首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The relative importance of wheel load and tyre inflation pressure on topsoil and subsoil stresses has long been disputed in soil compaction research. The objectives of the experiment presented here were to (1) measure maximum soil stresses and stress distribution in the topsoil for different wheel loads at the same recommended tyre inflation pressure; (2) measure soil stresses at different inflation pressures for the given wheel loads; and (3) measure subsoil stresses and compare measured and simulated values. Measurements were made with the wheel loads 11, 15 and 33 kN at inflation pressures of 70, 100 and 150 kPa. Topsoil stresses were measured at 10 cm depth with five stress sensors installed in disturbed soil, perpendicular to driving direction. Contact area was measured on a hard surface. Subsoil stresses were measured at 30, 50 and 70 cm depth with sensors installed in undisturbed soil. The mean ground contact pressure could be approximated by the tyre inflation pressure (only) when the recommended inflation pressure was used. The maximum stress at 10 cm depth was considerably higher than the inflation pressure (39% on average) and also increased with increasing wheel load. While tyre inflation pressure had a large influence on soil stresses measured at 10 cm depth, it had very little influence in the subsoil (30 cm and deeper). In contrast, wheel load had a very large influence on subsoil stresses. Measured and simulated values agreed reasonably well in terms of relative differences between treatments, but the effect of inflation pressure on subsoil stresses was overestimated in the simulations. To reduce soil stresses exerted by tyres in agriculture, the results show the need to further study the distribution of stresses under tyres. For calculation of subsoil stresses, further validations of commonly used models for stress propagation are needed.  相似文献   

2.
The use of heavy machinery is increasing in agriculture, which induces increased risks of subsoil compaction. Hence, there is a need for technical solutions that reduce the compaction risk at high total machine loads. Three field experiments were performed in order to study the effects of dual wheels, tandem wheels and tyre inflation pressure on stress propagation in soil. Vertical soil stress was measured at three different depths by installing probes into the soil horizontally from a dug pit. In one experiment, also the stress distribution below the tyre was measured. Beneath the dual wheels, vertical stresses at 0.15 and 0.3 m depth were lower between the two wheels than under the centre of each wheel, despite the gap between the wheels being small (0.1 m). At 0.5 m depth, vertical stress beneath the wheels was the same as between the two wheels. The stress interaction from the two wheels was weak, even in the subsoil. Accordingly, measured stresses at 0.3, 0.5 and 0.7 m depth were highest under the centre of each axle centre line of tandem wheels, and much lower between the axles. For a wheel load of 86 kN, tyre inflation pressure significantly affected stress at 0.3 m depth, but not at greater depths. Stress directly below the tyre, measured at 0.1 m depth, was unevenly distributed, both in driving direction and perpendicular to driving direction, and maximum stress was considerably higher than tyre inflation pressure. Calculations of vertical stress based on Boussinesq's equation for elastic materials agreed well with measurements. A parabolic or linear contact stress distribution (stress declines from the centre to the edge of the contact area) was a better approximation of the contact stress than a uniform stress distribution. The results demonstrate that stress in the soil at different depths is a function of the stress on the surface and the contact area, which in turn are functions of wheel load, wheel arrangement, tyre inflation pressure, contact stress distribution and soil conditions. Soil stress and soil compaction are a function of neither axle load nor total vehicle load. This is of great importance for practical purposes. Reducing wheel load, e.g. by using dual or tandem wheels, also allows tyre inflation pressure to be reduced. This reduces the risk of subsoil compaction.  相似文献   

3.
Subsoil compaction is a major problem in modern agriculture caused by the intensification of agricultural production and the increase in weight of agricultural machinery. Compaction in the subsoil is highly persistent and leads to deterioration of soil functions. Wheel load‐carrying capacity (WLCC) is defined as the maximum wheel load for a specific tyre and inflation pressure that does not result in soil stress in excess of soil strength. The soil strength and hence WLCC is strongly influenced by soil matric potential (h). The aim of this study was to estimate the seasonal dynamics in WLCC based on in situ measurements of h, measurements of precompression stress at various h and simulations of soil stress. In this work, we concentrated on prevention of subsoil compaction. Calculations were made for different tyres (standard and low‐pressure top tyres) and for soil under different tillage and cropping systems (mouldboard ploughing, direct drilling, permanent grassland), and the computed WLCC was compared with real wheel loads to obtain the number of trafficable days (NTD) for various agricultural machines. Wheel load‐carrying capacity was higher for the top than the standard tyres, demonstrating the potential of tyre equipment in reducing compaction risks. The NTD varied between years and generally decreased with increasing wheel load of the machinery. The WLCC simulations presented here provide a useful and easily interpreted tool to guide the avoidance of soil compaction.  相似文献   

4.
《Soil & Tillage Research》1987,10(4):319-330
In intensive arable farming, more and bigger tyres are having to be used in order to support the ever increasing loads to be transported. In Dutch agriculture, to keep rut formation and subsoil compaction within critical limits, it is assumed that tyre inflation pressure should be reduced to 100 kPa or less. However, it is shown that reducing the inflation pressure leads to an exponential decrease in tyre loading capacity. To compensate for this phenomenon, bigger, i.e. wider tyres, with more loading capacity at these low inflation pressures, are needed.The rate of soil-pressure reduction with depth is slower for wider tyres, which is in principle a disadvantage where subsoil compaction risks are concerned. In practice one may avoid problems by using tyres with dimensions that ensure a sufficiently low level of pressure in the tyre-soil contact area. A low, harmless, level of pressure is then reached in the lower tilth and subsoil.Applying low-ground-pressure (LGP) systems often means that special wheel equipment is needed, such as steered wheels in a tandem configuration, 4-wheel drive, etc.  相似文献   

5.
The spectacular increase in the weight of self-propelled harvesters since the early 1980s also applies to trailed implements such as slurry spreaders, compost spreaders, cutter-blowers and general farm trailers. With axle loads exceeding 10 tonnes/axle (tandem 20 tonnes, tridem 27 tonnes), risks of severe compaction can now be expected, not only in field crops but also in grassland. Calculation tables for accurately evaluating contact surfaces of transport tyre, given their properties, load and inflation pressure, are insufficient at the present time. Equations for traction tyres are not suitable for trailer tyres.To overcome this deficiency, contact areas in the field were recorded on 19 sites, from soft to hard surfaces, using 24 different trailer tyres, with varying loads and inflation pressures. The regression calculations for evaluating the contact area apply to a total of 143 measurements.The dimensions of the tyre (width × unladen diameter), the load on the wheel and the inflation pressure are all highly significant variables for evaluation of the soil contact area. Considering the average residual standard deviation for each regression calculation, the best approximations are achieved by taking into account the tyre structure (cross-ply and radial), the width of tyre for cross-ply tyres and the type of tyre, in the case of a radial tyres (low profile or terra profile).Moreover, contrary to expectations, observations show that with low levels of load, reducing inflation pressure can also reduce the contact area.As regards soil hardness, observations show that there is no direct link between a hard soil and a reduced contact area; this relationship does not appear to be linear. The calculations are considered to be reliable on semi-firm to firm soil, frequently found on temporary grassland or natural grassland (penetration resistance 6.5–25.0 MPa).  相似文献   

6.
A critical-state finite element model was used to simulate compaction under single and dual tyres and tracks. The compaction involved deformations at three different scales, from small tyres with a contact area of about 70 cm2 (single tyre) supporting a load of about 50 kg, to large tyres of about 1.2 m2 (dual tyres) supporting a load of about 4500 kg. The predictions were compared with measured values for several different quantities. These included: rut depths; vertical displacement and shear strain: vertical stresses; and, void ratios and precompression stress measured on sampled soil cores. In general, the predictions and measurements agreed reasonably well. However, the agreement between prediction and measurement depended on the precision of measurements, soil disturbance, and the volume of soil involved in a measurement relative to the volume of soil influenced by the tyre or track. This study shows that the critical-state finite element model is useful, offering insight into the compaction process, the dependence of compaction on soil strength and compressibility, and practical implications for soil management.  相似文献   

7.
Subsoil compaction is a severe problem mainly because its effects have been found to be long-lasting and difficult to correct. It is better to avoid subsoil compaction than to rely on alleviating the compacted structure afterwards. Before recommendations to avoid subsoil compaction can be given, the key variables and processes involved in the machinery–subsoil system must be known and understood. Field traffic-induced subsoil compaction is discussed to determine the variables important to the prevention of the compaction capability of running gear. Likewise, technical choices to minimise the risk of subsoil compaction are reviewed. According to analytical solutions and experimental results the stress in the soil under a loaded wheel decreases with depth. The risk of subsoil compaction is high when the exerted stresses are higher than the bearing capacity of the subsoil. Soil wetness decreases the bearing capacity of soil. The most serious sources of subsoil compaction are ploughing in the furrow and heavy wheel loads applied at high pressure in soft conditions. To prevent (sub)soil compaction, the machines and equipment used on the field in critical conditions should be adjusted to actual strength of the subsoil by controlling wheel/track loads and using low tyre inflation pressures. Recommendations based on quantitative guidelines for machine/soil interactions should be available for different wheel load/ground pressure combinations and soil conditions.  相似文献   

8.
Field traffic may reduce the amount of air-filled pores and cavities in the soil thus affecting a large range of physical soil properties and processes, such as infiltration, soil water flow and water retention. Furthermore, soil compaction may increase the mechanical strength of the soil and thereby impede root growth.

The objective of this research was to test the hypotheses that: (1) the degree of soil displacement during field traffic depends largely on the soil water content, and (2) the depth to which the soil is displaced during field traffic can be predicted on the basis of the soil precompression stress and calculated soil stresses. In 1999, field measurements were carried out on a Swedish swelling/shrinking clay loam of stresses and vertical soil displacement during traffic with wheel loads of 2, 3, 5 and 7 Mg at soil water contents of between 11 and 35% (w/w). This was combined with determinations of soil precompression stress at the time of the traffic and predictions of the soil compaction with the soil compaction model SOCOMO. Vertical soil displacement increased with increased axle load. In May, the soil precompression stress was approximately 100 kPa at 0.3, 0.5 and 0.7 m depth. In August and September, the soil precompression stress at 0.3, 0.5 and 0.7 m depth was 550–1245 kPa. However, when traffic with a wheel load of 7 Mg was applied, the soil displacements at 0.5 m depth were several times larger in August and September than in May, and even more at 0.7 m depth. An implication of the results is that the precompression stress does not always provide a good indication of the risk for subsoil compaction. A practical consequence is that subsoil compaction in some soils may occur even when the soil is very dry. The SOCOMO model predicted the soil displacement relatively well when the soil precompression stress was low. However, for all other wheeling treatments, the model failed to predict that any soil compaction would occur, even at high axle loads.

The measured soil stresses were generally higher than the stresses calculated with the SOCOMO model. Neither the application of a parabolic surface load distribution nor an increased concentration factor could account for this difference. This was probably because the stress distribution in a very dry and strongly structured soil is different from the stress distribution in more homogeneous soils.  相似文献   


9.
The aim of this paper was to quantify soil compaction induced by tractor traffic on two tillage regimes: conventional tillage and direct drilling. Traffic was simulated with one pass of a conventional 2WD tractor, using four configurations of cross-ply rear tyres: 18.4–34, 23.1–30, 18.4–38 and 24.5–32, and four configurations of radial tyres 18.4R34, 23.1R 30, 18.4R 38 and 24.5R 32, with two ballast conditions used in each configuration. The experiment was conducted in the east of the Rolling Pampa region, Buenos Aires State, Argentina at 34°25′S, 59°15′W; altitude 22 m above sea level. Rut depth after traffic and soil bulk density and cone index in a 0–450-mm profile were measured before and after traffic. Considering topsoil level, in two tillage regimes, all treatments induced significant values of soil compaction as compared to the control plot without traffic. Subsoil compaction increased as total axle load increased and was independent of ground pressure. For the same tyre configuration, radial tyre caused less soil compaction than the cross-ply.  相似文献   

10.
In a field experiment to determine the direct and indirect effect on soil structure, of sub-surface piped drainage as compared with natural surface drainage only, in ploughed and unploughed soil, a factorial systematic design with four replicated blocks was used. Structural changes were monitored during 8 months of natural rain and finally irrigation, by measuring surface heights and soil strength (penetration resistance) in relation to moisture content and matric suction, at plough sole depth (27 cm). A compaction test using a tractor with differentially loaded wheels, was applied at various times after irrigation, measuring the resulting wheel sinkage and wet density of the soil. The effects of the drainage treatments were found to be temporary, except a ‘crusting’ effect during the drying of the unploughed surface drained soil. The ploughed soil with sub-surface drainage showed greater frost heave than the undrained soil. The soil strength at 7.5-22.5 cm. depth was linearly related to the matric suction within the range of –3 to 20 cm-water. The compaction data for the unploughed soil suggested relationships between matric suction, sinkage, and wet density, but complicated interactions prevented any general conclusion. In the ploughed soil, compaction data established the beneficial effects of subsurface drainage in reducing damage from tractor traffic, decreasing wheel sinkage and reducing compaction both below and 16 cm from the track edge. A rise in matric suction of 10 cm-water, in the range 2-24 cm-water was, on the average, as effective in reducing rutting as a wheel load reduction of 670 kg (0.54 kg/cm2 reduction of tyre inflation pressure). It was concluded that for clay soils having a temporary excess moisture, draining the water table to below 50-60 cm depth should be recommended as a precautionary measure to minimize structural damage.  相似文献   

11.
In a field experiment, a sandy loam was subjected to single passes with a sugar beet harvester at two different soil water potentials. Different hopper fillings resulted in ground contact pressures of 130 kPa (partial load) and 160 kPa (full load) underneath the tyre. Bulk density, macroporosity (equivalent pore radius >100 μm), penetrometer resistance, air permeability and pre-consolidation pressure were measured within and next to the wheel tracks at depths of 0.12–0.17, 0.32–0.37 and 0.52–0.57 m. Furthermore, the soil structure at two horizons (Ahp 7–24 cm, B(C) 24–38 cm) was visually assessed and classified.

The moist plot responded to a wheel load of 11.23 mg (160 kPa) with an increase in bulk density and pre-consolidation pressure as well as with a decrease in air permeability and macroporosity at a depth of 0.12–0.17 m. With a wheel load of 7.47 mg (130 kPa) on the moist plot and with both wheel load levels on the dry plot, only slight changes of the soil structure were detected. At a depth of 0.32–0.37 and 0.52–0.57 m, the measurements did not indicate any compaction. An ANOVA indicates that the factor “soil water potential” and the factor “wheel load” significantly influence the bulk density at a depth of 0.12–0.17 m. No interactions occurred between these two factors. The wheel traffic on the test plot had no effect on the yield of winter wheat planted after the experimental treatment.

Bulk density, macroporosity and pre-consolidation pressure proved to be sensitive to detect compaction because they varied only slightly and are easy to measure. In contrast, the standard deviation of air permeability is large. The soil structure determined visually in the field confirms the values measured in the laboratory. The results of the penetrometer resistance measurements were not explainable.  相似文献   


12.
Soil compaction by agricultural machines can have adverse effects on crop production and the environment. Different models based on the Finite Element Method have been proposed to calculate soil compaction intensity as a function of vehicle and soil properties. One problem when modelling soil compaction due to traffic is the estimation of vertical stress distribution at the soil surface, as the vertical stress is inhomogeneous (non-uniform) and depends on soil and tyre properties. However, uniform stress distribution at the soil/tyre interface is used to predict the compaction of cultivated soils in most FEM compaction models. We propose a new approach to numerically model vertical stress distribution perpendicular to the driving direction at the soil/tyre interface, employing the FEM models of PLAXIS code. The approach consists of a beam (characterised by its geometric dimensions and flexural rigidity) introduced at the soil surface and loaded with a uniform stress with the aim to simulate the action of a wheel at the soil surface. Different shapes of stress distribution are then obtained numerically at the soil surface by varying the flexural rigidity of the beam and the mechanical parameters of the soil. PLAXIS simulations show that the soil type (soil texture) modifies the shape of the stress distribution at the edges of the contact interface: a parabolic form is obtained for sand, whereas a U-shaped is obtained for clay. The flexural rigidity of the beam changes the shape of distribution which varies from a homogenous (uniform) to an inhomogeneous distribution (parabolic or U-shaped distribution). These results agree with the measurements of stress distributions for different soils in the literature. We compared simulations of bulk density using PLAXIS to measurement data from compaction tests on a loamy soil. The results show that simulations are improved when using a U-shaped vertical stress distribution which replaces a homogenous one. Therefore, the use of a beam (cylinder) with various flexural rigidities at the soil surface can be used to generate the appropriate distribution of vertical stress for soil compaction modelling during traffic.  相似文献   

13.
Long-term compaction effects on loess derived soils by distinct axle loads Field traffic may cause subsoil compaction of arable land and can deteriorate growing conditions of plants. In a case study the state of compaction of two adjacent fields on loess derived soil (field A and field B) was examined, which belong to two neighbouring farms. Within the past 20 years the maximum axle loads on both fields differed greatly (4 Mg and 8.9 Mg). Both fields were compared with a bordering ridge under permanent grass, which had not been loaded mechanically in recent years. The aim of this study was to evaluate the state of compaction as affected by the impact of vehicular field traffic. It was found that in the depth range of a traffic-pan in field A (about 40 cm) the penetration resistance was higher than in the corresponding depth under grass, but substantially lower than in field B. Bulk density and air capacity are similarly different between locations. The vertical compressive stress as a function of soil depth was calculated for the maximum axle loads that occur on both fields under wet conditions. For the 40 cm depth on field A stress values were near 60 kPa, but on field B the values were about 130 kPa. The loading stresses, acting on the soil during one season, were assessed from the weight of the vehicles and the travel distance per area. The accumulated stress was by 17% higher on field B than on field A. On field A the compactive stress of loading ended at about 40 cm depth. On farm B, however, with much higher axle loads during sugarbeet harvest, the compactive stress extended to about 70 cm soil depth. This case study demonstrates that the state of compactness of agricultural fields will be strongly dependent on the intensity of vehicular traffic, which comprises axle load as well as time and frequency of passages.  相似文献   

14.
We describe a simplified model that allows users to explore some of the main aspects of soil compaction. It is intended for use by non-experts, such as students, and is written as an easy-to-use spreadsheet. It estimates soil bulk density under the centre-line of a wheel track from readily available tyre details. The model uses an analytical method to estimate the propagation of stress in the soil. It contains compactibility data for contrasting soils and it accounts for both rebound and recompression realistically. We present examples that show the potential of the model in selecting tyres and wheel systems to minimise compaction.  相似文献   

15.
Due to its persistence, subsoil compaction should be avoided, which can be done by setting stress limits depending on the strength of the soil. Such limits must take into account soil moisture status at the time of traffic. The objective of the work presented here was to measure soil water changes during the growing period, use the data to calibrate a soil water model and simulate the soil susceptibility to compaction using meteorological data for a 25-year period. Measurements of soil water content were made in sugarbeet (Beta vulgaris L.) from sowing until harvest in 1997 on two sites classified as Eutric Cambisols in southern Sweden. Sampling was carried out at 2-week intervals in 0.1 m layers down to 1 m depth, together with measurements of root growth and crop development. Precompression stress of the soil at 0.3, 0.5 and 0.7 m depth was determined from uniaxial compression tests at water tensions of 6, 30, 60 and 150 kPa and adjusted as a logarithmic function of the soil water tension. Soil water content was simulated by the SOIL model for the years 1963–1988. Risk calculations were made for a wheel load of 8 t and a ground pressure of 220 kPa, corresponding to a fully loaded six-row sugarbeet harvester. Subsoil compaction was expected to occur when the major principal stress was higher than the precompression stress. The subsoil water content was very low in late summer, but increased during the autumn. At the end of August, there was practically no plant available water down to 1 m depth. There was in general good agreement between measured and simulated values of soil water content for the subsoil, but not for the topsoil. In the 25-year simulations, the compaction risk at 50 cm depth was estimated to increase from around 25% to nearly 100% between September and late November, which is the period when the sugarbeet are harvested. The types of simulation presented here may be a very useful tool for practical agriculture as well as for society, in giving recommendations as to how subsoil compaction should be avoided.  相似文献   

16.
履带式行走机构压实作用下土壤应力分布均匀性分析   总被引:1,自引:1,他引:1  
履带式行走机构因具有较小的接地压力而被逐渐应用在大型农业车辆上,以减小对土壤的压实。然而由于履带下应力分布的不均匀,导致农业车辆对土壤的最大应力并未有效减小,对土壤较长的压力作用时间反而增加了土壤被压实的风险。应力分布的不均匀还会造成履带沉陷量的增大,降低车辆在软土地面的通过性能。为了研究履带式行走机构压实作用下土壤内的应力分布规律以及如何提高应力分布的均匀性,以缓解履带车辆对土壤压实作用、提高履带车辆软地通过能力,该文采用侧断面水平钻孔埋设压力传感器的方法,测得了履带式行走机构压实作用下履带中心线横截面内0.35 m深度土壤内沿履带长度方向上的垂直及水平应力分布;同时研究了履带张紧力大小对应力分布均匀性的影响。结果表明,履带式行走机构下的垂直应力在各负重轮的轴线处呈现一个应力峰值;水平应力在各负重轮轴线的前、后方分别呈现一个应力峰值,且最小应力在轴线处。各负重轮下的应力峰值大小不同。最大垂直应力出现在履带式行走机构后端的导向轮处;最大水平应力出现在后支重轮与导向轮之间。适当减小履带张紧力能够提高垂直及水平应力分布的均匀性。履带张紧力由1.8×10~4k Pa减小至1.6×10~4k Pa时,履带下的最大垂直及水平应力分别减小了约37.3%和21.7%;平均最大垂直及水平应力分别减小了约26.4%和20.4%。研究结果可为履带式行走机构结构的优化提供理论依据,以期提高履带下应力分布的均匀性。  相似文献   

17.
This study highlights the previously expressed concerns of soil researchers who have indicated that compaction pressures or stresses in the deeper layers of soil are determined by the amount of surface load. Modifications of Boussinesq theory by Froelich and further modification of Froelich's equations by Soehne were used to predict and develop graphical relationships for maximum allowable loads and/or mean surface contact pressures beneath loaded farm machinery tyres. Vertical compressive stresses at different subsoil depths were calculated and design loads for a currently used high flotation tyre were examined for comparative purposes. For highly compactible soils the results indicate that mean surface contact pressures should not exceed maximum allowable stresses in the subsoil for individual wheel loads which exceed approximately 30 kN. Thus, it appears that future designs based upon limited ground contact pressures are essential. This will require limitations on vehicle wheel loads and the use of more tyres and axles on heavy equipment.  相似文献   

18.
The increased limiting effects of soil compaction on Central Anatolian soils in the recent years demonstrate the need for a detailed analysis of tillage system impacts. This study was undertaken to ascertain the effects of seven different tillage systems and subsequent wheel traffic on the physical and mechanical properties of typical Central Anatolian medium textured clay loam soil (Cambisol), south of Ankara, Turkey. Both tillage and field traffic influenced soil bulk density, porosity, air voids and strength significantly except the insignificant effect of traffic on moisture content. Traffic affected the soil properties mostly down to 20 cm. However, no excessive compaction was detected in 0–20 cm soil depth. The increases of bulk density following wheel traffic varied between 10–20% at 0–5 cm and 6–12% at 10–15 cm depth. In additions, traffic increased the penetration resistance by 30–74% at 0–10 cm and 7–33% at 10–20 cm. Less wheel traffic-induced effects were found on chisel tilled plots, compared to ploughed plots. Soil stress during wheel passage was highly correlated with soil strength. Also, both tillage and traffic-induced differences were observed in mean soil aggregate sizes, especially for mouldboard ploughed plots. The obtained data imply that chisel+cultivator-tooth harrow combination provides more desirable soil conditions for resisting further soil compaction.  相似文献   

19.
One of the most significant soil parameters affecting root growth is soil compaction. It is therefore important to be able to determine the presence of compacted layers, their depth, thickness and spatial location without the necessity of digging a large number of holes in the field with either a spade or backhoe. Previous investigations have identified soil compaction by different methods such as: using ground penetrating radar, acoustic systems, vertical and horizontal penetrometers and instrumented wings mounted on the faces of tines. Linking the output from these sensors to global positioning systems would give an indication of the spatial patent variation. The aim of this study was to evaluate the performance of a soil compaction profile sensor in both controlled laboratory and field conditions. The sensor consisted of a series of instrumented flaps; a flap is defined as the sensing element which comprises one half of a pointed leading edge to the leg of a tine to which strain gauges are placed on the rear face of the flap. Studies measured the effect of compaction on the changes in the soil resistance acting upon a flap face in a soil bin laboratory and under field conditions. The results indicated that the sensor was sensitive to differences in soil strength at different depths in soils. A technique was developed to identify the soil compaction resulting from different tyre inflation pressures and loads. The soil compaction profile sensor was tested on a number of fields in south‐eastern England to determine the changes in soil strength below the wheelings of a pea harvester operating at different tyre inflation pressures.  相似文献   

20.
轮式和履带式车辆行走对农田土壤的压实作用分析   总被引:3,自引:3,他引:0  
由履带式行走机构代替轮胎被认为是减缓大型农业车辆对土壤压实的有效手段之一。与轮胎相比,履带具有更大的接地面积,能够有效减小车辆对土壤的平均压力。然而履带与土壤接触面间的应力分布极不均匀,应力主要集中在各承重轮下方,履带减缓土壤压实的能力是目前有待研究的问题。该研究通过在土壤内埋设压力传感器,测试比较了相近载质量的轮胎和履带式车辆作用下,0.15和0.35 m深度土壤内的最大垂直及水平应力,同时研究了车辆行驶速度对土壤内垂直及水平应力大小的影响。基于土壤压实分析模型计算了轮胎和履带压实的0.1~0.7m深度土壤内的最大垂直及水平应力分布。通过对0.15和0.35 m深度的土样进行室内测试,比较了轮胎和履带式车辆压实对土壤透气率、先期固结压力及干容重大小的影响。结果表明,履带相比较于轮胎,能够减小土壤内的垂直及水平应力,但垂直应力的减小量比水平应力大;轮胎对0.15和0.35m深度土壤作用的平均最大垂直应力分别约为履带的2.2及2.0倍,而平均最大水平应力仅分别约为履带的1.2及1.1倍。轮胎作用下的最大垂直及水平应力在表层土壤内明显大于履带,但两者的应力差值随着土壤深度的增加逐渐减小,分别在0.7和0.4 m深度时无明显差别。轮胎和履带压实作用下,0.15和0.35 m深度土壤内的垂直及水平应力均随车辆行驶速度的增加而减小,履带作用下的应力减小速度大于轮胎。履带作用下0.15和0.35 m深度内土壤的透气率均明显小于轮胎,但土壤的先期固结压力及干容重无显著区别。研究结果为可为农业车辆行走机构的选择及使用提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号