首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Using hydroponics and novel non‐destructive pot culture systems which enable inoculation at specific tuber development stages, the dynamics of common scab infection patterns in potato were studied in order to provide more precise identification of tuber physiological factors associated with susceptibility. At the whole‐tuber level, infection percentages were greatest when Streptomyces scabiei inoculation occurred early; at 2 weeks after tuberization (WAT) 68% of tubers became infected, contrasting with late inoculation (8 WAT), when only 4% infection occurred. The first‐formed internodes were most susceptible to infection, whilst later‐forming and slower‐expanding internodes were less susceptible. Detailed tuber physiological examination of internode 2 showed that pathogen‐induced changes, including increased phellem (periderm) thickness, cell layers and phellem suberization (key physiological features believed critical to S. scabiei infection) were promoted through S. scabiei inoculation. Sequential harvesting showed enhanced phellem suberization (28% greater than the control) within 7 days of pathogen exposure, while phellem thickness and layer responses were also initiated early in the infection process (10–14 days after pathogen exposure) and these responses were independent of symptom expression. Differences in cultivar response were observed, with greater phellem suberization observed 10 days after tuberization (DAT) in the common‐scab‐tolerant cv. Russet Burbank than in the susceptible cv. Desiree. Likewise, Russet Burbank had thicker and more numerous cell layers in the phellem (up to eight cell layers) during early tuber growth (20–30 DAT) than Desiree (up to six cell layers).  相似文献   

2.
Variant somaclones of potato cultivar Russet Burbank, selected for resistance to common scab using in vitro cell selection techniques, were tested for resistance to powdery scab, another important disease of potato caused by Spongospora subterranea. This pathogen also invades roots, producing root galls. Most variants consistently showed increased resistance to powdery scab, both in field and glasshouse challenge, when compared to the parental cultivar, several significantly so. On average, the best variant reduced powdery scab incidence by 51% and severity (tuber surface coverage) by 64%. In contrast, no improvement in the extent of root infection and root galling was seen. These results suggest host interactions during root and tuber infection are distinct. Correlation analyses of disease indices amongst the selected variants showed no association between Sp. subterranea root infection and gall scores, nor between root infection and tuber disease severity. However, a weak positive association was found between root gall score and tuber disease, and a strong correlation between tuber disease incidence and severity scores. Interestingly, positive correlations were also found between the extent of powdery and common scab resistance expressed and both incidence and severity of these diseases within the variants, suggesting a common defence mechanism. The role of thaxtomin A in selecting for concurrent resistance to both diseases is discussed.  相似文献   

3.
4.
Powdery scab caused by Spongospora subterranea f. sp. subterranea (Sss) has recently become one of the most devastating potato diseases of economic importance in South Africa. The use of resistant cultivars has long been considered the most effective and sustainable strategy to manage the pathogen. However, little is known about the molecular mechanisms underlying resistance of potato tubers to Sss. Using RNA-sequencing (RNA-seq), 2058 differentially expressed genes (DEGs) were identified from two potato cultivars (tolerant and susceptible) in response to Sss infection. Analysis of the expression patterns of 10 selected defence-response genes was carried out at two different stages of tuber growth using RT-qPCR to validate the RNA-seq data. Several defence-related genes showed contrasting expression patterns between the tolerant and susceptible cultivars, including marker genes involved in the salicylic acid hormonal response pathway (StMRNA, StUDP and StWRKY6). Induction of six defence-related genes (StWRKY6, StTOSB, StSN2, StLOX, StUDP and StSN1) persisted until harvest of the tubers, while three other genes (StNBS, StMRNA and StPRF) were highly up-regulated during the initial stages of disease development. The results of this preliminary study suggest that the tolerant potato cultivar employs quantitative resistance and salicylic acid pathway hormonal responses against tuber infection by Sss. The identified genes have the potential to be used in the development of molecular markers for selection of powdery scab resistant potato lines in marker-assisted breeding programmes.  相似文献   

5.
Potato mop‐top virus (PMTV), the cause of spraing in potato tubers, is transmitted by Spongospora subterranea, the cause of powdery scab, and by planting infected seed tubers. This study was undertaken to determine the relative importance of these sources of infection in seed potato production in Scotland. The transmission of PMTV from tested seed tubers to daughter plants was examined over 2 years and six cultivars. The development of foliar symptoms varied with year and cultivar. Infection of daughter tubers derived from PMTV‐infected seed tubers was more prevalent on plants affected by foliar symptoms than those without symptoms. The rate of transmission of PMTV from infected seed tubers to daughter tubers ranged from 18 to 54%. Transmission was affected by cultivar and by origin of seed tubers used for a cultivar, but not by a cultivar's sensitivity to PMTV infection. The incidence of PMTV in daughter tubers of cv. Cara grown from seed potatoes from one source (common origin) by more than 25 seed producers was examined over two successive generations. The incidence of PMTV in daughter tubers was not correlated with that in the seed tubers but appeared to be strongly associated with soil inoculum. The incidence of PMTV was correlated with powdery scab in those crops in which both were present. There was some evidence from soil tests conducted in 2006 using a tomato bait plant and real‐time RT‐PCR that planting PMTV‐infected seed potatoes could increase the risk of introducing the virus into land not infested by PMTV.  相似文献   

6.
Information is reviewed on root infection of potato by the plasmodiophorid Spongospora subterranea f. sp. subterranea. This pathogen has long been recognized as the cause of root galls (hyperplasia) and the economically important disease powdery scab on tubers (modified stolons). The significance for plant productivity of the zoosporangium stages of the pathogen in potato roots has only recently begun to be documented. Two experiments are described that assessed effects of S. subterranea root infection on potato plant root function and productivity. A greenhouse experiment measured root function and plant parameters for eight potato cultivars with markedly different susceptibilities to tuber powdery scab. Water uptake and plant growth were reduced by S. subterranea inoculation in all eight cultivars. The magnitudes of these negative effects, and intensities of root hyperplasia, differed among the cultivars, but were not related to respective susceptibilities to tuber powdery scab. A field trial assessed root function and plant productivity for a cultivar (Iwa) that is very susceptible to Spongospora tuber and root diseases. Soil water content beneath uninoculated plants was consistently less than for inoculated plants, indicating that inoculation reduced water uptake (root function). Inoculation reduced shoot and root dry weights, and reduced weight of tubers per plant by 42%. Spongospora subterranea causes three diseases of potato: root membrane dysfunction, root hyperplasia and tuber powdery scab. The root diseases caused by the pathogen are likely to be important both for powdery scab management and for deleterious effects on potato crop yields.  相似文献   

7.
In Colombia, Streptomyces scabiei (syn. S. scabies) is commonly believed to be the causal organism of scab disease in local potato crops. However, very little is known about this organism and about the diversity and pathogenicity of the Streptomyces species associated with potato crops in Colombia. This study, therefore, aimed to elucidate aspects regarding the diversity of these bacteria associated with potato crops in a particular region of Colombia and evaluate their pathogenicity. We obtained 33 isolates of Streptomyces from netted, superficial and deep-pitted potato scab lesions from two main potato-producing regions in Colombia. Of these, 17 were pathogenic based on in vitro and in planta assays. None of these isolates carried the txtA, txtB, or nec1 genes, commonly associated with pathogenicity in Streptomyces, and characteristic of the pathogenicity island (PAI). We also characterized all isolates based on phenotypic characteristics and analysed their phylogenetic relationships using the 16S rRNA, atpD, recA, rpoB, and trpB genes. The isolates were highly diverse, placed in nine clades with 15 different phenotypes. The 17 pathogenic isolates were placed into three clades, namely S. pratensis, S. xiamenensis, and unknown species. This study is a preliminary investigation towards understanding scab disease in Colombia through the study of both pathogenic and nonpathogenic species present in scab disease lesions in potatoes. Also, this is the first report of Streptomyces species associated with potato tubers in Colombia.  相似文献   

8.
Candidatus Liberibacter solanacearum’ was recently described as the causal agent of potato zebra chip disease. This pathogen occurs in North America, New Zealand, and Northern Europe on various crops, and may spread to other potato growing regions. Observation on ‘Ca. L. solanacearum’‐infected tomato and potato plants propagated in growth chambers over 5 years indicated that tomato plants (cvs Moneymaker and Roma) can be a latent carrier of ‘Ca. L. solanacearum’. Tomato plants graft‐inoculated with scions from latently infected tomato plants remained symptomless, but tested positive in a species specific PCR assay. ‘Ca. L. solanacearum’ was consistently detected in the top, middle and bottom portion of the symptomless tomato plants, including stem, petiole, midrib, vein, flowers and fruits. In tomato fruits, ‘Ca. L. solanacearum’ was evenly distributed in the tissues at the peduncle and style ends, as well as in the pericarp, and columella placenta tissues. This is the first report that ‘Ca. L. solanacearum’ is present in a plant reproductive organ. In contrast, potato plants (cvs. Jemseg, Atlantic, Shepody, Frontier Russet, Russet Burbank, Red Pontiac, and Russet Norkotah) grafted with scions from the same latently infected tomato plants resulted in typical symptoms of purple top, leaf scorch, and other disease symptoms in plants and brown discoloration in the vascular ring and medullary rays in tubers.  相似文献   

9.
The present survey was conducted to isolate and characterize Streptomyces species from common scab lesions of potato in Norway. Bacteria were isolated from scab lesions on tubers sampled in two consecutive years at different locations in Norway spanning ~1400 km from south to north. In total, 957 independent isolations from individual tubers were performed, with 223 putative pathogenic isolates obtained from 29 different potato cultivars and 130 different fields. Streptomyces europaeiscabiei was the most abundant species isolated from common scab lesions (69%), while 31% of the isolates obtained were S. turgidiscabies. Streptomyces scabies was not found. Pathogenicity of selected Streptomyces isolates was tested on potato. The ability of the bacterial isolates to infect potato was consistent with the presence of the txtAB operon. The results revealed no pattern in geographical distribution of S. europaeiscabiei and S. turgidiscabies; both could be found in the same field and even the same lesion. Four different pathogenicity island (PAI) genotypes were detected amongst the txtAB positive isolates: nec1+/tomA+, nec1–/tomA+, nec1+/tomA? and nec1?/tomA?. The current findings demonstrate that there is genetic variability within species and that the species are not spread solely by clonal expansion. This is thought to be the most comprehensive survey of Streptomyces species that cause common scab of potato in a European country.  相似文献   

10.
Common scab is one of the most important soil‐borne diseases of potato and is difficult to control. Selection of potato breeding lines for resistance to common scab is also cumbersome due to environmental factors influencing symptom development and an erratic spatial distribution of the scab pathogens (Streptomyces spp.) in the field. The bacterial phytotoxin thaxtomin A, which causes scab symptoms, can be used to screen large numbers of potato seedlings for tolerance in vitro, but few studies have investigated whether the results correspond to resistance to common scab observed in the field. In this study, 120 F1 potato progeny from a single cross were screened in vitro by exposing the seedlings to thaxtomin A added to the culture medium. Eighteen genotypes were selected based on high sensitivity or tolerance using shoot growth as the criterion, multiplied in vitro, and tested for resistance to common scab caused by S. turgidiscabies and S. scabies in a glasshouse and in three different fields. Evaluation of ca. 6500 tubers showed that the 18 potato genotypes differed in scab indices and disease severity (P < 0·0001). The relative shoot height in vitro (thaxtomin A used at 0·5 μg mL?1) and the scab index in the field showed significant correlation (rs = ?0·463, P = 0·0528, n = 18), also consistent with the results obtained under controlled conditions in the glasshouse. Hence, the in vitro bioassay may be used to discard scab‐susceptible genotypes and elevate the overall levels of common scab resistance in the potato breeding populations.  相似文献   

11.
Powdery scab of potato, once established in a field, is difficult to control because of the longevity of the resting spores (cystosori) of the causal organism, Spongospora subterranea f.sp. subterranea. Host resistance is likely to be the most efficient in a long-term control strategy for preventing build-up of field inoculum and spread of the disease. Resistance screening of potato cultivars is mostly done in laborious field trials where disease development is likely to be unpredictable. A bioassay with potato tissue cultured plantlets and cystosori as inoculum is described and was tested for its potential to screen potato cultivars at an early stage for their relative susceptibility to powdery scab by comparing the lab results with field data. With cystosori inoculum of Swiss origin, the laboratory test showed clear differences between the potato cultivars in the severity of zoosporangial root infection which correlated better with ranked tuber infection data, compared to root galling. There are apparent differences in the relative trends in susceptibility between roots and tubers of five selected cultivars when using naturally infested soil instead of prepared cystosori as inoculum in the lab bioassay. Furthermore, differences in the severity of zoosporangial root infection of two selected cultivars were found when cystosori from different countries where used as inoculum. A possible host genotype × pathogen interaction is discussed. The bioassay has the potential to screen and select for resistant material at an early breeding stage thus making field trials not unnecessary but more economical. It will allow the use of a standard set of pathogen collections and facilitate testing for inoculum virulence in infested soils.  相似文献   

12.
Thaxtomin A has a central and implicit role in common scab disease expression in potato. Thaxtomin A tolerance has been suggested as a possible rapid means for screening potato germplasm for disease resistance, during breeding selections. We have tested a range of genetically diverse cultivars with varying resistances to common scab disease in both pot and field based studies and measured their mean necrosis response to thaxtomin A. We found no association between resistance to common scab disease and tolerance to thaxtomin A toxicity. For example, disease resistant cultivars ‘Russet Burbank’ and ‘Atlantic’ were sensitive and tolerant to thaxtomin A toxicity respectively. Similarly; disease susceptible cultivars ‘Bismark’ and ‘Tasman’ showed susceptibility and tolerance to thaxtomin A. This demonstrates that whilst thaxtomin A is critical to disease expression, reaction to this toxin is only one component influencing resistance to common scab disease and many other anatomical, physiological or biochemical factors are critical to defence against this disease.  相似文献   

13.
This study was undertaken to determine the current occurrence in Scottish seed potato crops of Potato mop‐top virus (PMTV), which is transmitted by Spongospora subterranea and causes spraing (brown arcs and lines) in the flesh of potato tubers, rendering them unsaleable. In 2004, a stratified survey of four commonly grown cultivars was conducted, while in 2007 and 2008, only samples from powdery scab‐affected crops were collected. The incidence of crops in which infection by PMTV was present was 37·5% in the stratified survey in 2004, but was greater in surveys in which tubers with powdery scab were tested (47·2% in 2007 and 44·6% in 2008). Similarly, the frequency of crops with incidences of more than 10% tuber infection was lower (9·4%) in 2004 than in 2007 (25·4%) and in 2008 (26·2%). Significant differences in crop infection were found amongst the four major seed‐producing regions and the counties within these regions. The incidence of crop and tuber infection was least for class Pre‐basic seed potatoes and greatest for class Super Elite 3 and Elite seed potatoes. The results indicate that the prevalence of PMTV has not increased since surveys in the early 1970s.  相似文献   

14.
Since most plants possess resistance mechanisms which can be induced upon pre-treatment with a variety of chemical compounds, the use of β-aminobutyric acid (BABA) as a defence inducer without reported toxic effect on the environment was studied. The aim of this work was to analyse the effectiveness of BABA to induce resistance against Phytophthora infestans and Fusarium solani in potato cultivars differing in their level of resistance to late blight. The behaviour of some components of biochemical mechanisms by which BABA increases resistance against P. infestans, as well as the effect of BABA on the activity of a potential pathogenic factor of F. solani, were studied. Plants with four applications of BABA throughout the crop cycle produced tubers more resistant to P. infestans and F. solani than non-treated plants. In addition, tuber slices from treated plants, inoculated with P. infestans, showed an increase in phenol and phytoalexin content. The aspartyl protease StAP1 accumulation was also higher in tubers obtained from treated plants and inoculated with P. infestans. This result was observed only in the more resistant potato cv. Pampeana, early after infection. In the potato–F. solani interaction, infected tubers coming from BABA-treated plants showed minor fungal proteolytic activity than infected, non-treated ones. For potato cvs Pampeana and Bintje, the BABA treatment improved the yield of harvested tubers. The number of tubers per plant and total weight of harvested tubers was greater for those obtained from treated plants with two early or four applications of BABA. The results show that the BABA treatment increases the resistance of potatoes but the degree of increase depends on the original level of resistance present in each cultivar.  相似文献   

15.
We investigated soil contamination by Spongospora subterranea f. sp. subterranea (Sss) and disease severity of powdery scab in 29 potato fields in Hokkaido, Japan, using a hydroponic culture method with tomato seedlings as bait plants. The quantity of Sss infection on the roots of bait plants was evaluated using the polymerase chain reaction (PCR) and expressed in terms of the infection potential in the soil. The infection potential was positively correlated with the disease severity of harvested tubers, whereas the spore ball density determined using PCR had an indistinct relationship with disease severity. The infection potential can be useful in evaluating soil contamination and in applying countermeasures against powdery scab.  相似文献   

16.
A highly virulent and polyvalent Streptomyces phage was isolated from a potato field near Albany, Western Australia. The efficacy of the isolated phage to disinfest seed potato tubers artificially inoculated with a common scab-causing streptomycete was evaluated. The phage suspension was prepared in a mini-bioreactor. Diseased potatoes were bathed in a phage suspension (1 × 109 plaque-forming units per mL) for 24 h. The suspension was constantly circulated within a novel 25 L phage bath by means of an air-sparging pipe driven from an air compressor. Phage-treated scab-affected seed potatoes planted into free-draining polystyrene boxes containing steam-pasteurized field soil produced tuber progeny with significantly ( P  < 0·05) reduced levels of surface lesions of scab (1·2%) compared with tubers harvested from nonphage-treated tubers (23%). The number of scab lesions was also significantly reduced ( P  < 0·05) by phage treatment of mother tubers. No significant differences were recorded in weight, size or number of harvested tubers from phage-treated or nontreated mother tubers. This is the first in vivo study that has used Streptomyces phage to significantly disinfest seed potatoes of Streptomyces scabies and thereby reduce contamination of soil from seed-tuber-borne inoculum and reduce infection of daughter tubers.  相似文献   

17.
The effects of soil inoculum level and three environmental factors (soil type, soil moisture regime and temperature) on the incidence and severity of powdery scab caused by Spongospora subterranea were investigated in potato plants grown under controlled environmental conditions. Symptoms of powdery scab on tubers were assessed visually, after which DNA was extracted from tuber peelings and quantified in a real-time polymerase chain reaction assay using primers and a TaqMan® probe specific to S. subterranea to establish tuber infection levels. Soil inoculum concentration of S. subterranea did not significantly affect the incidence and severity of either tuber infection or powdery scab symptoms at maturity. No significant differences in disease incidence and severity were found between sandy, loamy and clay soils, although the two lighter soils yielded more powdery scab than clay soil. Constant dampness of the soil resulted in significantly more disease than a fluctuating moisture regime. Infection and disease levels were high at all three temperatures tested (9, 12 and 17°C), but symptoms were most severe at 12°C. The percentage of plants with infected tubers did not increase after tuber initiation, although the amount of S. subterranea DNA detected in tubers and the severity of powdery scab symptoms increased in mature plants. Latent tuber infections were found to be common, especially under conditions suboptimal for disease development. This new information may be important for the prevention of powdery scab in potato-growing areas around the world.  相似文献   

18.
Infection by Spongospora subterranea of roots of two potato (Solanum tuberosum) cultivars, either very resistant or very susceptible to powdery scab on their tubers, was studied in a glasshouse experiment. Plants grown in sand/nutrient solution culture were inoculated with S. subterranea sporosori 2 weeks after planting. Plant parameters, the intensity of zoosporangium infection in roots, numbers of Spongospora root galls and amounts of Spongospora DNA in roots, measured using quantitative PCR (qPCR), were assessed at sequential harvests. Inoculation with S. subterranea reduced water use (56 days after planting) by 26% in the tuber resistant cultivar compared with uninoculated plants, and by 60% in the susceptible cultivar. Inoculation did not affect growth of the resistant cultivar, nor shoot mass of the susceptible cultivar, but caused a 38% reduction in root mass of the susceptible cultivar. The intensities of zoosporangium development in both cultivars were similar. The susceptible cultivar had approximately four times more Spongospora root galls g?1 root mass than the resistant cultivar. Quantitative PCR detected S. subterranea DNA in roots 1 week after inoculation, and indicated a twofold greater amount of pathogen DNA in roots of the susceptible than the resistant cultivar. This study suggests that the S. subterranea zoosporangium stage in host roots is affected differently by host resistance factors than the sporosorus (root gall and tuber scab) stages. The study has also demonstrated the usefulness of qPCR for sensitive and consistent detection of S. subterranea across the duration of potato root infection.  相似文献   

19.
20.
西北地区马铃薯疮痂病病原菌鉴定及其生物学特性   总被引:1,自引:0,他引:1  
为明确西北地区马铃薯疮痂病病原菌的种类和生物学特性,分别采用常规组织分离法和土壤混悬液分离法从宁夏、陕西和甘肃3个省区采集的29份疮痂病发病薯块和8份发病地块土壤中进行病原菌分离,并利用形态特征、生理生化特性和16S rDNA序列分析对病原菌进行鉴定。结果表明,从发病薯块和发病土壤中共分离到50株链霉菌Streptomyces spp.,通过回接法验证获得6株马铃薯疮痂病致病菌株。6株致病菌株的培养特性和形态特征差别较大;其中菌株G4-1、G9和SYN13不能以果糖和木糖为单一碳源,菌株SYNT3不能以棉子糖为单一碳源;除菌株NLG4-1外,其余5株菌株均能在络氨酸琼脂培养基上产生黑色素。经16S rDNA序列分析,菌株G4-1、G9与疮痂病链霉菌S. scabiei的相似率分别达99.47%和99.34%,菌株NLG4-1、SYNT3与S. enissocaesilis的相似率分别达97.90%和98.18%,菌株GBH2与加利利链霉菌S. galilaeus的相似率达99.93%,菌株SYN13与S. turgidiscabies的相似率达97.56%,表明西北地区马铃薯疮痂病病原菌至少存在4个种。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号