首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
通过田间长期定位试验,分层采集冬小麦-休闲种植体系0—40 cm土层的土样,研究了常规、地表覆膜和覆草栽培对土壤有机碳、无机碳和轻质有机碳的影响。结果表明,覆膜或覆草可以显著增加地上部小麦生物量和子粒产量。不同地表覆盖对0—40 cm土层的无机碳含量和分布无显著影响,但与常规栽培相比,地表覆膜使0—5 cm土层的有机碳含量显著降低,0—40 cm各土层轻质有机碳表现出明显降低趋势,平均降低 C 6.1~74.5 mg/kg;地表覆草却表现出明显增加土壤轻质有机碳的趋势,0—5,5—10,10—20 cm土层的轻质有机碳含量分别增加C 235.2、190.0和144.9 mg/kg,相当于常规的38.7%,32.9%和34.5%。同时,覆草栽培还表现出降低0—10 cm土层轻质有机质含碳量的趋势,并使0—20 cm土层轻质有机碳占有机碳的比例显著高于常规栽培和地表覆膜处理。可见,地表长期覆膜不利于旱地土壤有机碳累积,覆草不仅可以增加表层土壤的轻质有机碳累积,还可改善土壤碳氮组成。  相似文献   

2.
王栋  李辉信  胡锋 《土壤学报》2011,48(6):1203-1209
通过始建于2003年中国南方季节性干旱区(江西省余江县)的双季稻田定位试验,于2005~2007年研究了水稻覆草旱作和免耕覆草旱作对稻田土壤理化性质和生物学性质的影响。结果表明,覆草旱作、免耕覆草旱作的耕层土壤容重和总孔隙度与常规水作的差异不显著。与常规水作相比,免耕覆草旱作显著提高土壤有机质、全氮、碱解氮和土壤基础呼吸;与常规水作相比,覆草旱作和免耕覆草旱作均显著提高土壤微生物生物量碳含量、脲酶和蔗糖酶活性。由此可知,覆草旱作和免耕覆草旱作可以作为该区积极推行的具有培肥地力作用的节水型稻作栽培模式。  相似文献   

3.
以春小麦品种‘陇春27’为试材,采用田间试验法,以裸地平作为对照,研究半干旱区旱地全膜覆土穴播和全沙覆盖平作对小麦田土壤水分和产量的调节作用。结果表明:与裸地平作(CK)相比,全膜覆土穴播(PM)和全沙覆盖平作(SM)小麦田0~40 cm土壤水分条件明显改善,尤其在干旱年份,能满足小麦前期生长,同时促进小麦出苗后对0~200 cm土壤水分的利用;种植第1年PM在60~80 cm土层耗水量最大,SM和CK在40~60 cm土层耗水量最大;种植第2年PM以120~180 cm土层耗水量最多,SM和CK则以60~80 cm土层耗水量最多。连续种植两年后,PM耗水深度从120 cm延伸到200 cm,SM耗水深度从120 cm延伸到140 cm,CK耗水深度无变化;小麦田休闲效率PM最大,SM次之,CK最小,但是各处理休闲效率随种植年限增加而降低。可见,PM和SM能改善小麦前期生长水分环境,促进出苗后耗水,并加快小麦对土壤深层水分的利用,因而与CK相比,PM产量增加48.77%~815.79%,SM产量增加49.41%~702.24%。但随种植年限增加,耗水深度加大,休闲效率降低,多年种植可能对土壤水分生态产生不利影响。  相似文献   

4.
The large dryland area of the Loess Plateau (China) is subject of developing strategies for a sustainable crop production, e.g., by modifications of nutrient management affecting soil quality and crop productivity. A 19 y long‐term experiment was employed to evaluate the effects of fertilization regimes on soil organic C (SOC) dynamics, soil physical properties, and wheat yield. The SOC content in the top 20 cm soil layer remained unchanged over time under the unfertilized plot (CK), whereas it significantly increased under both inorganic N, P, and K fertilizers (NPK) and combined manure (M) with NPK (MNPK) treatments. After 18 y, the SOC in the MNPK and NPK treatments remained significantly higher than in the control in the top 20 cm and top 10 cm soil layers, respectively. The MNPK‐treated soil retained significant more water than CK at tension ranges from 0 to 0.25 kPa and from 8 to 33 kPa for the 0–5 cm layer. The MNPK‐treated soil also retained markedly more water than the NPK‐treated and CK soils at tensions from 0 to 0.75 kPa and more water than CK from 100 to 300 kPa for the 10–15 cm layer. There were no significant differences of saturated hydraulic conductivity between three treatments both at 0–5 and 10–15 cm depths. In contrast, the unsaturated hydraulic conductivity in the MNPK plot was lower than in the CK plot at depths of 0–5 cm and 10–15 cm. On average, wheat yields were similar under MNPK and NPK treatments and significantly higher than under the CK treatment. Thus, considering soil‐quality conservation and sustainable crop productivity, reasonably combined application of NPK and organic manure is a better nutrient‐management option in this rainfed wheat–fallow cropping system.  相似文献   

5.
In rainfed semi‐arid agroecosystems, soil organic carbon (SOC) may increase with the adoption of alternative tillage systems (e.g. no‐tillage, NT). This study evaluated the effect of two tillage systems (conventional tillage, CT vs. NT) on total SOC content, SOC concentration, water stable aggregate‐size distribution and aggregate carbon concentration from 0 to 40 cm soil depth. Three tillage experiments were chosen, all located in northeast Spain and using contrasting tillage types but with different lengths of time since their establishment (20, 17, and 1‐yr). In the two fields with mouldboard ploughing as CT, NT sequestered more SOC in the 0–5 cm layer compared with CT. However, despite there being no significant differences, SOC tended to accumulate under CT compared with NT in the 20–30 and 30–40 cm depths in the AG‐17 field with 25–50% higher SOC content in CT compared with NT. Greater amounts of large and small macroaggregates under NT compared with CT were measured at 0–5 cm depth in AG‐17 and at 5–10 cm in both AG‐1 and AG‐17. Differences in macroaggregate C concentration between tillage treatments were only found in the AG‐17 field at the soil surface with 19.5 and 11.6 g C/kg macroaggregates in NT and CT, respectively. After 17 yr of experiment, CT with mouldboard ploughing resulted in a greater total SOC concentration and macroaggregate C concentration below 20 cm depth, but similar macroaggregate content compared with NT. This study emphasizes the need for adopting whole‐soil profile approaches when studying the suitability of NT versus CT for SOC sequestration and CO2 offsetting.  相似文献   

6.
This study investigated long‐term effects of soil management on size distribution of dry‐sieved aggregates in a loess soil together with their organic carbon (OC) and their respiratory activity. Soil management regimes were cropland, which was either abandoned, left bare fallow or cropped for 21 yr. Abandonment increased the abundance of macroaggregates (>2 mm) in the surface soil layer (0–10 cm) and reduced that of microaggregates (<0.25 mm) relative to Cropping, whereas the Fallow treatment reduced the abundance of macroaggregates at depths of 0–10 and 10–20 cm. All treatments yielded similar aggregate size distributions at a depth of 20–30 cm. The SOC content of aggregate size fractions in the surface soil from the Abandoned plots was greater (by 1.2–4.8 g/kg) than that of the corresponding fractions from the Cropped plots, but the opposite trend was observed in the subsurface soils. Conversely, the Fallow treatment reduced the SOC content of every aggregate size fraction. Smaller aggregates generally exhibited greater cumulative levels of C mineralization than larger ones. However, the bulk of the SOC losses from the soils via mineralization was associated with aggregates of >2 mm. Abandonment significantly increased the relative contribution of macroaggregates (>2 mm) to the overall rate of SOC loss, whereas the Fallow treatment significantly reduced the contribution of 0.25–2 mm aggregates to total SOC loss in the surface soil while substantially increasing their contribution in the subsurface soil.  相似文献   

7.
To improve soil structure and take advantage of several accompanying ecological benefits, it is necessary to understand the underlying processes of aggregate dynamics in soils. Our objective was to quantify macroaggregate (> 250 μm) rebuilding in soils from loess (Haplic Luvisol) with different initial soil organic C (SOC) contents and different amendments of organic matter (OM) in a short term incubation experiment. Two soils differing in C content and sampled at 0–5 and 5–25 cm soil depths were incubated after macroaggregate destruction. The following treatments were applied: (1) control (without any addition), (2) OM1 (addition of OM: preincubated wheat straw [< 10 mm, C : N 40.6] at a rate of 4.1 g C [kg soil]–1), and (3) OM2 (same as (2) at a rate of 8.2 g C [kg soil]–1). Evolution of CO2 released from the treatments was measured continuously, and contents of different water‐stable aggregate‐size classes (> 250 μm, 250–53 μm, < 53 μm), microbial biomass, and ergosterol were determined after 7 and 28 d of incubation. Highest microbial activity was observed in the first 3 d after the OM application. With one exception, > 50% of the rebuilt macroaggregates were formed within the first 7 d after rewetting and addition of OM. However, the amount of organic C within the new macroaggregates was ≈ 2‐ to 3‐fold higher than in the original soil. The process of aggregate formation was still proceeding after 7 d of incubation, however at a lower rate. Contents of organic C within macroaggregates were decreased markedly after 28 d of incubation in the OM1 and OM2 treatments, suggesting that the microbial biomass (bacteria and fungi) used organic C within the newly built macroaggregates. Overall, the results confirmed for all treatments that macroaggregate formation is a rapid process and highly connected with the amount of OM added and microbial activity. However, the time of maximum aggregation after C addition depends on the soil and substrate investigated. Moreover, the results suggest that the primary macroaggregates, formed within the first 7 d, are still unstable and oversaturated with OM and therefore act as C source for microbial decomposition processes.  相似文献   

8.
覆膜栽培及抑制剂施用对稻田N2O排放的影响   总被引:1,自引:0,他引:1  
张怡  吕世华  马静  徐华  袁江  董瑜皎 《土壤》2013,45(5):830-837
采用静态箱-气相色谱法研究脲酶抑制剂氢醌(Hydroquinone, HQ)与硝化抑制剂双氰胺(Dicyandiamide, DCD)配合施用(HQ/DCD)对常规栽培和水稻覆膜节水高产栽培下四川丘陵地区稻田的N2O排放的影响。结果表明,水稻生长期,常规栽培和水稻覆膜节水高产栽培稻田N2O排放总量分别为41.8 mg/m2 和506.9 mg/m2。HQ/DCD施用减少常规栽培与水稻覆膜节水高产栽培稻田N2O季节总排放,降幅分别为25.2% 和48.5%。常规栽培和水稻覆膜节水高产栽培N2O季节总排放占施氮量的0.3% 和3.4%,施入HQ与DCD后,其N2O季节总排放分别降为施氮量的0.2% 和1.7%,HQ/DCD施用对水稻覆膜节水高产栽培下的N2O减排更为有效。各处理N2O排放与5 cm土壤温度、土壤Eh无显著相关性。  相似文献   

9.
Five field experiments were conducted to study the effects of continuous plastic film mulching on rice yield, water use efficiency and soil properties on different soils with great environmental variabilities in Zhejiang Province, China, under non-flooding condition. The experiment started in 2001 at five sites and ended in 2003 with one rice crop annually. Three treatments included plastic film mulching with no flooding (PM), no plastic film mulching and no flooding (UM), and traditional flooding management (TF). Soil samples were collected after the third year of the experimentation and were analyzed for soil properties. PM increased soil temperature, accelerated decomposition of organic carbon and root growth, there was a slight but statistically insignificant trend of decline in soil bulk density. PM produced the similar rice grain yield as TF at two sites, significantly higher grain yield (5.8% and 20.0% higher) at other two sites, but significantly lower (34.3% lower) yield at one site where no irrigation water was applied and rainfall was the sole water source for rice growth. PM increased water use efficiency by 69.6–106.0% and irrigation water use efficiency by 273.7–519.6%. Compared to TF, PM decreased soil organic matter content by 8.3–24.5%, soil total N by 5.2–22.0%, and available K by 9.6–50.4% at all sites. PM treatment also reduced soil available N by 8.5–26.5% at four sites. Soil total P content in PM treatments reduced by 13.5–27.8% at three sites, and increased by 6.6–8.2% at other two sites. However, PM increased soil available P by 20.9–64.7% at all sites. Systematic cluster analysis indicated the PM treatment distinctively clustered from the other treatment. These results suggested PM could gain higher yield under appropriate water condition and PM may change soil nutrient cycle.  相似文献   

10.
Changes in the carbon (C) stock of grassland soil in response to land use change will increase atmospheric CO2, and consequently affect the climate. In this study we investigated the effects of land use change on soil organic C (SOC) and nitrogen (N) along a cultivation chronosequence in the Xilin River Basin, China. The chronosequence consisted of an undisturbed meadow steppe, a 28‐year‐old cropland and a 42‐year‐old cropland (abbreviated as Steppe, Crop‐28 Y and Crop‐42Y, respectively). Crop‐28Y and Crop‐42Y were originally created on the meadow steppe in 1972 and 1958, respectively. The soil samples, in ten replications from three depth increments (0–10, 10–20 and 20–30 cm), were collected, respectively, in the two cropland fields and the adjacent undisturbed steppe. Bulk density, SOC, total N and 2 m KCl‐extractable mineral N including ammonium and nitrate were measured. Our results showed that the greatest changes in the measurements occurred in the 0–10 cm soil depth. The SOC stock in the upper 30‐cm soil decreased by 9.83 Mg C ha−1 in Crop‐28Y and 21.87 Mg C ha−1 in Crop‐42Y, which indicated that approximately 10 and 25% of the original SOC of the steppe had been emitted over 28 and 42 years, respectively. Similarly, the total N lost was 0.66 Mg N ha−1 and 1.18 Mg N ha−1, corresponding to approximately 9% and 16%, respectively, of the original N at the same depth and cropping duration as those noted for SOC. The mineral N concentration in the soil of both the two croplands was greater than that in the steppe soil, and the ammonium‐N was less affected by cultivation than the nitrate‐N. The extent of these changes depended on soil depth and cropland age. These effects of cultivation were much greater in the top 10 cm of soil than in deeper soil, and also greater in Crop‐42Y than in Crop‐28Y. The findings are significant for assessing the C and N sequestration potential of the land use changes associated with grassland conversion, and suggest that improved management practices are needed to sequester SOC and total N in the cropped soil in a semi‐arid grassland.  相似文献   

11.
覆膜旱作稻田土壤有效N、P、K及盐分分层变化研究   总被引:4,自引:0,他引:4  
刘铭  吴良欢 《土壤通报》2004,35(5):570-573
以常规水作和裸地旱作作对照,对覆膜旱作栽培条件下稻田各土层(0~60cm)土壤有效N、P、K和盐分含量变化作了比较研究。结果表明:与常规水作相比,覆膜旱作稻田10~15cm土层的碱解氮与有效磷含量显著增加,其余差异不大。与裸地旱作相比,覆膜旱作稻田5~15cm土层的碱解氮含量及5~20cm土层的有效磷含量显著增加,其余差异不大。与常规水作和裸地旱作相比,覆膜旱作稻田土壤速效钾含量在20cm以上土层增加明显。当地下水位较高时,覆膜旱作稻田0~5cm表层土壤表现积盐,地下水位较低时表层表现脱盐。  相似文献   

12.
Rice‐straw amendment increased methane production by 3‐fold over that of unamended control. Application of P as single superphosphate at 100 μg (g soil)–1 inhibited methane (CH4) production distinctly in flooded alluvial rice soil, in the absence more than in the presence of rice straw. CH4 emission from rice plants (cv. IR72) from alluvial soil treated with single superphosphate as basal application, in the presence and absence of rice straw, and held under non‐flooded and flooded conditions showed distinct variations. CH4 emission from non‐flooded soil amended with rice straw was high and almost similar to that of flooded soil without rice‐straw amendment. The cumulative CH4 efflux was highest (1041 mg pot–1) in rice‐straw‐amended flooded soil. Appreciable methanogenic reactions in rice‐straw‐amended soils were evident under both flooded and non‐flooded conditions. Rice‐straw application substantially altered the balance between total aerobic and anaerobic microorganisms even in non‐flooded soil. The mitigating effects of single‐superphosphate application or low‐moisture regime on CH4 production and emission were almost nullified due to enhanced activities of methanogenic archaea in the presence of rice straw.  相似文献   

13.
Particulate organic matter (POM) plays important role in soil organic carbon (SOC) retention and soil aggregation. This paper assesses how quality (chemical composition) of four different‐quality organic residues applied annually to a tropical sandy loam soil for 10 years has affected POM pools and the development of soil aggregates. Water‐stable aggregate size distribution (>2, 0·25–2, 0·106–0·25 mm) was determined through wet sieving. Density fractionation was employed to determine POM (light—LF, and heavy—HF fractions, 0·05–1 mm). Tamarind leaf litter showed the highest SOC (<1 mm) accumulation, while rice straw showed the lowest. LF‐C contents had positive correlations with high contents of C and recalcitrant constituents, (i.e. lignin and polyphenols) of the residues. Dipterocarp, a resistant residue, showed the highest LF‐C, followed by the intermediate residues, tamarind, and groundnut, whereas HF was higher in groundnut and tamarind than dipterocarp residues. Rice straw had the lowest LF‐ and HF‐C contents. Tamarind had the highest quantity (51 per cent) of small macroaggregates (0·25–2 mm), while dipterocarp had the most (2·1 per cent) large macroaggregates (>2 mm). Rice straw had the lowest quantities of both macroaggregates. Similar to small‐sized HF (0·05–0·25 mm), small macroaggregates had positive correlation with N and negative correlation with C/N ratios, while large macroaggregates had positive correlations with C and recalcitrant constituents of the residues. Tamarind, with intermediate contents of N and recalcitrant compounds, appears to best promote small macroaggregate formation. Carbon stabilized in small macroaggregates accounted for the tamarind treatment showing the largest SOC accumulation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
免耕覆盖对宁南山区土壤物理性状及马铃薯产量的影响   总被引:6,自引:3,他引:6  
侯贤清  李荣 《农业工程学报》2015,31(19):112-119
宁南山区干旱频发、春旱突出,马铃薯播期土壤墒情不足、苗期干旱等问题,严重影响马铃薯的生长发育。该研究通过设置免耕条件下不同覆盖方式,以翻耕不覆盖为对照,研究不同覆盖耕作措施下土壤物理性状及马铃薯生长的影响。结果表明,与翻耕不覆盖相比,免耕覆盖可有效降低耕层土壤容重,改善土壤空隙状况,以免耕覆盖秸秆处理效果最佳。与翻耕不覆盖相比,免耕覆盖地膜和免耕覆盖秸秆处理可使0~20 cm土层5 mm机械稳定性团聚体含量显著增加,使20~40 cm土层2~5 mm机械稳定性团聚体的含量显著增加。免耕条件下不同覆盖方式能有效改善马铃薯生育期0~200 cm土层土壤水分状况,免耕覆盖地膜对作物生长前期土壤水分保蓄效果较好,免耕覆盖秸秆对作物生长中后期土壤水分状况的改善作用最佳。免耕条件下不同覆盖方式马铃薯植株株高、茎粗及地上部生物量均显著高于翻耕不覆盖,作物生育前期以免耕覆地膜处理效果最佳,中后期以免耕覆秸秆处理效果最明显。免耕覆秸秆处理的马铃薯产量和商品薯率最高,较翻耕不覆盖增产24.14%,商品薯率较翻耕不覆盖提高15.93%。可见,免耕覆盖秸秆措施具有良好的蓄水保墒效果,对马铃薯生长有利,其增产效果显著。该研究可为马铃薯高产高效栽培提供参考。  相似文献   

15.
A study was carried out on a silty clay loam soil (Typic Haplustept) to evaluate the effect of farmyard manure (FYM) vis‐à‐vis fertilizer and irrigation application on the soil organic C content and soil structure. The fertilizer treatments comprised of eight different combinations of N and FYM and three water regimes. The results indicated that the application of FYM and increasing N rate increased soil organic carbon (SOC) content. Addition of FYM also increased the percentage of large sized water stable aggregates (> 5 mm) and reduced the percentage of smaller size aggregates. This was reflected in an increase in the mean weight diameter (MWD) and improved soil structure. The organic carbon content in macroaggregates (> 1 mm) was greater compared to microaggregates, and it declined with decrease in size of microaggregates. This difference in organic C content between macro‐ and microaggregates was more with higher N dose and FYM treated plots. The effect of residual FYM on MWD and organic C content of the soil after wheat harvest was not significant. The effect was less in deeper layers compared to surface layers of the soil. MWD was significantly correlated with the SOC content for the top two layers.  相似文献   

16.
长期秸秆还田显著降低褐土底层有机碳储量   总被引:2,自引:0,他引:2  
  【目的】  秸秆还田作为一种有效的培肥方式,对土壤固碳效果显著,但对于深层土壤有机碳的影响还存在不确定性。分析不同秸秆还田方式下褐土剖面土壤有机碳(SOC)储量变化,为褐土区秸秆还田措施优化和固碳减排等提供科学依据。  【方法】  长期秸秆还田试验开始于1992年,采用裂区设计,主区为化肥春季和秋季施用,副区为4个秸秆还田处理:秸秆不还田 (CK)、秸秆覆盖还田 (SM)、秸秆粉碎后直接还田 (SC) 和秸秆过腹还田 (CM)。在2013年春玉米收获后采集0—100 cm土层土壤样品,分析不同秸秆还田方式下SOC和土壤养分含量。  【结果】  在春季和秋季施肥下,与CK相比,CM、SM和SC处理表层 (0—20 cm) SOC含量显著提高,而SM和SC处理40—60和80—100 cm SOC含量显著降低。同时,与CK处理相比各处理SOC储量变化量在处理间存在显著差异。在春季和秋季施肥下,与CK相比,SM、SC和CM处理表层SOC储量平均分别增加2.32、5.42和12.60 t/hm2,且CM处理显著高于SM和SC处理;而在底层 (40—100 cm) 平均分别降低3.98、6.99和3.76 t/hm2;0—100 cm,CM处理SOC储量增加9.62 t/hm2,而SM和SC处理平均分别降低1.81和5.36 t/hm2。冗余分析结果表明,有机碳输入和土壤养分对表层碳储量变化的总解释率为90.10%,而对下层 (20—100 cm) 的总解释率仅为31.80%。其中,影响表层碳储量变化的主要因子是有效磷 (解释率为80.10%),而下层则是全氮 (25.28%)。  【结论】  在施用化肥基础上,长期秸秆还田促进表层碳累积,但底层氮素供应不足引起碳耗竭。总体上,秸秆过腹还田是褐土区农田培肥和增产的最优秸秆还田方式。  相似文献   

17.
In a field experiment, the effect of combination of different organic manures on the productivity of crops and soil quality were evaluated in deep vertisols of central India. Combinations of cattle dung manure (CDM), poultry manure (PM), and vermicompost (VC) vis‐à‐vis mineral fertilizers were tested in four cropping systems involving soybean (Glycine max L.), durum wheat (Triticum durum Desf.), mustard (Brassica juncea L.), chickpea (Cicer arietinum L.), and isabgol (Plantago ovata Forsk). The organic manures were applied based on the N‐equivalent basis and nutrient requirement of individual crop. The grain yields of durum wheat and isabgol were higher in the treatment that received a combination of CDM + VC + PM whereas in mustard, CDM + PM and in chickpea, CDM + VC recorded the higher yields. The yield levels in these organic‐manure combinations were similar to the yields obtained with mineral fertilizers. Among the cropping systems, soybean–durum wheat and among the nutrient sources, the combination of CDM + VC + PM recorded the highest total productivity. At the end of the 3‐year cropping cycle, application of organic manures improved the soil‐quality parameters viz., soil organic carbon (SOC), soil available nutrients (N, P, and K), soil enzymes (dehydrogenase and alkaline phosphatase), and microbial biomass C in the top 0–15 cm soil. Bulk density and mean weight diameter of the soil were not affected by the treatments. Among the cropping systems, soybean–durum wheat recorded the highest SOC and accumulated higher soil available N, P, and K. In conclusion, the study clearly demonstrated that the manures applied in different combinations improved the soil quality and produced the grain yields which are at par with mineral fertilizers.  相似文献   

18.
葛藤覆盖对幼龄橡胶园表层土壤理化性状和酶活性的影响   总被引:1,自引:0,他引:1  
  【目的】  绿肥覆盖是解决土壤有机质含量低、土壤酸化和养分不平衡的有效途径之一,葛藤作为一种常见的豆科绿肥,研究其覆盖对胶园土壤性状和土壤酶活性的影响,可为绿肥的应用推广、胶园地力提升和橡胶增产增效提供理论依据和技术支撑。  【方法】  以海南儋州幼龄胶园中葛藤覆盖4年的土壤为研究对象,以相同区域无葛藤覆盖的幼龄胶园土壤为对照,采集0—10 cm (上层) 和10—20 cm (下层) 土样,测定了土壤容重、pH、土壤含水量、有机碳、总氮、总磷、总钾、速效磷、速效钾、铵态氮、硝态氮和6种土壤酶 (蔗糖酶、过氧化氢酶、β-1,4-葡萄糖苷酶、脲酶、L-亮氨酸氨基肽酶和β-1,4-N-乙酰氨基葡萄糖苷酶) 活性。  【结果】  1) 与无葛藤覆盖相比,种植葛藤提高了土壤有机碳、全氮和全磷含量,增幅分别为4.2%~5.9%、9.1%~11.8%和12.0%~38.1%,上层有机碳和全氮增幅 (5.9%、11.8%) 高于下层 (4.2%、9.1%),而全磷含量上层增幅 (12.0%) 低于下层 (38.1%);上层土壤pH明显提高,而下层土壤pH显著下降;2) 种植葛藤显著增加了上层土壤过氧化氢酶和脲酶活性,增加幅度分别为同一土层裸地的327.8%和108.1%,但显著减低了上层土壤蔗糖酶活性 (活性下降为裸地的50.8%)。种植葛藤对两个土层的土壤β-1,4-葡萄糖苷酶、β-1,4-N-乙酰氨基葡萄糖苷酶和L-亮氨酸氨基肽酶活性的影响均不显著;3) 种植葛藤后土壤过氧化氢酶活性与全氮、全钾含量之间呈显著正相关,与速效钾之间呈显著负相关 (P < 0.05);土壤蔗糖酶活性与全氮、pH、全钾和速效磷均呈显著负相关。裸地土壤中,过氧化氢酶活性与铵态氮呈显著负相关;脲酶活性与有机碳和速效钾分别呈极显著和显著负相关,与pH和全钾分别呈极显著和显著正相关;蔗糖酶活性与pH、全钾呈显著负相关,与速效钾和有机碳呈显著正相关;β-1,4-葡萄糖苷酶和β-1,4-N-乙酰氨基葡萄糖苷酶活性与硝态氮含量均呈显著负相关。  【结论】  葛藤覆盖能有效缓解胶园上层土壤酸化,改善土壤养分状况,提高幼龄胶园0—10 cm土层土壤过氧化氢酶和脲酶的活性,具有一定的改土增效作用。因此,葛藤覆盖是一种提高幼龄胶园表层土壤熟化和综合肥力水平可行的管理措施。  相似文献   

19.
Because of the important role of soil organic carbon (SOC) in nutrient cycling and global climate changes, there has been an interest in understanding how different fertilizer practices affect the SOC preservation and promotion. The results from this study showed that long‐term application of manure (21 years) could increase significantly the content of SOC, total nitrogen (N) and soil pH in the red soil of southern China. The chemical structure of SOC was characterized by using solid‐state cross‐polarization magic angle spinning (CPMAS) 13C nuclear magnetic resonance (NMR) spectroscopy, and the aromatic C, ratio of alkyl C : O‐alkyl C, aromaticity and hydrophobicity of mineral fertilizers N, P and K plus organic manure (NPKM) and organic manure (M) treatments were less than those of mineral fertilizer nitrogen (N) and mineral fertilizers N, P and K (NPK) treatments. Both poorly crystalline (Feo) and organically complexed (Fep) iron contents were influenced significantly (P < 0.05) by different fertilizers, and it was observed that NPKM and M treatments increased the non‐crystalline Fe (Feo‐Fep) content. There was a significant (P < 0.01) positive correlation between soil organic C and non‐crystalline Fe in both the surface (0–20 cm) and subsurface (20–40 cm) soils. The results suggested that non‐crystalline Fe played an important role in the increase of SOC by long‐term application of organic manure (NPKM and M) in the red soil of southern China.  相似文献   

20.
Residue retention and reduced tillage are both conservation agricultural practices that may enhance soil organic carbon (SOC) stabilization in soil. We evaluated the long‐term effects of no‐till (NT) and stover retention from maize on SOC dynamics in a Rayne silt loam Typic Hapludults in Ohio. The six treatments consisted of retaining 0, 25, 50, 75, 100 and 200% of maize residues on each 3 × 3 m plot from the crop of previous year. Soil samples were obtained after 9 yrs of establishing the experiment. The whole soil (0–10 and 10–20 cm of soil depths) samples under different treatments were analysed for total C, total N, recalcitrant C (NaOCl treated sample) and 13C isotopic abundance (0–10 cm soil depth). Complete removal of stover for a period of 9 yrs significantly (P < 0.01) decreased soil C content (15.5 g/kg), whereas 200% of stover retention had the maximum soil C concentration (23.1 g/kg). Relative distribution of C for all the treatments in different fractions comprised of 55–58% as labile and 42–45% as recalcitrant. Retention of residue did not significantly affect total C and N concentration in 10–20 cm depth. 13C isotopic signature data indicated that C4‐C (maize‐derived C) was the dominant fraction of C in the top 0–10 cm of soil layer under NT with maize‐derived C accounting for as high as 80% of the total SOC concentration. Contribution of C4‐C or maize‐derived C was 71–84% in recalcitrant fraction in different residue retained plots. Residue management is imperative to increase SOC concentrations and long‐term agro‐ecosystem necessitates residue retention for stabilizing C in light‐textured soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号