首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Objectives of this study were to compare fatty acid (FA) composition of ruminal bacterial (B) and protozoal (P) cells, and to investigate effect of protozoa on FA profile in the rumen of cattle. Three cows were used to prepare ruminal B and P cells. Four faunated and three defaunated cattle (half‐siblings) were used to study effect of protozoa on ruminal FA profile. Proportions of C16:0 and C18:0 in total fatty acids in B cells were 20.7% and 37.4%, whereas those in P cells were 33.4% and 11.6%, respectively. Proportions of trans‐vaccenic acid (VA) and cis‐9, trans‐11 conjugated linoleic acid (CLA) in B cells were 3.9% and 1.0%, and those in P cells were 5.5% and 1.6%, respectively, being higher in P cells. Proportions of C18:1, C18:2 and C18:3 in P cells were two to three times higher than in B cells. Proportions of unsaturated fatty acids, VA and CLA in B cells of faunated cattle were higher than those of defaunated. VA and CLA in the ruminal fluid of faunated were also 1.6 to 2.5 times higher than those of defaunated. This tendency was similar for cell‐free fraction of ruminal fluid. These results indicate that protozoa contribute greatly in VA and CLA production in the rumen.  相似文献   

2.
The cell wall constituents of feces from three faunated and three defaunated (without ruminal ciliate protozoa) cattle fed on a Sudangrass hay and concentrate mixture (8:5) were analyzed. There was little difference in digestibility of dry matter between the faunated and defaunated cattle. Analysis of the fecal sugar residues revealed that the digestibilities of arabinose and galactose, derived from pectic and hemicellulosic substances located within the compound middle lamella, were higher in the defaunated cattle than the faunated cattle (P < 0.05), whereas the digestibilities of glucose and xylose, derived mainly from cellulose and xylan, were unchanged by the removal of protozoa. The digestibility of lignin was not different between the faunated and defaunated cattle, but those of mannose and p‐coumaric acid were lower in the defaunated than in the faunated animals (P < 0.05). The ratio of primary cell wall to secondary cell wall in fecal plant materials was lower for the defaunated than for the faunated cattle. The results in this study suggested that the defaunation enhanced the microbial degradation of the thin cell walls, but depressed the degradation of developed cell walls.  相似文献   

3.
A survey was conducted to investigate the physiological levels of pipecolic acid (Pip) in rumen fluid and plasma of ruminants such as goats and cattle in the presence or absence of rumen protozoa. The concentration of Pip was determined using HPLC. Basal Pip levels in the rumen fluid and plasma of normal faunated animals were 21 ± 8 and 2.3 ± 1.3 µM, respectively, and levels increased 1–2 h after feeding. The Pip levels in the rumen fluid and plasma of faunated goats and cattle were significantly higher than those of defaunated goats and unfaunated cattle. A small amount of Pip was also found in the rumen fluids of the defaunated and unfaunated animals; this appeared to be derived from feeds such as hay cube and corn silage. The results obtained in the present study suggest that a significant amount of rumen‐produced Pip is likely to be absorbed into the plasma of the host animals and that rumen protozoa significantly enhance the concentration of Pip in the rumen fluid and plasma of ruminant animals.  相似文献   

4.
Ruminal samples were collected at slaughter from 364 unfasted steers fed different finishing diets to obtain information on numbers and species distribution of ciliated protozoa in feedlot cattle. Total numbers of protozoa averaged 1.59 X 10(5)/g of ruminal contents. A total of 47 steers (12.9%) were defaunated, but 4.1% of the steers possessed numbers of protozoa greater than 10(6)/g. Entodinium species did not always dominate the protozoan populations; 41 faunated steers (11.2%) were devoid of entodinia, and 79 additional steers (21.7%) possessed populations dominated (greater than 50%) by other genera. Isotricha was the most commonly occurring genus supplanting Entodinium, but Polyplastron and Epidinium were frequently present in high concentrations. Tallow and soybean soapstock supplementation reduced (P less than .05) numbers of protozoa in steers consuming wheat diets. However, yellow grease supplementation did not affect numbers of protozoa in steers fed either sorghum or corn diets. Average ruminal pH was 6.20 on the wheat diet, 6.05 on the corn diet, and 5.69 and 6.23 for the two sorghum diets, respectively. We found no correlation between ruminal pH and numbers of protozoa on any diet. The presence of relatively high protozoan concentrations and few defaunated animals in feedlot cattle necessitates reevaluation of the role that ciliated protozoa play in ruminal metabolism of animals fed processed, high-concentrate diets.  相似文献   

5.
Five sheep (average BW 62 kg) were fed 65% roughage: 35% concentrate diets (CP = 15%) in a 5 x 5 Latin square design to study the effects of combinations of defaunation and N supplements (soybean meal [SBM], corn gluten meal [CGM], blood meal [BM], urea, and casein) differing in ruminal degradation on ruminal microbial numbers and activity. Diets were fed twice daily (DM intake 1,759 g/d). Defaunation was accomplished with doses of 30 ml of alkanate 3SL3.sheep-1.d-1 for 3 d with 2 d of fasting. Treatment 1 (control) involved feeding faunated sheep a diet in which the supplemental N was 67% SBM N and 33% urea N. Treatment 2 involved feeding defaunated sheep the same diet as the control. Treatments 3, 4, and 5 involved feeding defaunated sheep diets in which the supplemental N source was either 67% CGM-BM N (CGM and BM combined on a 1:1 N ratio): 33% urea N, or 33% CGM-BM N:67% urea N or 33% CGM-BM N:33% urea N:33% casein N, respectively. Compared with the faunated control, defaunation (Treatments 2, 3, 4, and 5) increased (P less than .05) total direct counts of ruminal bacteria (2.7 vs 1.3 x 10(11)/ml), fungal zoospores (2.8 vs 1.4 x 10(5)/ml), and ruminal microbial protease activity (1.4 vs 1.0 mg azocasein/[ml ruminal fluid.h]). Defaunation did not have a consistent effect on ruminal microbial deaminase activity. Compared with the control, defaunation resulted in lower (P less than .05) total perchloric acid-soluble amino N in ruminal fluid at 4 and 10 h after the morning feeding. Defaunation did not decrease (P greater than .05) total free amino acid concentrations in ruminal fluid, but it altered the profile of free amino acids. Although defaunation increased (P less than .05) ruminal bacterial numbers, no increases in total microbial CP or OM concentrations in ruminal contents were observed.  相似文献   

6.
Effects of protozoa on bacterial nitrogen recycling in the rumen   总被引:7,自引:0,他引:7  
The effects of protozoa on ruminal NH3-N kinetics and bacterial N recycling were measured in five sheep (57.6+/-7.1 kg BW, x +/- SD) with ruminal and duodenal cannulas in naturally faunated, defaunated, and refaunated periods. The sheep were fed a diet of 239 g of alfalfa haylage and 814 g of barley concentrate per day (DM basis) divided into 12 equal portions and allocated at 2-h intervals. A pulse dose of 300 mg of 15N as [15N]NH4Cl was administered into the rumen (on d 1 and 15) and 300 mg of 15N as [15N]urea was administered intravenously to the blood (d 8). Enrichment of 15N was measured in ruminal NH3-N, bacterial N, and plasma urea N over a period of 35 h. Total collection of urine was made for 5 d and analyzed for purine derivatives to calculate the flow of microbial N. Ruminal parameters and nutrient digestibilities were also measured. Sheep were defaunated using a rumen washing procedure 50 d prior to measurements in the defaunated period. Sheep were refaunated with ruminal contents from a faunated sheep receiving the same diet. Measurements began 26 d following refaunation, at which time protozoal numbers had returned to those in the originally faunated sheep. Data reported in parentheses are for faunated, defaunated, and refaunated sheep, respectively. Total culturable and cellulolytic bacterial numbers were unaffected by defaunation, but there was an increase in flow of microbial N from the rumen (10.8, 17.3, and 11.1 g N/d; P < .05) in the defaunated period. Flux, irreversible loss, and intraruminal recycling of NH3-N and recycling of NH3-N from plasma urea N were not affected by defaunation. Defaunation had no effect on reducing the absolute amount (13.8, 10.0, and 11.3 g N/d; P > .20) of bacterial N recycling and the percentage of N flux through the bacterial N pool. Total-tract digestion was reduced in defaunated compared with faunated sheep by 8, 17, 15, and 32% for OM, N, NDF, and ADF, respectively. In conclusion, defaunation improved ruminal N metabolism through the enhancement of bacterial protein synthesis, and improvement in the flow of microbial protein to the host animal.  相似文献   

7.
A quantitative method of analysis for 2-aminoethylphosphonic acid (AEP) was developed using reverse-phase HPLC. The detection limit for AEP was 15 nM, and the detector response (peak area) was linear from AEP levels up to 100 microM (R = .99). Mean recovery of AEP added to strained ruminal fluid from faunated sheep was 98.2%. When AEP was added to a fermentation mixture at a concentration of 22.6 micrograms/ml, 78% disappeared during a 24-h incubation. 2-Aminoethylphosphonic acid was readily detected in preparations of mixed ruminal ciliate protozoa as well as in mixed and pure strains of ruminal bacteria, feedstuffs, and ruminal fluid and duodenal digesta from defaunated sheep. The occurrence of AEP in feed and bacterial hydrolysates was confirmed by organic phosphorus analyses. The concentration of AEP in mixed ruminal protozoa was three times greater than its concentration in mixed ruminal bacteria (4,304 vs 1,383 micrograms/g DM, respectively). The AEP values for pure ruminal bacterial cultures ranged from 733 micrograms/g DM in Bacteroides succinogenes B21a to 1,166 micrograms/g DM in Butyrivibrio fibrisolvens H17c. Ruminal fluid and duodenal digesta from defaunated sheep contained AEP concentrations of 30 micrograms/ml and 90 micrograms/g DM, respectively. The concentration of AEP in feedstuffs ranged from 25 micrograms/g DM in wheat straw to 263 micrograms/g DM in oats. Because AEP occurrence is not limited to ruminal ciliate protozoa, it is of little value as a marker for protozoal presence in or passage out of the rumen.  相似文献   

8.
Five sheep (average BW 48 kg) with ruminal, duodenal, and ileal cannulas were fed 63% roughage: 37% concentrate diets (CP = 14.5%) in a 5 x 5 Latin square design to study effects of urea and sodium bicarbonate supplementation on nutrient digestion and ruminal characteristics of defaunated sheep. Diets were fed twice daily (DMI = 1,076 g/d). Defaunation was accomplished with 25-ml doses of alkanate 3SL3/sheep daily for 3 d. Control sheep were faunated (Treatment 1) and fed soybean meal as the major N supplement. Remaining sheep were maintained defaunated and fed either the same diet as Treatment 1 (Treatment 2), Treatment 1 with urea replacing 30% of the soybean meal N (Treatment 3), or Treatment 1 with 2% sodium bicarbonate in the diet (Treatment 4). Treatment 5 was a combination of Treatments 3 and 4. Compared with the faunated control, defaunation decreased (P less than .05) total tract DM, OM, NDF, ADF, and CP digestibilities (71.5 vs 69.4, 73.8 vs 71.7, 64.6 vs 61.4, 58.7 vs 55.8, and 74.2 vs 70.6%, respectively) and average (2 to 12 h postfeeding) ruminal fluid ammonia (23.5 vs 13.7 mg/dl) and isobutyrate (.9 vs .7 mM) concentrations. However, defaunation increased (P less than .05) linoleic and linolenic acid flows (.58 vs .45 g C18:2/d; .17 vs .14 g C18:3/d) to and disappearance (.50 vs .39 g C18:2/d; .14 vs .11 g C18:3/d) from the small intestine. Urea supplementation increased (P less than .05) total tract DM (70.2 vs 68.6%) and OM (72.3 vs 71.0%) digestibilities of defaunated sheep but lowered (P less than .05) ruminal fluid isobutyrate concentration (.6 vs .8 mM). Sodium bicarbonate supplementation increased (P less than .05) ruminal fluid pH (6.4 vs 6.2), isobutyrate concentration (.75 vs .60 mM), total tract ADF digestibility (57.6 vs 54.2%), and ruminal NDF (41.6 vs 28.5%), ADF (36.6 vs 22.8%), and CP (-5.5 vs -26.8%) digestibilities in defaunated sheep. Dietary supplementation of urea or sodium bicarbonate increased nutrient digestion by defaunated sheep.  相似文献   

9.
The present work was an attempt to determine whether the variations in ruminal ammonia concentrations could be directly correlated to corresponding changes in total protozoa numbers of cattle. Four dry Friesian cows fed with hay-based rations were used through several experiments in which the twice daily feeding (6.15-15.30 h) as well as a 30 h-fasting period were studied. Simultaneously to a continuous or a regular collection of rumen liquor (for NH3), samples of rumen contents (for total protozoa numbers) were regularly withdrawn from the ventral sac. Any definite nycthemeral cycle of the protozoa numbers could not be related to feeding time. Moreover, no significant relationship could be found between the ruminal ammonia and the corresponding total protozoa numbers measured in the nocturnal interprandial period or during starvation. The data suggest that the nycthemeral ammonia profiles recorded in cattle are not directly related to protozoal activity.  相似文献   

10.
The effect of the presence of ruminal protozoa on the composition of fecal microbiota in cattle was investigated. Six castrated Holstein cattle (mean bodyweight 137 kg) were divided into two groups: three faunated and three unfaunated. The fecal bacterial composition of the faunated and unfaunated cattle was compared using a culture method and by terminal restriction fragment length polymorphism (T‐RFLP) analysis. Approximately 0.4 to 2.3% of the bacterial cells detected by microscopy formed colonies on medium 10. The major terminal restriction fragments were detected in the T‐RFLP profiles generated by Hha I and Msp I digestion in both the faunated and unfaunated cattle. In particular, the Bacteroides group, the Clostridium coccoides group and the Clostridium leptum subgroup might be the known bacterial groups that protozoa influence by Msp I digestion. From the dendrogram analysis by T‐RFLP patterns, the faunated and unfaunated cattle were divided into two clusters, I and II, respectively. These results suggest that absence of protozoa in the rumen changes the composition of fecal bacteria.  相似文献   

11.
Five ruminally, duodenally, and ileally cannulated sheep (average BW 62 kg) were fed 65% roughage: 35% concentrate diets (CP = 15%) in a 5 x 5 Latin square design to study the applicability of using a combination of defaunation with N supplements (soybean meal [SBM], corn gluten meal [CGM], blood meal [BM], urea, and casein) with different extents of ruminal degradation to manipulate microbial protein synthesis and amount of ruminal escape protein. Diets were fed twice daily (1,759 g DM/d). Defaunation was accomplished with 30-ml doses of alkanate 3SL3 (active ingredient: sodium lauryl diethoxy sulfate)/sheep daily for 3 d with 2 d of fasting. Treatment 1 (control) involved feeding faunated sheep a diet in which the supplemental N (45% of total dietary N) was 67% SBM N and 33% urea N. Treatment 2 involved feeding defaunated sheep the same diet as the control. Treatments 3, 4, and 5 involved feeding defaunated sheep diets in which the supplemental N source was either 67% CGM-BM (1:1 N ratio) N:33% urea N, or 33% CGM-BM N:67% urea N or 33% CGM-BM N:33% urea N:33% casein N, respectively. Compared with the faunated control, defaunation decreased (P less than .05) ruminal ammonia concentration (19 vs 26 mg/dl) and increased (P less than .05) CP flow to the duodenum (253 vs 214 g/d) due to a trend for increases in both bacterial (BCP) and nonbacterial (NBCP) CP flows.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
This study evaluated a technique for the nutritive defaunation of the rumen of cattle with subsequent single species refaunation using a cryopreserved monoculture of Entodinium caudatum (family Ophryoscolecidae). Four mature steers were nutritionally defaunated in two periods using two steers in each period. A diet containing (dry matter basis) 68% ground wheat grain, 7% wheat bran, 8% soybean oil and 17% wheat straw was used to decrease the pH of ruminal contents and to eliminate rumen ciliate protozoa. Protozoa‐free rumens were observed on day 8 and 9 in the first and second period, respectively, after the start of defaunation. A monoculture of E. caudatum (34/89/94) was transported from the Institute of Animal Physiology, Slovak Academy of Sciences in Ko?ice to the University of Kiel (Germany) in liquid nitrogen in October 1996. The inoculation was accomplished on day 15 in the second period by applying 30 ml culture medium with a monoculture of E. caudatum (34/89/94; average concentration of protozoal cells 2 650/ml) into the rumen of a defaunated steer via the ruminal fistula. The mono‐faunated steer was successfully inoculated with an average concentration of E. caudatum cells at 4.1 × 103/ml (SD = 0.2) on day 2 after the inoculation.  相似文献   

13.
Trials were conducted to determine effects of defaunation procedures on protozoal concentrations and in situ nutrient disappearance in steers and to determine effects of defaunation and supplemental protein source on performance of lambs. Four ruminally cannulated steers were isolated from other ruminants and fed a dehydrated alfalfa-cracked corn diet for three periods with four replicates (steers) per period. Treatments were as follows: 1) control (no defaunation), 2) dosing fasted steers for two consecutive days with 40 g dioctyl sulfosuccinate (DSS) and 3) daily feeding of 40 g DSS to defaunated, nonfasted steers. Ten days post-dosing with DSS (treatment 2), three steers were free of protozoa but one steer still had a ruminal concentration of .6 x 10(4) protozoa/ml. Compared to steers prior to defaunation, treating steers for 2 d with DSS decreased (P less than .05) both in situ soybean meal (SBM) N disappearance at 3, 6 and 9 h of incubation and in situ orchardgrass DM disappearance at 24 h of incubation. Feeding 40 g of DSS daily for 10 d was not successful in maintaining the rumen free of protozoa. Thirty crossbred Targhee lambs (avg wt, 25 kg) were defaunated with DSS and allotted by BW and sex to five treatments: 1) defaunated, fish meal supplemented at 9.5% dietary CP (FM-9.5% CP), 2) defaunated, SBM-9.5% CP, 3) refaunated, FM-9.5% CP, 4) refaunated, SBM-9.5% CP and 5) refaunated SBM-12% CP. Defaunated lambs remained free of protozoa during the 56-d performance trial that was initiated 24 d after the defaunation procedure.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The role of ciliate protozoa in nutrition of the ruminant   总被引:5,自引:0,他引:5  
The effects of ciliate protozoa on the ruminal ecosystem, digestion in different parts of the gut, the nature of nutrients available for absorption and their effects upon the nutrition and productivity of their host are reviewed. Compared with fauna-free ruminants, the presence of ciliate protozoa results in a more stable ruminal fermentation, higher levels of ammonia, reduced numbers of bacteria, as well as changes in dry matter (%), liquid volume and turnover rate of ruminal contents. Associated with these differences in the rumen are higher ruminal and total tract digestion of organic matter and fiber in faunated animals. A reduction in net microbial synthesis and an increase in dietary protein degradation in the rumen results in the flow of protein to the small intestine being lower in faunated ruminants. The major nutritional effect of the ciliate protozoa is to change the ratio of protein to energy in the nutrients absorbed, with faunated animals having lower protein and higher energy availabilities compared with ciliate-free ruminants. Of the nutrients available for absorption, the ciliates have no consistent effect on the proportions of volatile fatty acids or amino acids. However, there is evidence that hydrogenation of lipids is increased, as is the supply of choline, and that the bioavailability of copper is reduced by the presence of ciliates. Defaunation of young growing ruminants that are fed high energy diets, containing low levels of ruminal nondegradable protein, results in increased growth rate and feed efficiency. It is unlikely, with the possible exception of wool growth, that there are other situations in which defaunation will be beneficial; and it is more likely to be detrimental to animal productivity. It remains to be determined whether manipulation of the types of ciliate protozoa in the rumen could improve animal performance. Information for this review was largely derived from comparisons of faunated and fauna-free animals. However, it is indicated that there are large differences in protozoa numbers and types between naturally faunated individuals in the same flock or herd, and that the effects of such variations on their host's nutrition are unknown.  相似文献   

15.
The influence of rumen protozoa on the composition of rumen methanogens was studied by using seven growing Holstein cattle divided into two groups: four faunated and three unfaunated. 16S ribosomal RNA gene (rDNA) and methyl coenzyme‐M reductase (MCR) α subunit (mcrA) gene clonal libraries were constructed. The results of each analysis showed that Methanobacteriales was dominant in the rumen of both groups. By mcrA gene analysis, 22.1% of unfaunated clones were classified into unfaunated group 1, which was not detected from faunated cattle. The 16S rRNA gene analysis showed that the number of operational taxonomic units was higher in unfaunated than faunated cattle, suggesting the diversity of methanogens tended to be higher by the removal of protozoa. The results of the LIBSHUFF program indicated that the 16S rRNA gene and mcrA gene clone libraries for the faunated group differed from those for the unfaunated group (P = 0.001). It was suggested that the presence of protozoa strongly affected the composition of rumen methanogens.  相似文献   

16.
Fermentation characteristics were measured and numbers and distribution by genera of ciliate protozoa were determined in ruminal fluid samples collected from 10 ruminally cannulated steers during the first 30 d of their being fed barley-based diets containing 62% (Medium Barley) or 95% (High Barley) barley grain (DM basis). Ruminal samples were collected at 5-d intervals over the 30-d periods beginning after adaptation (i.e., at the first full feeding of each diet). Ruminal pH and ammonia concentrations were lower (P < 0.001) with the High Barley than with the Medium Barley diet. Concentrations of total VFA and propionate and amylase activity of ruminal fluid were higher (P < 0.001) on High Barley than on Medium Barley. Total protozoal numbers in ruminal fluid were 42% lower (P < 0.05) on High Barley (470 x 10(3)/mL) than on Medium Barley (804 x 10(3)/mL). On Medium and High Barley diets, respectively, Entodinium spp. made up 89 and 91% of the ciliate protozoal populations. With the Medium Barley diet, relative proportions of Dasytricha, Ophryoscolex, Ostracodinium, Diplodinium, and Metadinium spp. in the total ciliate population were 4.5, 0.4, 0.5, 0.7, and 0.3%, respectively. When the High Barley diet was fed, these genera were not detected. In a subsequent survey, ruminal samples were collected from 200 finishing cattle at slaughter. Average protozoal population was 328 x 10(3)/mL, and Entodinium spp. constituted 97% of the total. These data demonstrate that a large population of Entodinium spp. can persist in the rumen of cattle fed high barley grain-based finishing diets.  相似文献   

17.
High protozoa concentrations were found in the ruminal fluid of fattening bulls weighing 400 kg which were raised for the first five months of age in a large-size calf-raising plant. The ruminal fluid of these bulls, however, contained no protozoa of the group Holotricha. If the animals were fed a mixture of concentrates and pelleted straw (pH 6, 12.5 mMole of volatile fatty acids per 100 ml) 1 ml of the ruminal fluid was found to contain 827,000 protozoa whereas if the animals received rations rich in concentrates (pH 5.8, 14 mMole of volatile fatty acids) 1 ml of ruminal fluid contained only 578,000. Through protozoa transfer carried out by infusing 41 of a mixture of ruminal fluid from other cows per animal it was possible to settle other species, viz. Isotricha, Dasytricha and Ophryoscolex; this, in turn, produced a concomitant decrease in the number of Entodinium and a noticeable decline in the total protozoa population. Further work will be necessary to find out whether it would be advisable to influence the protozoa population of growing cattle kept in large-size cow plants in similar ways as described above.  相似文献   

18.
Effects of the presence or absence of ciliate protozoa on methanogenesis in the rumen and hindgut were investigated in young calves during a 7-week period. Ten Holstein calves, aged 7 days, were divided in two groups (n = 5) and fed an increasing amount of a commercial milk replacer and small amounts of a calves starter. One group was inoculated with ciliate fauna on two occasions, week 5 and 6, while the second remained ciliate-free. The absence of protozoa in the rumen decreased rumen empty weight (-23%, P < 0.01), and rumen pool size of N (-36%, P < 0.01) and crude fat (-37%, P < 0.05). Rumen bacteria of non-faunated calves contained a higher proportion of total amino acid-N per 16 g N (+3%, P < 0.01) and D-alanine-N per 16 g N (+13%, P < 0.05) compared to faunated calves. Further results contain a reference for a higher bacterial mass in the ciliate-free rumen with an increased number of bacteria adherent to rumen mucosa. The CH4 production in the rumen increased exponentially with the increase in protozoa population size (R2 = 0.68). In presence of 46 x 10(4) protozoa per ml rumen fluid, the in vitro CH4 production of rumen fluid per mol total VFA was about 34% higher in faunated than in non-faunated calves (P < 0.001). Hydrogen (2H) recovery of rumen fermentation was positively correlated (R2 = 0.55) to the CH4 production rate. Methanogens were attached on rumen mucosa. Methanogenesis, induced by rumen mucosa attached bacteria, was stimulated by ruminal protozoa. In the absence of protozoa in the rumen, the acetate-propionate ratio and butyrate proportion of VFA were reduced. In vivo, in the absence of protozoa not only the whole animal CH4 production (-30%, P < 0.05) but also the digestibility of carbohydrates (-4%, P < 0.05) was reduced. Thereby no difference was observed in the intake of ME per kg DM between the groups. In conclusion, the methanogenesis in the rumen, but not in hindgut, is associated with the development of the ruminal protozoa population. The level of methanogenesis (mol/mol VFA) in the hindgut amounts to 20% of the ruminal methanogenesis.  相似文献   

19.
Two experiments were carried out with sheep that originated from a fauna-free flock and were fed a soybean meal-corn silage diet with or without a bentonite supplement. One-half of the sheep fed each diet in each experiment were faunated with a mixed population of ruminal protozoa, whereas the other half of the sheep remained fauna-free until the end of both experiments. Wool growth and daily gain were measured in Exp. 1. (eight rams per treatment), which lasted 110 d, and the metabolic effects in the rumen and intestinal tract of protozoa and dietary bentonite supplement were tested with cannulated wethers (four wethers per treatment) in Exp. 2. The results of Exp. 1 showed decreased wool growth (P less than .05) due to the presence of protozoa in the rumen. Dietary supplementation with bentonite partly offset the decreased wool growth in sheep with protozoa, but there were no effects of dietary bentonite and no protozoa x bentonite interaction (P greater than .05). Daily gain was decreased by the dietary bentonite (P less than .05) supplement but was not affected (P greater than .05) by the ruminal presence of protozoa. In Exp. 2, protozoa increased (P less than .01) the ruminal concentrations of ammonia and decreased (P less than .05) the acetic:propionic acid molar ratio. Fractionation of N in the duodenal digesta flowing from the stomach to the small intestine showed that protozoa decreased (P less than .05) the flow of nonammonia N and bacterial N, and there was a protozoa x bentonite interaction for these effects (P less than .05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Strained ruminal fluid was collected from cattle fed five diets at two locations to determine in vitro rates of cyanogenesis from the glycosides amygdalin, prunasin and linamarin. Rates of dissociation for the corresponding aglycones, benzaldehyde cyanohydrin and acetone cyanohydrin, also were determined. Hydrogen cyanide (HCN) in ruminal fluid was determined with a modified method of HCN analysis that independently measured the overall rate of cyanogenesis and the nonenzymatic dissociation of cyanohydrins, the intermediate products in the degradation of cyanogenic glycosides to HCN. Rate of dissociation of cyanohydrins in ruminal fluid was pH-dependent, with high rates of dissociation (as expressed by the rate constant or half-life of the reaction) occurring at pH greater than 6 and slower rates at pH 5 to 6. Cyanohydrin dissociation was most rapid when cattle were fasted for 24 to 48 h and ruminal pH was high; rate of dissociation was much slower during feeding and digestion. When the glycosides were examined, highest rates of cyanogenesis (mg HCN.liter-1.s-1) were observed after a 24-h postprandial period. Hence, cattle are most susceptible to poisoning by cyanogenic plants when the pH of ruminal fluid is elevated (for rapid dissociation) and also when the activity of microbial beta-glucosidase is adequate for rapid hydrolysis of glycosidic bonds. Rates of cyanogenesis were higher when ruminal inocula were from cattle fed fresh alfalfa or cubed alfalfa hay rather than grain or long hay. Rates of HCN production were slowest using inocula from cattle fed grain; rates for the three glycosides were negligible at the 3 and 6 h postprandial sampling times.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号