的小麦氮营养指数始终低于1,中低产小麦在起身—拔节期氮营养指数由0.7升高为0.8,之后则逐渐下降,低产小麦从起身—开花期均逐渐下降,而这两个产量水平的氮营养指数在灌浆期会呈现略微上升趋势。  【结论】  随着产量水平的提高,小麦植株干物质和氮积累量、植株氮浓度、氮营养指数等都相应增加,累积氮亏缺相应下降。较高的干物质积累量和植株氮积累量是提高小麦产量的主要原因,在小麦生长过程中氮营养指数和累积氮亏缺均能准确诊断小麦氮营养状况,可为小麦氮肥精准管理提供理论支持。  相似文献   

7.
磷、钾营养对套作大豆钾素积累及利用效率的影响   总被引:4,自引:0,他引:4  
以贡选1号为材料,研究了磷、钾营养对套作大豆钾素积累及利用效率的影响。结果表明,套作大豆全生育期钾素积累动态符合"S"型增长曲线。完熟期钾素积累总量以及根、茎、叶片、荚果各器官钾素含量均随施钾量增加而增加,随施磷量增加呈先增加后减少的趋势;各处理均以P2K3(P2O517.0 kg/hm2,K2O 112.5 kg/hm2)最高,较不施磷、钾(P0K0)高18.79%5~8.33%。全生育期钾积累速率呈单峰曲线变化,随施钾量增加而增加,随施磷量增加先升高后降低,出苗后90 d左右达到最大值。钾素生产效率、吸收利用率、农学利用率随施磷、施钾量增加与钾积累速率表现一致,但收获指数随施磷量增加先降低后升高。合理施用磷、钾肥能提高套作大豆钾素利用效率,以P2K1(P2O517.0 kg/hm2,K2O 37.5 kg/hm2)处理最好。  相似文献   

8.
稻茬小麦公顷产量9000 kg群体氮素积累、分配与利用特性   总被引:2,自引:2,他引:0  
在稻-麦两熟制条件下,以扬麦20为材料,通过基本苗和氮素运筹(氮肥施用量、 施用时期和比例)调控建立不同产量水平群体,研究稻茬小麦籽粒产量高于9000 kg/hm2群体的氮素积累、 分配与利用特性。结果表明,稻茬小麦籽粒产量 9000 kg/hm2以上群体拔节期至开花期、 开花期及成熟期氮素积累量分别在N 104~117 kg/hm2、 197~205 kg/hm2、 234~251 kg/hm2,极显著高于籽粒产量 9000 kg/hm2 以下群体。稻茬小麦不同群体开花期叶片、 茎鞘、 穗及成熟期籽粒氮素积累量与籽粒产量均呈极显著线性正相关,氮素积累量分别为N 89~91 kg/hm2、 74~83 kg/hm2、 32~33 kg/hm2、 177~188 kg/hm2, 有利于实现籽粒产量9000 kg/hm2。花后群体营养器官氮素转运量与籽粒产量均呈极显著线性正相关,叶片、 茎鞘及穗轴+颖壳的氮素转运量分别为N 65~73 kg/hm2、 53~54 kg/hm2、 16~20 kg/hm2, 有利于实现籽粒产量9000 kg/hm2。稻茬小麦籽粒产量9000 kg/hm2以上群体100 kg籽粒吸氮量为N 2.9~3.0 kg, 氮素利用效率32.9~34.5 kg/kg, 氮收获指数0.73~0.77。  相似文献   

9.
通过5年定位试验(2008~2012年), 研究不同钾肥施用量对水稻产量、植株钾素含量、钾素积累量、钾肥利用率、土壤钾素含量、钾素平衡和钾肥经济效益的影响。试验施钾量(K2O)从低到高设K0(不施钾)、K1(早稻84 kg/hm2、晚稻105 kg/hm2)、K2(早稻120kg/hm2、晚稻 150 kg/hm2)、K3(早稻156kg/hm2、晚稻195 kg/hm2)和K4(早稻192kg/hm2、晚稻 240kg/hm2)5个处理。5年的试验结果表明, 施钾能显著提高早、晚稻产量,在一定施钾量范围内,水稻产量随施钾量的增加而增加;施钾能促进水稻植株对钾素的吸收和积累,尤其是稻草对钾素的吸收和积累;早、晚稻的钾肥农学效应均以K2处理最高(早稻3.12 kg/kg、晚稻3.70 kg/kg);钾肥利用率以K1处理最高(早稻41.2%、晚稻76.4%),并随施钾量提高而降低;不同施钾量对土壤钾素含量有明显影响,土壤速效钾、缓效钾和土壤全钾均随施钾量的增加而增加,且不同处理间土壤速效钾含量差异达极显著水平(P<0.01);连续种植5年10季水稻后,K0、K1和K2处理的土壤钾素亏缺(K 127.1kg/hm2、 58.3kg/hm2和10.8kg/hm2),亏缺量随施钾量的增加而降低; K3和K4处理的土壤钾素盈余(48.0 kg/hm2 和109.2kg/hm2),盈余量随施钾量的增加而增加。在经济效益上,早、晚稻产投比均以K2处理最高(早稻1.04、晚稻1.27)。综合考虑施钾的增产效应、经济效益和土壤钾素养分平衡等因素,建议该双季稻区早稻施钾量在K2O 120~156 kg/hm2、晚稻施钾量在K2O 150~195kg/hm2范围内较为适宜。  相似文献   

10.
氮素对超高产小麦生育后期光合特性及产量的影响   总被引:14,自引:1,他引:13  
本试验在大田条件下研究了施氮量对超高产小麦生育后期光合特性的影响。利用LI-6400便携式光合测定仪,采用开放式气路测定了超高产麦田旗叶的净光合速率、胞间CO2浓度、气孔导度等相关指标。结果表明,氮素对超高产小麦生育后期的光合特性有较大的调节作用,随着施氮量增加,小麦的净光合速率增强,但过高的施氮量(N 375 kg/hm2)导致灌浆后期叶片衰老快,净光合速率下降迅速,叶面积指数降低,千粒重下降明显,最终导致产量的减少。在本试验条件下,超高产麦田的适宜施氮量为N 300 kg/hm2。  相似文献   

11.
在大田栽培条件下,运用15N示踪技术研究了不同施氮量和底追肥比例对小麦氮素利用和子粒产量及蛋白质含量的影响。结果表明,施用氮肥提高了小麦植株的氮素积累量、子粒产量、蛋白质含量和蛋白质产量。相同施氮量条件下增加追肥氮的比例,提高了氮肥农学利用率和吸收利用率,增加了植株地上部器官(子粒+营养器官)中追肥氮、土壤氮的积累量,提高了营养器官中氮素的转运量和开花后氮素的同化量,增加了子粒蛋白质含量。相同的氮素底追肥比例条件下,将240.kg/hm2施氮量降至168.kg/hm2的处理,氮肥农学利用率、氮肥吸收利用率、氮肥偏生产力提高,子粒中土壤氮的积累量增加,植株地上部器官中土壤氮的积累量亦增加,开花后氮素同化量提高,子粒蛋白质含量增加。各施氮处理间子粒产量无显著差异。在本试验条件下,施氮量为168.kg/hm2且全部于拔节期追施是兼顾产量、品质和效益的优化处理。  相似文献   

12.
氮肥类型和用量对冬小麦品质的影响   总被引:1,自引:1,他引:0  
在连续4年有机无机氮肥配施试验基础上,设置不同冬小麦品种研究氮肥类型(无机肥氮、 有机肥氮以及有机肥氮与无机肥氮配施)和用量(N 0、45、90、120、180 和 240 kg/hm2)对冬小麦子粒品质的影响。结果表明, 中穗型品种石麦15和大穗型品种潍麦8的子粒产量和各项品质指标差异显著,其中石麦15 的产量、沉降值、形成时间和稳定时间分别比潍麦 8 高12.62%、5.09%、5.85%、25.35%,而粗蛋白、 湿面筋和吸水率则比潍麦8 显著低11.03%、15.51%、 5.49%。子粒产量、 粗蛋白、 湿面筋和沉降值及形成时间与植株吸氮量极显著正相关,吸水率和稳定时间与植株吸氮量的相关性较差。单施无机氮180 kg/hm2(0/180 处理)和240 kg/hm2(0/240 处理)及有机无机氮配施 240 kg/hm2(120/120 处理)植株吸氮量最高且三者差异不显著,而单施有机氮240 kg/hm2(240/0 处理)植株吸氮量显著低于0/180、0/240 和120/120 处理。施氮量小于240 kg/hm2 时等氮量比较,单施无机氮吸氮量大于有机无机配施,单施有机氮最小;且施氮量越低,不同施氮类型间吸氮量差异越小。两品种均在单施无机氮180 和 240 kg/hm2 时产量最高且各项品质指标最优,有机无机氮配施120/120 处理对比等量无机氮单施 0/240 处理产量不降低且品质指标不下降,单施有机氮240/0 处理产量和子粒品质都较 0/240 和120/120处理差;施氮量低于240 kg/hm2 时,单施无机氮处理的产量和各项品质指标优于有机无机配施,有机无机配施又优于单施有机氮,这与有机肥供氮不足有关。  相似文献   

13.
通过田间试验研究了西北旱地4个主要冬小麦品种在不同供氮水平下对氮素的吸收、累积和转移特性。结果表明,增施氮肥显著地促进了小麦地上部分氮素累积总量,子粒氮素累积量在施氮量180.kg/hm2时最高,再增加氮肥用量子粒氮素累积量降低;施氮明显增加了收获时茎秆氮素的残留量。不同品种间氮素累积量差异显著,其中小偃22最高,其后依次为陕253、小偃503和陕229;小偃22的氮肥利用率、氮肥农学效率和氮肥生理效率均高于其它几个小麦品种。不同器官相比,开花前氮素主要累积在叶片中,茎秆的累积量在开花期达到最大。不同部位氮素转移效率为叶片穗茎秆;叶、茎、穗氮素转移效率存在基因型差异。  相似文献   

14.
在每公顷产9000 kg小麦的高产条件下,以济麦22为试验材料,设置全生育期不灌水(W0)、底墒水(W1)、底墒水+拔节水(W2)、底墒水+拔节水+开花水(W3)、底墒水+开花水 (W4) 5个灌溉处理,每次灌水60 mm,研究了灌水量和时期对高产小麦氮素积累、分配和转运及土壤硝态氮含量的影响。结果表明:1)与不灌水处理(W0)相比较,灌水处理显著增加了小麦植株氮素积累量、子粒氮素积累量和开花后营养器官氮素向子粒的转移量;随着灌水量的增加,成熟期小麦植株氮素积累量、开花后营养器官积累的氮素向小麦子粒转移量和转移率均呈现先增加后降低的趋势,以W2处理最高。2)随着小麦生育进程的推进,0—200 cm土层土壤硝态氮含量先降低后回升再降低,在拔节期最低。成熟期,W0处理0—40 cm土层的土壤硝态氮含量显著高于灌水处理;随灌水量的增加,100—160 cm土层土壤硝态氮含量增加,W2处理显著低于W3和W4处理;160—200 cm土层的土壤硝态氮含量无显著差异。3)随灌水量的增加,氮素吸收效率、氮素收获指数和氮肥生产效率先增加后降低,W2处理最高;而氮素利用效率则呈逐渐降低趋势,其中W0处理的氮素利用效率显著高于其他处理,W2、W3、W4处理间无显著差异。在本试验条件下,综合考虑氮素利用、子粒产量和土壤中硝态氮的淋溶,底墒水和拔节水各灌60 mm的W2为最佳处理,可供生产中参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号