首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cardiac troponin I (cTnI) and cardiac troponin T (cTnT) are sensitive and specific markers for myocardial ischemia and necrosis. Dogs with pericardial effusion frequently have myocardial ischemia and necrosis, and these changes are more severe in dogs with hemangiosarcoma (HSA). We investigated the utility of using serum cTnI and cTnT concentrations to identify the idiopathic pericardial effusion from that associated with HSA. Blood samples for measurement of cTnI and cTnT concentrations were collected before pericardiocentesis in 37 dogs with pericardial effusion. Eighteen dogs had a mass consistent with HSA, 6 dogs had idiopathic pericardial effusion, 1 dog had mesothelioma, and 1 dog had a heart base tumor. No final diagnosis was achieved for 11 dogs. Dogs with pericardial effusion had significantly higher serum concentrations of cTnI (P < .001) but not cTnT (P = .16) than did normal dogs. Dogs with HSA had significantly higher concentrations of cTnI (2.77 ng/dL; range: 0.09-47.18 ng/dL) than did dogs with idiopathic pericardial effusion (0.05 ng/dL; range: 0.03-0.09 ng/dL) (P < .001). There was no difference in the concentration of cTnT between dogs with HSA and those with idiopathic pericardial effusion (P = .08). Measurement of cTnI may be useful in helping to distinguish between idiopathic pericardial effusion and pericardial effusion caused by HSA.  相似文献   

2.
OBJECTIVE: To determine whether serum concentrations of cardiac troponin I (cTnI) and cardiac troponin T (cTnT) are increased in dogs with gastric dilatationvolvulus (GDV) and whether concentrations correlate with severity of ECG abnormalities or outcome. DESIGN: Prospective case series. ANIMALS: 85 dogs with GDV. PROCEDURE: Serum cTnl and cTnT concentrations were measured 12 to 24, 48, 72, and 96 hours after surgery. Dogs were grouped on the basis of severity of ECG abnormalities and outcome. RESULTS: cTnl and cTnT were detected in serum from 74 (87%) and 43 (51%) dogs, respectively. Concentrations were significantly different among groups when dogs were grouped on the basis of severity of ECG abnormalities (none or mild vs moderate vs severe). Dogs that died (n = 16) had significantly higher serum cTnI (24.9 ng/ml) and cTnT (0.18 ng/ml) concentrations than did dogs that survived (2.05 and < 0.01 ng/ml, respectively). Myocardial cell injury was confirmed at necropsy in 4 dogs with high serum cardiac troponin concentrations. CONCLUSIONS AND CLINICAL RELEVANCE: Results indicate that concentrations of cTnI and cTnT suggestive of myocardial cell injury can commonly be found in serum from dogs with GDV and that serum cardiac troponin concentrations are associated with severity of ECG abnormalities and outcome.  相似文献   

3.
Cardiac troponin I (cTnI) has proven to be a highly specific and sensitive marker for myocardial cellular damage in many mammalian species. The structure of cTnI is highly conserved across species, and assays for human cTnI (including the one used in the current study) have been validated in the dog. Blood concentrations of cTnI rise rapidly after cardiomyocyte damage, and assay of cTnI potentially may be valuable in many clinical diseases. The purpose of this study was to establish the normal range of cTnI in heparinized plasma of dogs and cats. Forty one clinically normal dogs and 21 cats were included in the study. One to 3 milliliters of blood were collected by venipuncture into lithium heparin vacutainers for analysis of cTnI (Stratusz CS). The range of plasma cTnI concentrations in dogs was <0.03 to 0.07 ng/mL with a mean of 0.02 ng/mL, with the upper tolerance limit (0.07 ng/mL) at the 90th percentile with 95% confidence. In cats, the range was <0.03 to 0.16 ng/mL with a mean of 0.04 ng/mL, and the upper tolerance limit (0.16 ng/mL) at the 90th percentile as well with 90% confidence. This study establishes preliminary normal ranges of plasma cTnI in normal dogs and cats for comparison to dogs and cats with myocardial injury or disease.  相似文献   

4.
Background: Atenolol often is used empirically in cats with hypertrophic cardiomyopathy (HCM) before the onset of heart failure, although evidence of efficacy is lacking. Cardiac biomarkers play a critical role in the early detection of subclinical cardiac disease, in the prediction of long‐term prognosis, and in monitoring the response to therapy in humans. Hypothesis: Circulating concentrations of the biomarkers N‐terminal pro‐B type natriuretic peptide (NT‐proBNP) and cardiac troponin I (cTnI) will decrease after chronic administration of atenolol PO to cats with severe HCM but no signs of heart failure. Animals: Six Maine Coon or Maine Coon cross cats with severe HCM. Methods: Cats were treated with atenolol (12.5 mg PO q12 h) for 30 days. No cat had left ventricular dynamic outflow tract obstruction caused by systolic anterior motion of the mitral valve. The concentrations of NT‐proBNP and cTnI were assayed before and on the last day of drug administration. Results: There was no statistically significant change in NT‐proBNP (median before, 394 pmol/L; range, 71–1,500 pmol/L; median after, 439 pmol/L; range, 24–1,500 pmol/L; P = .63) or in cTnI (median before, 0.24 ng/mL; range, 0.10–0.97 ng/mL; median after, 0.28 ng/mL; range, 0.09–1.0 ng/mL; P = .69) after administration of atenolol. Conclusions: Atenolol administration did not decrease NT‐proBNP or cTnI concentrations in cats with severe left ventricular hypertrophy caused by hypertrophic cardiomyopathy. These results suggest that atenolol did not decrease myocardial ischemia and myocyte death in these cats. A larger clinical trial is warranted to verify these findings.  相似文献   

5.
Background: Pulmonary hypertension (PH) is a disease condition leading to right-sided cardiac hypertrophy and, eventually, right-sided heart failure. Cardiac troponin I (cTnI) is a circulating biomarker of cardiac damage.
Hypothesis: Myocardial damage can occur in dogs with precapillary and postcapillary PH.
Animals: One hundred and thirty-three dogs were examined: 26 healthy controls, 42 dogs with mitral valve disease (MVD) without PH, 48 dogs with pulmonary hypertension associated with mitral valve disease (PH-MVD), and 17 dogs with precapillary PH.
Methods: Prospective, observational study. Serum cTnI concentration was measured with a commercially available immunoassay and results were compared between groups.
Results: Median cTnI was 0.10 ng/mL (range 0.10–0.17 ng/mL) in healthy dogs. Compared with the healthy population, median serum cTnI concentration was increased in dogs with precapillary PH (0.25 ng/mL; range 0.10–1.9 ng/mL; P < .001) and in dogs with PH-MVD (0.21 ng/mL; range 0.10–2.10 ng/mL; P < .001). Median serum cTnI concentration of dogs with MVD (0.12 ng/mL; range 0.10–1.00 ng/mL) was not significantly different compared with control group and dogs with PH-MVD. In dogs with MVD and PH-MVD, only the subgroup with decompensated PH-MVD had significantly higher cTnI concentration compared with dogs with compensated MVD and PH-MVD. Serum cTnI concentration showed significant modest positive correlations with the calculated pulmonary artery systolic pressure in dogs with PH and some echocardiographic indices in dogs with MVD and PH-MVD.
Conclusions and Clinical Importance: Serum cTnI is high in dogs with either precapillary and postcapillary PH. Myocardial damage in dogs with postcapillary PH is likely the consequence of increased severity of MVD.  相似文献   

6.
The cumulative cardiotoxicity that occurs as a result of doxorubicin chemotherapy is irreversible and can affect both quality and quantity of life for the cancer patient. Cardiac troponin I (cTnI) is a sensitive and specific marker of cardiomyocyte death. The purpose of this retrospective study was to evaluate serum concentrations of cTnI in dogs with lymphoma or osteosarcoma given doxorubicin chemotherapy, and with known cardiac outcome, based on a minimum assessment by physical examination and thoracic radiography. Serum samples were also available for cTnI measurement from seven healthy dogs given intracoronary doxorubicin. Serial serum samples obtained before, during and after doxorubicin chemotherapy showed increased cTnI concentrations in some clinical patients following chemotherapy (P = 0.0083 compared to baseline), but this did not correlate with clinical signs of cardiomyopathy. In dogs that subsequently developed cardiomyopathy however, serum cTnI concentrations were elevated before clinical signs became evident (confirmed with echocardiography).  相似文献   

7.
Cardiac troponin I (cTnI) and T (cTnT) have a high sequence homology across phyla and are sensitive and specific markers of myocardial damage. The purpose of this study was to evaluate the Cardiac Reader, a human point-of-care system for the determination of cTnT and myoglobin, and the Abbott Axsym System for the determination of cTnI and creatine kinase isoenzyme MB (CK-MB) in healthy dogs and in dogs at risk for acute myocardial damage because of gastric dilatation-volvulus (GDV) and blunt chest trauma (BCT). In healthy dogs (n = 56), cTnI was below detection limits (<0.1 microg/L) in 35 of 56 dogs (reference range 0-0.7 microg/L), and cTnT was not measurable (<0.05 ng/mL) in all but 1 dog. At presentation, cTnI, CK-MB, myoglobin, and lactic acid were all significantly higher in dogs with GDV (n = 28) and BCT (n = 8) than in control dogs (P < .001), but cTnT was significantly higher only in dogs with BCT (P = .033). Increased cTnI or cTnT values were found in 26 of 28 (highest values 1.1-369 microg/L) and 16 of 28 dogs (0.1-1.7 ng/mL) with GDV, and in 6 of 8 (2.3-82.4 microg/L) and 3 of 8 dogs (0.1-0.29 ng/mL) with BCT, respectively. In dogs suffering from GDV, cTnI and cTnT increased further within the first 48 hours (P < .001). Increased cardiac troponins suggestive of myocardial damage occurred in 93% of dogs with GDV and 75% with BCT. cTnI appeared more sensitive, but cTnT may be a negative prognostic indicator in GDV. Both systems tested seemed applicable for the measurement of canine cardiac troponins, with the Cardiac Reader particularly suitable for use in emergency settings.  相似文献   

8.
Background: Cardiac disease has the potential to alter platelet function in dogs. Evaluation of platelet function using the PFA‐100 analyzer in dogs of multiple breeds and with a broad range of cardiac conditions would help clarify the effect of cardiac disease on platelets. Objectives: The objective of this study was to assess differences in closure time (CT) in dogs with cardiac disease associated with murmurs, when compared with that of healthy dogs. Methods: Thirty‐nine dogs with cardiac murmurs and turbulent blood flow as determined echocardiographically were included in the study. The dogs represented 23 different breeds. Dogs with murmurs were further divided into those with atrioventricular valvular insufficiency (n=23) and subaortic stenosis (n=9). Fifty‐eight clinically healthy dogs were used as controls. CTs were determined in duplicate on a PFA‐100 analyzer using collagen/ADP cartridges. Results: Compared with CTs in the control group (mean±SD, 57.6±5.9 seconds; median, 56.5 seconds; reference interval, 48.0–77.0 seconds), dogs with valvular insufficiency (mean±SD, 81.9±26.3 seconds; median, 78.0 seconds; range, 52.5–187 seconds), subaortic stenosis (71.4±16.5 seconds; median, 66.0 seconds; range, 51.5–95.0 seconds), and all dogs with murmurs combined (79.6±24.1 seconds; median, 74.0 seconds; range, 48.0–187 seconds) had significantly prolonged CTs (P<.01). Conclusions: The PFA‐100 analyzer is useful in detecting platelet function defects in dogs with cardiac murmurs, most notably those caused by mitral and/or tricuspid valvular insufficiency or subaortic stenosis. The form of turbulent blood flow does not appear to be an important factor in platelet hypofunction in these forms of cardiac disease.  相似文献   

9.

Background

Few previous studies have investigated the association between biomarkers and cardiac disease findings in dogs with naturally occurring myxomatous mitral valve disease (MMVD).

Aim

To investigate if histopathological changes at necropsy could be reflected by in vivo circulating concentrations of cTnI and aldosterone, and renin activity, in dogs with naturally occurring congestive heart failure because of MMVD.

Animals

Fifty privately owned dogs with MMVD and heart failure.

Methods

Longitudinal Study. Dogs were prospectively recruited and examined by clinical and echocardiographical examination twice yearly until time of death. Blood was stored for batched analysis of concentrations of cTnI and aldosterone, and renin activity. All dogs underwent a standardized necropsy protocol.

Results

cTnI were associated with echocardiographic left ventricular end‐diastolic dimension (P < .0001) and proximal isovolumetric surface area radius (< .004). Furthermore, in vivo cTnI concentrations reflected postmortem findings of global myocardial fibrosis (P < .001), fibrosis in the papillary muscles (P < .001), and degree of arterial luminal narrowing (< .001) Aldosterone or renin activity did not reflect any of the cardiac disease variables investigated.

Conclusion and clinical importance

Cardiac fibrosis and arteriosclerosis in dogs with MMVD are reflected by circulating cTnI concentration, but not by aldosterone concentration or renin activity. Cardiac troponin I could be a valuable biomarker for myocardial fibrosis in dogs with chronic cardiac diseases.  相似文献   

10.
Tei index (myocardial performance) and cardiac biomarkers were evaluated in dogs with parvoviral enteritis (PVE). Tei index was calculated as isovolumic contraction time plus isovolumic relaxation time divided by ejection time. Myocardial and skeletal muscle damages were assessed by serum levels of cardiac troponin I (cTnI), creatine (phospho) kinase, lactate dehydrogenase and aspartate aminotransferase. Serum magnesium level was also determined. According to treatment response, dogs were divided into the survivor (n=20) and non-survivor groups (n=23). Seven healthy dogs served as controls. The mean value of the Tei index was higher in non-survivors, compared with survivors (p<0.02) and healthy controls (p<0.01). Serum level of cTnI in non-survivors was higher than that of survivors and controls (p<0.05). Tei index showed the highest sensitivity and specificity to predict mortality. The findings of an elevated Tei index and an increase in serum cTnI are factors associated with a poor prognosis in cases of canine parvovirosis.  相似文献   

11.
Cardiac troponin-I (cTnI) is a highly sensitive and specific marker of myocardial injury and can be detected in plasma by immunoassay techniques. The purpose of this study was to establish a reference range for plasma cTnI in a population of healthy dogs using a human immunoassay system and to determine whether plasma cTnI concentrations were high in dogs with acquired or congenital heart disease, specifically cardiomyopathy (CM), degenerative mitral valve disease (MVD), and subvalvular aortic stenosis (SAS). In total, 269 dogs were examined by physical examination, electrocardiography, echocardiography, and plasma cTnI assay. In 176 healthy dogs, median cTnI was 0.03 ng/mL (upper 95th percentile = 0.11 ng/mL). Compared with the healthy population, median plasma cTnI was increased in dogs with CM (0.14 ng/mL; range, 0.03-1.88 ng/mL; P < .001; n = 26), in dogs with MVD (0.11 ng/mL; range, 0.01-9.53 ng/mL; P < .001; n = 37), and in dogs with SAS (0.08 ng/mL; range, 0.01-0.94 ng/mL; P < .001; n = 30). In dogs with CM and MVD, plasma cTnI was correlated with left ventricular and left atrial size. In dogs with SAS, cTnI demonstrated a modest correlation with ventricular wall thickness. In dogs with CM, the median survival time of those with cTnI >0.20 ng/mL was significantly shorter than median survival time of those with cTnI <0.20 ng/mL (112 days versus 357 days; P = .006). Plasma cTnI is high in dogs with cardiac disease, correlates with heart size and survival, and can be used as a blood-based biomarker of cardiac disease.  相似文献   

12.
Objectives : The assessment of serum cardiac troponin I concentrations in dogs with a range of nonprimary cardiac illnesses has revealed that cardiac myocyte damage is commonplace in many canine diseases. Whilst it is well established that dogs with fatal immune‐mediated haemolytic anaemia frequently have cardiac pathology based on post‐mortem examinations, there is limited information on the incidence of cardiac myocyte damage in this population of dogs. Methods : Serum cardiac troponin I concentrations were measured in 11 healthy dogs, 27 dogs with primary haemolytic anaemia and 49 hospitalised dogs without primary cardiac or haematological disorders. Results : Dogs with primary haemolytic anaemia have higher serum concentrations of cardiac troponin I than hospitalised ill dogs (P<0.005) and healthy dogs (P<0.01). Using a cut‐off of less than 0.1 ng/mL, 20 of 27 dogs with primary haemolytic anaemia had increased serum cardiac troponin I concentrations, which was a significantly higher proportion compared to the hospitalised ill dogs (P<0.001, 16 out of 49 dogs) and healthy dogs (P<0.05, 3 out of 11 dogs). Clinical Significance : Dogs with primary haemolytic anaemia have a higher incidence of subclinical myocyte damage than healthy dogs or dogs with non‐haematological or primary cardiac illnesses. The prognostic significance of increased serum cardiac troponin I concentrations in dogs with primary haemolytic anaemia merits further investigation.  相似文献   

13.
OBJECTIVES: To assess the value of measuring blood levels of the myocardial protein cardiac troponin I (cTnl) in the diagnosis of congenital and acquired heart disease in the dog and in the evaluation of the severity of heart failure. METHODS: Serum samples obtained from healthy dogs (n = 26) and from dogs diagnosed with a variety of congenital and acquired heart conditions (n = 35) were assayed for cTnl concentration using an automated immunoassay method. Results were also analysed according to the degree of heart failure as assessed using the International Small Animal Cardiac Health Council's scheme. RESULTS: Healthy dogs had very low or undetectable blood cTnl levels, as did dogs with congenital heart disease. However, cTnl levels were significantly elevated in dogs with acquired mitral valve disease, dilated cardiomyopathy and pericardial effusion. Blood cTnl levels also varied with severity of heart failure. CLINICAL SIGNIFICANCE: Measurement of blood cTnl levels may be a useful aid in the diagnosis of dogs with suspected heart disease and in indicating the severity of heart failure.  相似文献   

14.
Doxorubicin has been shown to be cardiotoxic at high doses but is an efficacious chemotherapeutic agent in the treatment of canine lymphoma. Echocardiographic measurements and serum ultrasensitive cardiac troponin I (cTnI) levels were obtained before and after doxorubicin administration in 14 dogs diagnosed with lymphoma. The aim of this prospective study was to evaluate changes in cTnI concentrations and tissue velocity imaging (TVI) values in dogs with lymphoma undergoing chemotherapy with doxorubicin. A total of 182 cTnI and 1017 TVI measurements were performed. Standard echocardiographic parameters, tissue Doppler indices and cTnI concentrations did not differ at any time point within a 12‐week cyclic combination protocol. In conclusion, the use of doxorubicin at standard doses in the treatment of canine lymphoma may not be associated with significant myocardial damage.  相似文献   

15.
16.
Background: Cardiac troponin I (cTnI) is a polypeptide found specifically in cardiac muscle tissue that has been used as a diagnostic and prognostic indicator of cardiomyopathy. Increases in cTnI are associated with myocardial pathologic processes. However, high serum cTnI concentrations have been observed in normal Greyhounds.
Hypothesis: We hypothesized that Greyhounds have cTnI concentrations higher than non-Greyhound dogs, and that a separate reference range should be established for Greyhounds.
Animals: Blood samples were collected from the jugular vein from a group of 20 healthy Greyhound blood donors.
Methods: Analysis of serum cTnI was performed with an immunoassay system with a detection level of 0.01 ng/mL, as described previously. The Greyhound values were compared with 2 groups of Boxers with and without arrhythmogenic right ventricular cardiomyopathy (ARVC), and to a group of non-Boxer control dogs from a previous study.
Results: The mean cTnI concentration in Greyhounds was significantly higher ( P < .0001) than that in non-Greyhound control dogs, although not significantly different from normal Boxers ( P = .50), or Boxers with ARVC ( P = .58). Greyhound serum cTnI concentrations were in the range found in Boxers with ARVC. The proposed reference range for cTnI in Greyhounds is 0.05–0.16 ng/mL.
Conclusions and Clinical Importance: Greyhounds have a reference range for serum cTnI concentrations that differs from that of other previously published reference ranges for dogs of other breeds. Until a broader database and more precise reference range can be established, caution should be exercised in interpreting serum cTnI concentrations in Greyhounds with suspected cardiac disease.  相似文献   

17.
OBJECTIVE: To characterize clinical and clinicopathologic findings, response to treatment, and causes of systemic hypertension in cats with hypertensive retinopathy. DESIGN: Retrospective study. ANIMALS: 69 cats with hypertensive retinopathy. PROCEDURE: Medical records from cats with systemic hypertension and hypertensive retinopathy were reviewed. RESULTS: Most cats (68.1%) were referred because of vision loss; retinal detachment, hemorrhage, edema, and degeneration were common findings. Cardiac abnormalities were detected in 37 cats, and neurologic signs were detected in 20 cats. Hypertension was diagnosed concurrently with chronic renal failure (n = 22), hyperthyroidism (5), diabetes mellitus (2), and hyperaldosteronism (1). A clearly identifiable cause for hypertension was not detected in 38 cats; 26 of these cats had mild azotemia, and 12 did not have renal abnormalities. Amlodipine decreased blood pressure in 31 of 32 cats and improved ocular signs in 18 of 26 cats. CONCLUSIONS AND CLINICAL RELEVANCE: Retinal lesions, caused predominantly by choroidal injury, are common in cats with hypertension. Primary hypertension in cats may be more common than currently recognized. Hypertension should be considered in older cats with acute onset of blindness; retinal edema, hemorrhage, or detachment; cardiac disease; or neurologic abnormalities. Cats with hypertension-induced ocular disease should be evaluated for renal failure, hyperthyroidism, diabetes mellitus, and cardiac abnormalities. Blood pressure measurements and funduscopic evaluations should be performed routinely in cats at risk for hypertension (preexisting renal disease, hyperthyroidism, and age > 10 years). Amlodipine is an effective antihypertensive agent in cats.  相似文献   

18.
Cardiac troponin I (cTnI) is a marker for detection of myocardial damage in horses. Many cTnI assays exist and medical studies have shown that the clinical performance of assays differs. The aim of this study was to compare two different cTnI assays in horses. Serum samples were taken from 23 healthy horses (group 1) and 72 horses with cardiac disease (group 2). Cardiac troponin I was determined using assay 1 in laboratory A (limit of detection, LOD, 0.03 ng/mL) and assay 2 in laboratories B and C (LOD 0.01 ng/mL). In group 1, a median cTnI concentration of <0.03 (<0.03–0.04) ng/mL and <0.01 (<0.01–0.15) ng/mL was found with assays 1 and 2, respectively. A higher median value was demonstrated in group 2 for both assays (assay 1: 0.11 ng/mL, range 0.03–58.27 ng/mL, P < 0.001; assay 2: 0.02 ng/mL, range 0.01–22.87 ng/mL, P = 0.044). Although a significant correlation between assays existed, large mean differences that could be important for clinical interpretation of test results were found. A small mean difference was found between laboratories B and C. A significant optimal (P < 0.001) cut-off value for detection of cardiac disease could only be determined for assay 1 (0.035 ng/mL, sensitivity 70%, specificity 91%). Assay 1 performed better for detection of cardiac disease in horses in this study.  相似文献   

19.
ObjectiveTo analytically validate a commercially available high-sensitivity immunoassay for measurement of cardiac troponin I (cTnI) in humans for use in dogs and to evaluate serum cTnI concentrations in healthy dogs and 3 well-defined groups of dogs with common cardiac diseases.AnimalsCanine serum samples were used for validation. 85 client-owned dogs including 24 healthy controls, 20 with myxomatous mitral valve disease, 19 with congenital heart disease, and 22 with arrhythmias.MethodsFour serum samples were used to analytically validate the ADVIA Centaur TnI-Ultra assay by assessing intra-assay variability, inter-assay variability, spiking recovery, and dilutional parallelism. Dogs were grouped based on examination, echocardiography, and additional testing as clinically indicated, and serum cTnI concentrations were compared.ResultsAnalysis of the serum samples used for validation revealed an intra-assay coefficient of variation between 3.6% and 5.7%, and an inter-assay coefficient of variation between 2.4% and 5.9%. Observed to expected ratios for spiking recovery were 97.9 ± 8.6% (mean, SD). Observed to expected ratios for dilutional parallelism were 73.0 ± 11.5% (mean, SD). Dogs with cardiac disease had significantly higher serum cTnI concentrations (P < 0.005) than healthy dogs.ConclusionsThe ADVIA Centaur TnI-Ultra's low limit of detection allows measurement of serum cTnI in the majority of dogs even with no or mild cardiac disease. Dilution of samples for measurement of values above the upper limit of detection is not reliable and therefore not recommended. Serum cTnI concentrations are significantly higher in dogs with cardiac disease compared to healthy dogs.  相似文献   

20.
Comparison of the QT interval and corrected QT interval values that were calculated by the methods of Bazett (QTc1) and Fridericia (QTc2) were made between dogs with or without cardiac diseases to determine the influence of the QT interval on canine heart failure. Upon comparison of the measured values on ECG between the cardiac disease and non-cardiac disease groups, it was observed that the heart rate(HR) was significantly higher in the cardiac disease group than in the non-cardiac disease group, although the QT interval was similar in the two groups. The QTc1 and QTc2 were significantly longer in the cardiac disease group than in the non-cardiac disease group. With the progression of the New York Heart Association Class, the HR tended to increase. The QTc1 and QTc2 became significantly prolonged with the progression of heart failure. Nevertheless, because Bazett's correction formula is known to overcorrect when the HR is high, it was considered that the QTc1 was actually overcorrected by high HR with the progression of heart failure. The QTc2, on the other hand, was only slightly influenced by HR, suggesting that the prolongation was due to the progression of heart failure. These results suggest that the prolongation of QTc2 in cardiac disease reflects the substantial prolongation of the QT interval without the influence of HR. It is suggested that the QTc2 could be a useful parameter for assessing the degree of heart failure in dogs with cardiac disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号