首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Foliar spots caused by Pseudomonas coronafaciens pv. garcae (Pcg), Pseudomonas amygdali pv. tabaci (Pat) and Pseudomonas cichorii (Pch) are major bacterial diseases that can reduce coffee production. However, little is known about the genetic diversity and molecular mechanisms underlying the pathogenicity to coffee plants of these bacteria. In this study, genome sequences of Pcg, Pat and Pch strains isolated from coffee plants in Minas Gerais state, Brazil, were used to assess their variability and plasticity, and compare their type III secretion system (T3SS) and apoplastic effector repertoires as well as tabtoxin biosynthetic/detoxification genes. Genomic diversity was found for all three phytopathogens, among which Pch possesses the highest number of exclusive proteins. The Pcg genome is the most stable whereas that of Pch is the most plastic, which is related to their host ranges. When compared with those of Pseudomonas syringae pv. tomato DC3000, hrp/hrc gene sequences are more conserved in Pcg and Pat than in Pch, which also possesses the smallest T3SS and the largest apoplastic effector repertoires. The only T3SS effector family common to all three pathogens is AvrE, suggesting that, as for other plant–Pseudomonas interactions, it may play a crucial role for pathogenicity towards coffee plants. Apoplastic proteins associated with maintaining the redox balance and degrading proteins/peptides not previously described as important in plant–bacteria interactions were found. Gain/loss of the tabtoxin biosynthetic cluster with retention of the antitoxin gene was observed, indicating that tabtoxin production is not a limiting factor for the occurrence of mixed infections.  相似文献   

2.
Erwinia psidii is a gram-negative bacterium that threatens both guava and eucalypt plantations in several countries. Despite the economic importance of both crops, nothing is currently known about the molecular mechanisms underlying E. psidii pathogenicity and, consequently, how it evolved to infect Eucalyptus species besides its presumed native host Psidium guajava. In this study, we predicted putative type III secretion system effectors that may play important roles during plant–E. psidii interactions and conducted effector structure and phylogenetic analyses to gain important insights into their function and evolution. For that, the whole genomes of four E. psidii strains that exhibit differential aggressiveness towards eucalypt clones were sequenced and their effector repertoires predicted based on sequence identity with known effectors of the model phytopathogen Erwinia amylovora. Only proteins sharing significant sequence identity with the DspE and Eop1 effectors were found. Here, it is shown that these two E. psidii effectors retain all structural characteristics of their corresponding protein superfamilies, but exhibit allelic variations that are consistent with the observed aggressiveness differences between strains. Phylogenetic analyses revealed that whereas E. psidii housekeeping gene sequences are more closely related to those from Erwinia tracheiphila, the effector (either nucleotide or amino acid) sequences are more closely related to their Pantoea agglomerans counterparts, suggesting that dspE and eop1 were both acquired through horizontal gene transfer from the latter bacterial species. The results of this study provide important insights on E. psidii pathogenicity and set the stage for future effector functional studies.  相似文献   

3.
Erwinia amylovora is the bacterium responsible for fire blight, a necrotic disease affecting many rosaceous plants and especially pear tree and apple tree. A protein named harpin, secreted through the Hrp secretion pathway and able to elicit an hypersensitive reaction (HR) on tobacco has recently been isolated. Mutants inhrpN, the gene encoding harpin were described as non pathogenic on immature pear fruit and unable to elicit an HR on tobacco [Weiet al., 1992; Wei and Beer, 1993]. In this paper, the phenotype on plant ofhrpN mutants was carefully determined.hrpN mutants expressed a weak but significant virulence on host plants. Furthermore, when infiltrated into tobacco leaf mesophyll, thehrpN mutants elicited varied responses that fluctuated from null reaction to full necrosis of the infiltrated area. These results show that harpin is not absolutely required neither for pathogenicity on host plant nor for elicitation of an hypersensitive reaction on tobacco. Furthermore, in all the tests performed, mutant blocked in harpin secretion remained non pathogenic and unable to elicit an HR on tobacco. This suggests that factor(s), different from harpin, involved both in pathogenicity and HR eliciting ability is (are) secreted through the Hrp secretion pathway.Abbreviations HR hypersensitive reaction - NSI necrosis severity index - CFU colonie forming units  相似文献   

4.
The Gram‐negative bacterium Erwinia amylovora, causal agent of fire blight disease in pome fruit trees, encodes a type three secretion system (T3SS) that translocates effector proteins into plant cells that collectively function to suppress host defences and enable pathogenesis. Until now, there has only been limited knowledge about the interaction of effector proteins and host resistance presented in several wild Malus species. This study tested disease responses in several Malus wild species with a set of effector deletion mutant strains and several highly virulent E. amylovora strains, which are assumed to influence the host resistance response of fire blight‐resistant Malus species. The findings confirm earlier studies that deletion of the T3SS abolished virulence of the pathogen. Furthermore, a new gene‐for‐gene relationship was established between the effector protein Eop1 and the fire blight resistant ornamental apple cultivar Evereste and the wild species Malus floribunda 821. The results presented here provide new insights into the host–pathogen interactions between Malus sp. and E. amylovora.  相似文献   

5.
6.
Ralstonia solanacearum is a known bacterial pathogen of eucalypt and potato plants in Africa. A survey was undertaken to detect this pathogen in eucalypt plantations in South Africa, the Democratic Republic of Congo, and Uganda. Numerous bacterial strains were isolated from trees with symptoms typical of bacterial wilt, but only seven were positively identified as R. solanacearum. A polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technique, based on the hrp (hypersensitive response and pathogenicity) gene region was used to determine and group the biovars of these R. solanacearum strains. The eucalypt isolates and one potato isolate formed a biovar 3 cluster, whereas the two other potato isolates formed a cluster that corresponded to biovar 2. Amplified fragment length polymorphism (AFLP) analysis confirmed these clusters. Therefore, PCR-RFLP can be used as a reliable diagnostic technique to enable researchers to rapidly identify the pathogen.  相似文献   

7.
A mechanism of virulence mediated byhrp-genes is present in many Gram-negative bacterial pathogens. It involves delivery of effector proteins into host cellsvia the type III secretion system (TTSS) and the interaction of TTSS effectors with plant proteins. These interactions may either promote responses beneficial to the pathogen or trigger the hypersensitive response if an effector is recognized by corresponding resistance protein.Pantoea agglomerans, which is widespread in nature mainly as an epiphyte, has evolved into ahrp-dependent and host-specific tumorigenic pathogen by acquiring a plasmid containing a pathogenicity island (PAI). This PAI harbors ahrp-gene cluster, and genes encoding for TTSS effector proteins and biosynthesis of IAA and cytokinins. The results reviewed describe how the interplay between negative-acting and positive-acting TTSS effectors determines the transformation ofP. agglomerans into two related pathovars. Furthermore, the PAI’s structure supports the premise that these pathovars are recently evolved pathogens. Finally, the possible interaction between TTSS effectors and phytohormones for gall formation is proposed.  相似文献   

8.
Erwinia carotovora and Erwinia chrysanthemi are the two most important soft rotting bacteria of commercially-grown plants. They are genetically diverse as is evident from polymorphisms in the pel and recA genes as well as in rrn, the ribsomal gene cluster. Subpopulations grouped into biovars, pathovars, or subspecies associated with various hosts and in different geographic regions suggest specialization in host preference and/or survival in diverse environments. Previous characterization of the pectolytic erwinias as opportunistic pathogens is being replaced by a realization that this group of bacteria exhibits a sophisticated repertoire of pathogenicity and virulence genes and regulators. The presence of an entire hrp gene cluster and associated type III secretion system, and global regulators which regulate virulence determinants such as exoenzyme production and motility, attest to a highly specialized pathogen. The fact that production of extracellular plant cell wall-degrading enzymes are coordinately activated by the diffusible signal molecule N-acyl-homoserine lactone in a population density-dependent manner may explain the occurrence of pectolytic erwinia in asymptomatic plant tissues. Transgenic plants expressing bacterial quorum-sensing signal molecules modulate this sensory system and exhibit resistance to soft rot infection. The pectolytic erwinias, being significant plant pathogens that are neither of quarantine concern nor a human health hazard while readily isolated from field sources, make an ideal model for investigating the genetic basis of plant pathogenesis and environmental fitness.  相似文献   

9.
A genomic library of Erwinia amylovora isolate T was constructed in the cosmid pLAFR3 and maintained in Escherichia coli. Clones were transferred individually by conjugation into the non-pathogenic isolate P66 of E. amylovora. Transconjugants were screened for restoration of pathogenicity to pear by stab inoculation into sections of immature pear fruits. Three clones complemented P66 restoring pathogenicity and ability to cause the hypersensitive reaction (HR) in Phaseolus vulgaris. Restriction mapping and hybridization experiments showed that the three clones had a common 3·7 kb fragment of E. amylovora DNA. Sub-cloning and insertion mutagenesis with Tn5-lac confirmed that a determinant of pathogenicity and ability to cause the HR (hrp gene) was located on a 2·1 kb HindIII/BamHI fragment within the common DNA. Hybridization experiments using the 2·1 kb HindIII/BamHI fragment as a probe demonstrated that the hrp gene was located in the chromosome of isolate T and that homologous sequences were present in the non-pathogenic isolates P66 and S. Clones which restored hrp function did not affect the growth of isolate P66 in minimal or nutrient-rich media. Transconjugants of Pseudomonas syringae pv. phaseolicola race 1 harbouring the hrp gene(s) cloned from E. amylovora did not cause the HR in susceptible cultivars of bean but symptoms developed more slowly than in the absence of the clones or with pLAFR3 alone.  相似文献   

10.
11.
Like other plant-pathogenic bacteria, Xanthomonas oryzae pv. oryzae, the causal agent of bacterial leaf blight of rice, has hrp genes that are indispensable for its virulence. The hrp genes are involved in the construction of the type III secretion (T3S) apparatus, through which dozens of virulence-related proteins, called effectors, are directly secreted into plant cells to suppress and disturb plant immune systems and/or induce plant susceptibility genes. The expression of hrp genes is strictly regulated and induced only in plants and in certain nutrient-poor media. Two proteins, HrpG and HrpX, are known as key regulators for hrp gene expression. Great efforts by many researchers have revealed unexpectedly that, besides HrpG and HrpX, many regulators are involved in this regulation, some of which also regulate the expression of virulence-related genes other than hrp. Moreover, it has been found that HrpG and HrpX regulate not only hrp genes and effector genes but also genes unrelated to the T3S system. These findings suggest that the expression of the hrp gene is orchestrally regulated with other virulence-related genes by a complicated, sophisticated regulatory network in X. oryzae pv. oryzae.  相似文献   

12.
 γ-变形菌纲(γ-Proteobacteria)的黄单胞菌属(Xanthomonas)的大多数种类可引起植物病害,多数是我国检疫对象。与其他革兰氏阴性植物病原细菌一样,植物病原黄单胞菌可通过高度保守的III型分泌系统(type-III secretion system, T3SS)分泌效应蛋白(T3SS-secreted effectors, T3SEs)进入植物细胞,在非寄主植物和抗病寄主植物上产生过敏反应(hypersensitive response, HR)以及在感病寄主植物上具有致病性。尚不清楚哪些种类的黄单胞菌具有T3SS和缺少哪些T3SE是否可作为检疫的依据。搜集7种检疫性植物病原黄单胞菌,通过PCR和Southern杂交试验结果发现:香蕉细菌性青枯病菌(X. campestris pv. musacearum)的ICMP287和ATCC49084菌株、甘蔗流胶病菌(X. axonopodis pv. vasculorum)ATCC13901菌株、洋葱细菌性叶枯病菌(X. axonopodis pv. allii)的LMG576和LMG578菌株中不含有tale基因,并且ATCC13901菌株既不含有T3SS基因也不含有hpa1xopQ基因;菜豆细菌性疫病菌(X. campestris pv. phaseoli)ATCC49119菌株不含有hpa1基因。相应地,推测含有2~12个tale基因的黄单胞菌有:大豆斑疹病菌(X. axonopodis pv. glycines)ICMP5732和ATCC43911菌株、豌豆细菌性疫病菌(X. axonopodis pv. vignicola)ATCC11648菌株、棉花细菌性角斑病菌(X. campestris pv. malvacearum)ATCC12131和(X. campestris pv. phaseoli)ATCC49119菌株。大豆细菌性斑疹病菌ATCC43911菌株尽管含有hpa1xopQhrcC基因,但在非寄主烟草上不能激发HR反应;而甘蔗流胶病菌ATCC13901菌株不含有hpa1xopQhrcC基因,却激发烟草产生HR反应。这些结果对于分析比较不同植物病原黄单胞菌的致病性因子和设计特定的植物检疫靶点提供了科学线索。  相似文献   

13.
Pectobacterium wasabiae has a narrow host range, having previously only been associated with Japanese horseradish. However, recent characterisation of Pectobacterium causing soft rotting in New Zealand has identified putative P. wasabiae isolates pathogenic to potato. In this study, phylogenetic reconstruction of acnA and mdh DNA sequences and fluorescent amplified fragment length polymorphisms (fAFLP) were used to confirm the identity of the putative P. wasabiae isolates. Both methods clustered the potato isolates closely with the type strain for P. wasabiae, ICMP9121, and also differentiated them from other plant pathogenic enterobacteria. PCR, DNA hybridisation and hypersensitive response (HR) assays were subsequently used to investigate the presence in P. wasabiae of the type III secretion system (T3SS) as well as other virulence factors known to be involved in development of disease by enterobacteria. Although all P. wasabiae strains appeared to elicit a type III-dependent HR in tobacco, genes associated with the T3SS and the putative virulence factors HecB and DspE could not be detected. Thus, genetic characterisation of P. wasabiae confirmed that it is a naturally occurring pathogen on potato, which does not possess the same suite of virulence factors that are involved in the pathogenicity of other enterobacteria on this host.  相似文献   

14.
Ⅵ型分泌系统(typeⅥsecretion system,T6SS)是革兰氏阴性细菌中新近发现的分泌系统,控制细菌的毒性和蛋白泌出。本试验构建了植物青枯菌Po82菌株的T6SS基因簇完全缺失菌株,从全局水平初步分析了T6SS的功能。与野生型菌株相比,T6SS基因簇的缺失导致了突变菌株运动能力显著增强,在接种前期突变株病情指数明显下降;通过qRT-PCR分析Ⅲ型分泌系统效应子基因,其中popA、popB和popP基因表达量上调,而popC表达水平下调。T6SS基因簇的缺失影响了Po82菌株的运动能力和Ⅲ型效应子基因的表达,使得Po82病程延长。这些结果说明,T6SS参与青枯菌的致病过程,且T6SS与T3SS之间有复杂的未知调控关系。  相似文献   

15.
An Acidovorax citrulli–cucumber pathosystem was established through which A. citrulli mutants with altered pathogenicity, generated by transposon mutagenesis, were identified on cucumber cotyledons. The A. citrulli group I strain FC440 was shown to grow faster in cucumber leaf tissues than a group II strain and was used for Tn5 transposon mutagenesis. A total of 2100 Tn5 insertional mutants were generated, and analysis of the mutant library showed that the transposon insertions were single, independent and stable. A conserved non‐flagellar type III secretion system (NF‐T3SS) ATPase gene hrcN was identified and confirmed to be essential for pathogenicity and functionality of NF‐T3SS in Acitrulli. Comparative sequence analysis of the HrcN protein and its homologues in other representative bacterial plant pathogens revealed that the NF‐T3SS of Acitrulli is close to that of Ralstonia solanacearum and Xanthomonas campestris, but distant from that of Pseudomonas syringae and Erwinia amylovora. The generated Tn5 insertional mutant collection is valuable for identification of genes required for A. citrulli pathogenesis, and the established A. citrulli–cucumber pathosystem will facilitate an improved understanding of A. citrulli biology and pathology.  相似文献   

16.
In many Gram-negative plant pathogenic bacteria the type III secretion system (TTSS), encoded by hrp genes, is essential for pathogenicity in the host and induction of a hypersensitive reaction (HR) in nonhost plants. The expression of hrp genes has been suggested to be repressed in complex media, whereas it is induced in planta and under certain in vitro conditions. We recently reported that XOM2 medium allows efficient hrp expression by Xanthomonas oryzae pv. oryzae. In this study, we investigated hrp-dependent secretion of proteins by the bacteria in vitro. Using modified XOM2, in which bovine serum albumin was added and the pH was lowered to 6.0, we detected at least 10 secreted proteins and identified one as Hpa1. This is the first evidence of protein secretion via TTSS in X. oryzae pv. oryzae.  相似文献   

17.
 欧美杨溃疡病是由Lonsdalea quercina(原称Brenneria quercina,Erwinia quercina)引起的一种细菌性病害,2005年首次在我国河南发现,对我国杨树产业造成了严重影响。菌株N-5-1是从河南濮阳自然发病杨树枝条上分离到的致病菌株。根据N-5-1菌株全基因组测序的初步结果分析,发现N-5-1具有完整的III型分泌系统(Type III secretion system,T3SS)。该系统与植物病原菌Erwinia amylovora CFBP1430和Dickeya dadantii 3937的T3SS高度相似,共由26个基因编码,共约23 kb,其中9个为保守的hrc基因。将L. quercina N-5-1菌株T3SS中保守的结构基因hrcV进行缺失突变,生物测定发现ΔhrcV突变体对“中林46杨”(Populus ×euramericana ‘Zhonglin 46’)2年生枝条的致病力明显下降,而互补菌株HBhrcV致病力与野生菌株保持一致。表明该菌中T3SS是病原细菌重要的致病性因子。菌株N-5-1中hrcV基因的突变导致诱导烟草过敏性坏死反应能力丧失,但并没有影响菌株的生长速率、游动性和生物膜的形成。本研究首次证明了L. quercina N-5-1菌株的T3SS是重要的致病因子。  相似文献   

18.
19.
Bacterial leaf blight of aroids is caused by a heterogeneous group of xanthomonads listed as Xanthomonas axonopodis pv. dieffenbachiae (Xad) on the EPPO A2 quarantine list. Recently, Xad strains were shown not to belong to X. axonopodis but to the species X. citri, X. phaseoli and X. euvesicatoria. Here, to verify the pathovar designation, 11 representative strains were tested for pathogenicity on six aroid genera. They had overlapping host ranges and only the strain isolated from Syngonium showed host specificity. The X. citri strains, isolated from various hosts, showed dissimilarity in virulence to the tested aroid genera. The X. phaseoli strains, isolated from Anthurium and Syngonium, were generally more virulent and, additionally, induced systemic infections. The X. euvesicatoria strains, isolated from Philodendron, were scored as not pathogenic on the tested aroids. Four representative strains were genome sequenced and showed a variable virulence‐associated gene content. Pathogenicity to aroids was correlated with the presence of three specific T3 effector genes and with a T6SS gene sequence. Together, the phylogenetic and pathogenic differentiation among Xad strains justifies the installation of three pathovar epithets for the pathogens on aroids: X. phaseoli pv. dieffenbachiae comb. nov. for the strains isolated from Anthurium; X. phaseoli pv. syngonii comb. nov. for the strain isolated from Syngonium; and X. citri pv. aracearum comb. nov. for the strains isolated from Aglaonema, Xanthosoma and Dieffenbachia. It is proposed that phytosanitary regulations for xanthomonads on aroids are restricted to these three pathovars.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号