首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 203 毫秒
1.
自从20世纪70年代中国成功实现杂交水稻三系配套以来,不少学者致力于水稻细胞质雄性不育及育性恢复的机理研究。近年来,国内外科学家已定位和克隆了控制细胞质雄性不育和育性恢复的基因。2006年华南农业大学刘耀光研究组在《The Plant Cell》上发表论文揭示:BoroⅡ型水稻细胞质雄性不育由线粒体编码的细胞毒素肽引起,两个含PPR蛋白基因中的任何一个均可破坏或降解细胞毒素肽使植株育性恢复,从而在分子水平解释了BoroⅡ型水稻细胞质雄性不育及育性恢复性的机理。这是中国科学家对植物细胞质雄性不育及育性恢复研究的最新贡献。  相似文献   

2.
水稻细胞质雄性不育的研究进展   总被引:3,自引:0,他引:3  
邓加省  余显权 《种子》2004,23(11):40-44
细胞质雄性不育性的发现受到育种家的广泛重视,它的形成机理同细胞质遗传理论密切相关.在杂交水稻生产中不育系决定着杂交水稻的生产及其种植面积.在不育性研究中主要是研究育性恢复基因对不育基因的恢复能力.前人的研究主要是从一个恢复系对应的一个不育系进行,也有人尝试着用恢杂的方式进行恢复基因的位置研究,不同的类型得出了不同的结论.本文对野败型、包台型、滇型、红莲型、马协型的遗传及基因的分子标记进行综述,对分子生物技术在水稻细胞质雄性不育中的发展及应用进行探讨.以期为水稻细胞质雄性不育的研究及其在生产中的应用提供参考.  相似文献   

3.
植物细胞质雄性不育基因的鉴定及育性调控机理   总被引:2,自引:0,他引:2  
细胞质雄性不育(cytoplasmic male sterility,CMS)是作物杂交种生产的主要授粉控制系统,研究细胞质雄性不育分子基础及调控机理对利用杂种优势提高作物产量具有重要的指导意义。本文从植物的线粒体基因与细胞质雄性不育的关系着手,列举了植物CMS基因的鉴定情况,重点介绍了研究较多的矮牵牛、玉米、水稻和油菜细胞质雄性不育基因的鉴定进展及其对不育性状的调控。同时根据恢复基因与不育基因的相互作用情况阐述了育性恢复的可能机理,并对植物CMS分子机理的研究前景进行了展望。  相似文献   

4.
此文综述了水稻细胞质雄性不育恢复基因的分子定位研究成果,回顾了前人关于存在于第10染色体上的恢复基因之间相互关系的研究与探讨,并结合水稻细胞质雄性不育特点及分子机理论述了恢复基因的关系,以期为深入研究水稻细胞质雄性不育机理和应用水稻杂种优势提供参考。  相似文献   

5.
细胞质雄性不育及其恢复系统在杂交水稻生产中必不可少,而从野生稻中鉴定、发掘细胞质雄性不育恢复源对促进杂交水稻的发展产生深远的影响。为了发掘东乡野生稻的育性恢复基因,应用协青早A/(协青早B//协青早B/东乡野生稻BC1F10)和中9A/(协青早B//协青早B/东乡野生稻BC1F10)两套测交群体,开展东乡野生稻细胞质雄性不育育性恢复经典遗传学研究。结果表明:东乡野生稻对矮败型(CMS-DA)和印尼水田谷败型(CMS-IA)的育性恢复表现为质量-数量性状,东乡野生稻对矮败型(CMS-DA)和印尼水田谷败型(CMS-IA)的育性恢复的控制存在主效恢复基因,同时还受到微效基因的影响。此外,还就东野恢复基因发掘及其在杂交水稻育种的生产应用进行了探讨。  相似文献   

6.
植物细胞质雄性不育育性恢复基因研究进展   总被引:1,自引:1,他引:0  
杂种优势已广泛应用于农业生产,这其中主要依靠细胞质雄性不育系统。细胞质雄性不育“三系”是杂交种选育的基础材料。其中,强恢复系的选育非常繁琐,且恢复力只能通过与不育系的测交来鉴定,既耗时又费力,因此,人们对育性恢复基因进行了大量的研究。本文归纳了恢复基因的结构特征、作用机理、遗传模式、基因定位及克隆上的研究进展和存在问题。认为随着二代测序技术的发展,可以利用全基因组重测序和转录组测序等技术开发新型分子标记进行恢复基因精细定位,或直接通过测序技术鉴定恢复基因。这将为恢复系的分子标记辅助选育和利用基因工程手段人工改良和创制恢复系提供帮助,也将为研究细胞质雄性不育育性恢复基因的遗传、进化和特征,全面解析植物细胞质雄性不育育性恢复机理奠定基础。  相似文献   

7.
近年红莲型细胞质雄性不育系选配的三系杂交水稻表现出优质、高产、广适应性、高效等特点,具有很好的应用前景。本实验室以红莲型细胞质雄性不育-育性恢复系统为材料深入研究了红莲型细胞质雄性系的不育、育性恢复及水稻核质互作的分子生物学基础,与此同时,强化了优质高产广适应性红莲型杂交稻选育及其产业化。本文总结了红莲型杂交稻研究的主要进展。  相似文献   

8.
细胞质雄性不育(cytoplasmic male sterility,CMS)及育性恢复(restorer of fertility,Rf)是作物杂种优势利用的有效途径之一,由线粒体不育基因和核恢复基因互作产生。本文综述了水稻CMS和Rf基因的来源及其分子遗传机理,并展望了水稻CMS和Rf系统在水稻育种方面的应用。  相似文献   

9.
中国科学家在水稻籼粳杂种不育研究取得突破性进展   总被引:3,自引:1,他引:2  
2008年,华中农业大学张启发院士以及华南农业大学刘耀光教授领导的研究团队先后在<美国科学院院报>发表了他们对籼粳稻杂种不育的最新研究成果.其研究团队不仅分别克隆了控制水稻杂种雌配子(胚囊)育性基因座位上的广亲和基因S5和雄配子不育基因Sα,还对这些基因所在座位等位基因之间的相互作用关系进行了详细分析,提出了S5基因座上三等位基因系统(triallelic system)模式和Sα座位中的"两基因/三元件互作"的模型(two-gene/three-component interaction model).他们的研究成果在水稻杂交育种和水稻品质改良方面均有重要的应用价值,在生物进化中生殖隔离形成的分子机理上提供了具有重要理论价值的证据.这是中国科学家继2006年阐明Boro Ⅱ型水稻细胞质雄性不育和育性恢复的分子机理以后,在植物杂种不育机理研究方面又一次做出的重要贡献.  相似文献   

10.
邹德洪  邹小云  贺浩华 《种子》2006,25(10):32-37
对水稻细胞质雄性不育与叶绿体基因组、线粒体基因组、质粒基因组和核基因组的遗传以及育性相关基因的分子标记定位、辅助选择、克隆与表达研究现状进行了综述,并对水稻细胞质雄性不育分子机理和分子生物学研究进行了展望。  相似文献   

11.
植物细胞质雄性不育育性恢复基因研究进展   总被引:1,自引:0,他引:1  
植物杂种优势在生产上已被广泛应用,对提高产量和改善品质有重要意义,而生产杂交种的重要途径是细胞质不育及其恢复系统。在杂交品种选育过程中,优良恢复系选育至关重要。近年来植物细胞质雄性不育性恢复的分子机理一直是分子生物学的研究热点。本文综述了目前恢复基因研究的主要进展,讨论了恢复基因的遗传与定位。认为细胞质雄性不育恢复基因一般为单基因或少数显性效应主效基因,且恢复基因间作用方式多样化。目前,玉米Rf2基因、矮牵牛Rf基因、水稻Rf-1基因、萝卜Rfo基因都已被克隆。在这些恢复基因的克隆与分离基础上,本文讨论了恢复基因的结构特征及分子机理,认为恢复基因的可能分子机理,一种是恢复基因抑制细胞质雄性不育(CMS)特异ORF的表达,另一种是恢复基因补偿线粒体功能的缺陷。本文最后对恢复基因在植物分子育种上的应用前景提出了看法。  相似文献   

12.
水稻两用核不育系繁殖基地计算机选择系统研制与应用   总被引:2,自引:0,他引:2  
为了解决水稻两用核不育系繁殖产量不高不稳、种子质量差、效益低的问题,利用全国740个气象站点50年的气象资料,应用计算机处理技术,开发了水稻两用核不育系繁殖基地计算机选择系统,并利用该系统筛选最适宜的水稻两用核不育系繁殖基地。该系统以同时满足不育系育性敏感安全期和抽穗扬花安全期光温条件为依据,采用Java语言编制而成。针对不育起点温度为22.0℃、22.5℃、23.0℃、23.5℃和24.0℃的水稻两用核不育系,分别筛选到24、29、20、21和22个安全系数优于海南三亚冬繁的基地,以上5种不育起点温度的水稻两用核不育系在最佳繁殖基地繁种成功概率分别可达83%、93%、100%、100%和100%。2010年,在应用本系统筛选到的云南保山繁种基地进行了不育起点温度为22.0℃的水稻两用核不育系C815S的繁殖,单产达8 437.5 kg hm-2,创造了我国水稻两用核不育系繁殖产量最高记录,证实采用该计算机系统选择两用不育系繁殖基地是有效的。因此,采用本系统筛选到的繁殖基地进行水稻两用核不育系繁殖,可望解决海南冬季繁殖风险大、产量不高、种子质量差以及冷水串灌繁殖产量不高不稳和效益低下的问题,值得推广应用。  相似文献   

13.
Heterosis is an important way to improve yield and quality for many crops. Hybrid rice and hybrid maize contributed to enhanced productivity which is essential to supply enough food for the increasing world population. The success of hybrid rice in China has led to a continuous interest in hybrid wheat, even when most research on hybrid wheat has been discontinued in other countries for various reasons including low heterosis and high seed production costs. The Timopheevii cytoplasmic male sterile system is ideal for producing hybrid wheat seeds when fertility restoration lines with strong fertility restoration ability are available. To develop PCR-based molecular markers for use in marker-assisted selection of fertility restorer lines, two F2 populations derived from crosses R18/ND36 and R9034/ND36 were used to map fertility restoration genes in the two elite fertility restorer lines (R-lines) R18 and R9034. Over 678 SSR markers were analyzed, and markers closely linked to fertility restoration genes were identified. Using SSR markers, a major fertility restoration gene, Rf3, was located on the 1B chromosome in both populations. This gene was partially dominant in conferring fertility restoration in the two restorer lines. SSR markers Xbarc207, Xgwm131, and Xbarc61 are close to this gene. These markers may be useful in marker-assisted selection of new restorer lines with T. timopheevii cytoplasm. Two minor QTL conferring fertility restoration were also identified on chromosomes 5A (in R18) and 7D (in R9034) in two R-lines.  相似文献   

14.
雄性不育系“NEWFREE”的特点及其在观赏向日葵中的利用   总被引:2,自引:0,他引:2  
刘公社  徐夙侠  刘小丽 《作物学报》2006,32(11):1752-1755
雄性不育(male sterility)是向日葵杂种优势利用的重要途径。目前,全世界均是利用细胞质雄性不育性生产商用杂交种,因此,向日葵雄性不育性的发现和利用是育种学家们研究的重要课题。本研究采用了不同地理来源的20份自交系材料作育性试验,结果表明, “NEWFREE”雄性不育系具有与PET1完全不同的恢复系和保持系,很可能是  相似文献   

15.
Hybrid varieties developed by making use of the wild abortive cytoplasmic male sterility system account for 90% of hybrid rice produced. Previous inheritance studies have established that the fertility restoration in this system is controlled by two major loci, but the chromosomal locations of the fertility restorer (Rf) loci have yet to be resolved. In this study we determined the genomic locations of the two Rf loci by their linkage to molecular markers. The Rf gene containing regions were identified by surveying two bulks, made of 30 highly fertile and 46 highly sterile plants from a large F2 population of the cross between Zhenshan 97A and Minghui 63, with RFLP markers covering the entire rice genome. The survey identified two likely Rf gene containing regions, located on chromosomes 1 and 10 respectively. This was confirmed by ANOVA using a large random sample from the same F2 population and also with a genome-wide QTL analysis of a test-cross population. The results also showed that both loci have major effects of almost complete dominance on fertility restoration and the effect of the locus on chromosome 10 is larger than the one on chromosome 1. The two loci acted as a pair of classical duplicate genes; a single dominant allele at one of the two loci would suffice to restore the fertility to normal or nearly normal. Closely linked markers identified in this study may be used for marker assisted selection in hybrid rice breeding programs. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
Cytoplasmic male sterility (CMS) hybrid rice has made a great contribution to the increase of rice yield globally. To facilitate the development of high‐quality pairs of the wild abortive (WA) male sterile and maintainer lines, the genetic basis of fertility restoration of WA‐CMS and stigma exsertion was investigated in this study using a testcross population with the WA‐CMS background. Seed‐setting rate and stigma exsertion rate were used as the indicators of the two traits, respectively. Results showed that four minor QTL regions from 9311 were responsible for the variation of seed‐setting rate, while a few minor QTLs and epistatic QTL pairs influenced stigma exsertion rate. These results would be of great use in the development of high‐quality pairs of WA male sterile and maintainer lines in rice.  相似文献   

17.
棉花胞质雄性不育恢复系选育技术探索   总被引:7,自引:0,他引:7  
 以成功培育出胞质雄性不育恢复系所积累的资料为依据,提出了以与胞质雄性不育系具相同遗传背景的可育种质为原始材料,利用遗传过滤技术培育胞质雄性不育恢复系的选育方法。论述了遗传过滤技术及其应用原则,可作为棉花杂种优势利用研究中胞质雄性不育恢复系培育的参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号