首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The importance of genotype x country interactions for weaning and birth weight and postweaning gain between Argentina (AR), Canada (CA), Uruguay (UY), and the United States (US) for populations of Hereford cattle was investigated. Three sample data sets of computationally manageable sizes were formed for each trait and pairwise combination of countries to investigate possible interactions. Parameters were estimated for each sample data set via an accelerated EM-REML algorithm and multiple-trait animal models that considered either weaning or birth weight as a different trait in each country. Direct and maternal (in parentheses) weaning weight genetic correlation estimates for AR-CA, AR-UY, AR-US, CA-UY, CA-US, and UY-US were 0.82 (0.80), 0.81 (0.72), 0.81 (0.79), 0.83 (0.78), 0.85 (0.82), and 0.86 (0.81), respectively. Direct and maternal (in parentheses) birth weight genetic correlation estimates were 0.92 (0.62), 0.97, (0.85), and 0.99 (0.97) for AR-CA, AR-US, and CA-US, respectively. Birth weight was not analyzed for UY due to small amounts of data. Postweaning gain in CA and US was 160-d gain, and in AR and UY 345-d gain was used. Across-country direct genetic correlations for postweaning gain were estimated for each pairwise country data set using a model that considered weaning weight as the same trait across each country, whereas postweaning gain was treated as a different trait in each country. Direct genetic correlation estimates for postweaning gain for AR-CA, AR-UY, AR-US, CA-UY, CA-US, and US-UY were 0.64, 0.80, 0.51, 0.84, 0.92, and 0.83, respectively. The overall results indicate that weaning and birth weights of Hereford calves can be analyzed as the same trait in all countries with a common set of heritabilities and genetic correlations, after adjustment for heterogenous phenotypic variances across countries. Postweaning gain in CA and US can be considered as the same trait and analyzed using a single set of parameters. Postweaning gain in AR and UY should be considered as a separate trait from postweaning gain in CA and US, and postweaning gain in AR and UY can be considered as the same trait and analyzed using a common heritability, after adjustment for phenotypic variance differences between the two countries.  相似文献   

2.
Growth and carcass measurements were made on 2,411 Hereford steers slaughtered at a constant weight from a designed reference sire program involving 137 sires. A second data set consisted of ultrasound measures of backfat (USFAT) and longissimus muscle area (USREA) from 3,482 yearling Hereford cattle representing 441 sires. Restricted maximum likelihood procedures were used to estimate genetic parameters among carcass traits and live animal weight traits from these two separate data sets. Heritability estimates for the slaughter weight constant steer carcass backfat (FAT) and longissimus muscle area (REA) were .49 and .46, respectively. In addition, FAT had a negative genetic correlation with REA (-.37), weaning weight (-.28), and yearling weight (-.13) but positive with marbling (.19) and carcass weight (.36). Marbling was moderately heritable (.35) and highly correlated with total postweaning average daily gain (.54) and feedlot relative growth rate (.62). Heritability estimates for weight constant USFAT and USREA were .26 and .25, respectively. The genetic correlation between weight constant USFAT and USREA was positive (.39), indicating that in these young animals USFAT does not seem to be an indication of maturity. Mean USFAT measures and variability were small (.48 +/- .17 cm, n = 3,482). Results indicate that carcass fat on slaughter steers and ultrasound measures of backfat on young breeding animals may have different relationships with growth and muscling. These relationships need to be explored before wide scale selection based on ultrasound is implemented.  相似文献   

3.
Carcass and Warner-Bratzler shear force (WBSF) data from strip loin steaks were obtained from 7,179 progeny of Angus, Brahman, Brangus, Charolais, Gelbvieh, Hereford, Limousin, Maine-Anjou, Red Angus, Salers, Shorthorn, Simbrah, Simmental, and South Devon sires. Trained sensory panel (TSP) evaluations were obtained on 2,320 steaks sampled from contemporary groups of progeny from one to five sires of each breed. Expected progeny differences for marbling and WBSF were developed for 103 Simmental sires from 1,295 progeny, 23 Shorthorn sires from 310 progeny, and 69 Hereford sires from 1,457 progeny. Pooled phenotypic residual correlations, including all progeny, showed that marbling was lowly correlated with WBSF (-0.21) and with TSP overall tenderness (0.18). The residual correlation between WBSF and TSP tenderness was -0.68, whereas residual correlations for progeny sired by the three Bos indicus breeds were only slightly different than for progeny sired by Bos taurus breeds. The phenotypic range of mean WBSF among sires across breeds was 6.27 kg, and the phenotypic range among breed means was 3.93 kg. Heritability estimates for fat thickness, marbling score, WBSF, and TSP tenderness, juiciness, and flavor were 0.19, 0.68, 0.40, 0.37, 0.46, and 0.07, respectively. Ranges in EPD for WBSF and marbling were -0.41 to +0.26 kg and +0.48 to -0.22, respectively, for Simmentals; -0.41 to +0.36 kg and 0.00 to -0.32, respectively, for Shorthorns; and -0.48 to +0.22 kg and +0.40 to -0.24, respectively, for Herefords. More than 20% of steaks were unacceptable in tenderness. Results of this study demonstrated that 1) selection for marbling would result in little improvement in meat tenderness; 2) heritability of marbling, tenderness, and juiciness are high; and 3) sufficient variation exists in WBSF EPD among widely used Simmental, Shorthorn, and Hereford sires to allow for genetic improvement in LM tenderness.  相似文献   

4.
The effects of individual SNP and the variation explained by sets of SNP associated with DMI, metabolic midtest BW, BW gain, and feed efficiency, expressed as phenotypic and genetic residual feed intake, were estimated from BW and the individual feed intake of 1,159 steers on dry lot offered a 3.0 Mcal/kg ration for at least 119 d before slaughter. Parents of these F(1) × F(1) (F(1)(2)) steers were AI-sired F(1) progeny of Angus, Charolais, Gelbvieh, Hereford, Limousin, Red Angus, and Simmental bulls mated to US Meat Animal Research Center Angus, Hereford, and MARC III composite females. Steers were genotyped with the BovineSNP50 BeadChip assay (Illumina Inc., San Diego, CA). Effects of 44,163 SNP having minor allele frequencies >0.05 in the F(1)(2) generation were estimated with a mixed model that included genotype, breed composition, heterosis, age of dam, and slaughter date contemporary groups as fixed effects, and a random additive genetic effect with recorded pedigree relationships among animals. Variance in this population attributable to sets of SNP was estimated with models that partitioned the additive genetic effect into a polygenic component attributable to pedigree relationships and a genotypic component attributable to genotypic relationships. The sets of SNP evaluated were the full set of 44,163 SNP and subsets containing 6 to 40,000 SNP selected according to association with phenotype. Ninety SNP were strongly associated (P < 0.0001) with at least 1 efficiency or component trait; these 90 accounted for 28 to 46% of the total additive genetic variance of each trait. Trait-specific sets containing 96 SNP having the strongest associations with each trait explained 50 to 87% of additive variance for that trait. Expected accuracy of steer breeding values predicted with pedigree and genotypic relationships exceeded the accuracy of their sires predicted without genotypic information, although gains in accuracy were not sufficient to encourage that performance testing be replaced by genotyping and genomic evaluations.  相似文献   

5.
Correlations between genetic expression in lambs when dams were young (1 yr), middle-aged (2 and 3 yr), or older (older than 3 yr) were estimated with three-trait analyses for weight traits. Weights at birth (BWT) and weaning (WWT) and ADG from birth to weaning were used. Numbers of observations were 7,731, 9,518, 9,512, and 9,201 for Columbia (COLU), Polypay (POLY), Rambouillet (RAMB), and Targhee (TARG) breeds of sheep, respectively. When averaged, relative estimates for WWT and ADG were similar across breeds. Estimates were variable across breeds. On average, direct heritability was greater when environment was young dams (.44 for BWT and .34 for WWT) than when environment was dams of middle age or older (.24 and .28 for BWT and .20 and .16 for WWT, respectively). Maternal heritability was greater when dams were middle-aged or older (.28 and .22 vs .18) for BWT but was greater when dams were younger (.10 vs .05 and .04) for WWT. The estimates of genetic correlations for direct effects across age of dam environments averaged .32 for birth weight and averaged .70 for weaning weight. Average estimates of maternal genetic correlations across age of dam classes were .36 or less for both BWT and WWT. Average estimates of correlations among maternal permanent environmental effects were .49 or less across age of dam classes. Total maternal effects accounted for .33 to .42 of phenotypic variance for BWT and for .09 to .26 of phenotypic variance for WWT. The average estimates of genetic correlations between expressions of the same genotypes with different ages of dams suggest that measurements of BWT of lambs with dams in young, middle, and older age classes should be considered to be separate traits for genetic evaluation and that for WWT measurements with young age of dam class and combined middle and older age of dam classes should be considered to be separate traits for genetic evaluation.  相似文献   

6.
Data consisting of 948 calf records collected from 1978 to 1982 were analyzed to determine the effects of breeding methods used to improve commercial herds genetically on birth and weaning traits. Four distinct groups were used in the project: Group 1 (G1), an unselected, random mating Hereford control line; Group 2 (G2), a Hereford group using sires selected for yearling growth; Group 3 (G3), a rotational cross with Angus, Hereford, Charolais and Simmental breeds; and Group 4 (G4), a rotational cross with Angus, Hereford, Simmental and Holstein-Friesian breeds. Traits analyzed were birth weight (BW), calving difficulty (CD), percent assisted births (%AB), percent born alive (%BL), preweaning average daily gain (PWDG), relative growth rate (RGR), weaning weight (WWT) and percent weaned (%WND). The use of high yearling weight sires in G2 increased calf size (P less than .01) at birth and weaning by 8.9 and 28.1 kg, respectively, along with increased CD (P less than .01). Use of rotational crossbreeding systems increased calf size and growth from birth to weaning (P less than .01), but decreased CD and %AB (P less than .01) by .17 units and 13.5%, respectively. Including Holstein-Friesian in G4 resulted in further increases in preweaning growth (P less than .01) and calving ease was improved without affecting BWT compared with G3.  相似文献   

7.
Records on 276 progeny were collected in the final 2 yr (1984 and 1985) of an 8-yr Hereford cattle selection project. Selection was practiced using the top sires from the American Hereford Association's National Cattle Evaluation based on yearling weight expected progeny difference. An unselected control line was maintained to monitor environmental change. One-half of each line was creep-fed during the preweaning period for the last 2 yr to evaluate genotype x environment interactions. Direct response to yearling weight selection averaged 28 +/- 8 kg. Correlated response to selection amounted to .057 +/- .028 kg/d in preweaning ADG, 14 +/- 6 kg in weaning weight, .085 +/- .033 kg/d in postweaning ADG, 4.6 +/- 1.5 cm in yearling hip height and 11.2 +/- 3.0 cm2 in yearling pelvic area. Yearling fat thickness and scrotal circumference were not significantly affected by selection. Significant effects of creep feeding were observed for yearling weight (15 +/- 3 kg), preweaning ADG (.067 +/- .012 kg/d), weaning weight (13 +/- 2 kg), yearling hip height (1.2 +/- .5 cm) and yearling fat thickness (.07 +/- .03 cm). Postweaning ADG, yearling pelvic area and yearling scrotal circumference were not affected by creep feeding. No significant genetic group x creep feeding effects were found for any of the traits analyzed, indicating calves genetically superior for growth did not gain any additional advantage from creep feeding.  相似文献   

8.
Breeding values of sires resulting from selection either for reduced birth weight and increased yearling weight (YB, n = 8) or for increased yearling weight alone (YW, n = 9) were compared with each other and with sires representative of the population before selection began (BS, n = 12) using progeny testing. Reference sires (n = 6) connected these Line 1 sires with the Hereford international genetic evaluation. Thirty-five sires produced 525 progeny that were evaluated through weaning. After weaning, 225 steer progeny were individually fed, slaughtered, and carcass data collected. Data were analyzed using restricted maximum likelihood procedures for multiple traits to estimate breeding values for traits measured on the top-cross progeny while simultaneously accounting for selection of the sires. Results of the progeny test substantiate within-line results for traits upon which sires were selected. Breeding values for gestation length were greater in YB sires than in YW sires and were unchanged relative to BS sires. Breeding values for growth rate and feed intake for the YB and YW sires were greater than for BS sires. Predicted breeding values for indicators of fat deposition tended to be greater in YB sires and less in YW sires relative to BS sires, although YB and YW sires had similar breeding values for marbling score. Selection based on easily and routinely measured growth traits, although achieving the intended direct responses, may not favorably affect all components of production efficiency. Further, divergence of selection lines may not be easily anticipated from preexisting parameter estimates, particularly when selection is based on more than one trait.  相似文献   

9.
Weaning weight field records, supplied by the American Polled Hereford Association, were used to examine sire X environment interactions. Sire X herd/region and sire X contemporary group/herd interactions were evaluated from a data set containing 19,503 records. Sire X region interaction was evaluated from a data set containing 8,659 records. The genetic correlations of sire progeny performance across contemporary groups/herd were .59 and .37 across herds and contemporary groups/region. The average genetic correlation of sire progeny performance across regions was .64. Heritability of weaning weight was .11 across regions, .17 within region and .28 within herd. Mixed-model sire analyses of Polled Hereford weaning weight field records should include sire X herd/region and sire X contemporary group/herd random effects to reduce the sire X environment effects particular to any herd or contemporary group, and to account for the distribution of sire progeny across herds and contemporary groups in the estimation of prediction error variance. It may be necessary to perform separate sire analyses for some regions to evaluate the breeding values of sires in regions where rank changes are likely to occur.  相似文献   

10.
Records from the Hereford Associations of the United States (USA), Canada, and Uruguay were used to estimate genetic and phenotypic variances and covariances for weaning weight. Estimation was done using a complete animal model, relatively large data sets, and the same methodology for the three countries in order to determine whether genetic parameters for weaning weight were homogeneous across environments. Data were composed of 2,322,722, 487,661, and 102,986 edited weaning weight records for USA, Canada, and Uruguay, respectively. Ten samples were obtained from each country by eliminating data from small herds with fewer than 500 records, selecting herds at random from the entire data set after removing the small herds, and then retaining the direct-sire-connected contemporary groups within each sample. The final sample sizes ranged from 9,832 to 46,377 records. An accelerated EM-REML algorithm was used in estimating the (co)variance components in each sample. The estimates were pooled by calculating the arithmetic mean of the 10 samples from within each country. Direct and maternal (in parentheses) heritability estimates were .24 (.16), .20 (.16), and .23 (.18) for USA, Canada, and Uruguay, respectively. Maternal heritabilities reported here are nearly 50% smaller than the values currently used in national genetic evaluation for the breed, which were estimated using sire-maternal grandsire models. Covariance between direct and maternal was negative in all countries, accounting for 6, 8, and 10% of the total phenotypic variation, and the total dam effect was 32.5, 37.0, and 34.0% in USA, Canada, and Uruguay, respectively. Total heritabilities were similar among the countries, with values of .19, .19, and .17 for the three respective countries. The similarity of genetic and environmental parameters across the three countries suggests that joint genetic evaluation is feasible across environments provided that the genotype x environment interaction is negligible and can be ignored.  相似文献   

11.
Data on 2,034 F1 calves sired by Angus, Hereford, Polled Hereford, Charolais, Limousin, Simmental, Gelbvieh, and Tarentaise bulls with Hereford or Angus dams and data on 3,686 three-breed-cross calves with 700 F1 dams of the same breed crosses were used for this study. Traits analyzed were birth, weaning, yearling, and 420-d weights (BWT, WW, YW, and W420, respectively) of F1 calves and WW of three-breed-cross calves. Expected progeny differences from national cattle evaluation programs for sires of F1 calves and cows for BWT, WW, YW, and net maternal ability (milk) were used to assess their value in prediction of crossbred performance. Regressions of actual F1 calf performance on sire EPD were positive for BWT (1.09 +/- .12 kg/kg of BWT EPD), WW (.79 +/- .14 kg/kg of WW EPD), YW (1.44 +/- .16 kg/kg of YW EPD), and W420 (1.66 kg/kg of YW EPD). These regression coefficients were similar to the expected value of 1.0 for BWT and WW but were larger than expected for YW and W420. Regressions of actual three-breed-cross calf WW on milk and WW EPD of their maternal grandsires were .95 +/- .14 and .42 +/- .10 kg/kg, respectively, and differed little from their expectations of 1.0 and .5, respectively. Observed breed of sire means for each trait were adjusted for sire sampling by using EPD regressions to adjust them to the average EPD of all sires of each breed born in 1970.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Breed differences for weight (CW), height (CH), and condition score (CS) were estimated from records (n = 12,188) of 2- to 6-yr-old cows (n = 744) from Cycle IV of the U.S. Meat Animal Research Center's Germplasm Evaluation (GPE) Program. Cows were produced from mating Angus and Hereford dams to Angus, Hereford, Charolais, Shorthorn, Galloway, Longhorn, Nellore, Piedmontese, and Salers sires. Samples of Angus and Hereford sires were 1) reference sires born from 1962 through 1970 and 2) 1980s sires born in 1980 through 1987. The mixed model included cow age, season of measurement and their interactions, year of birth, pregnancy-lactation code (PL), and breedgroup as fixed effects for CW and CS. Analyses of weight adjusted for condition score included CS as a linear covariate. The model for CH excluded PL. Random effects were additive genetic and permanent environmental effects associated with the cow. Differences among breed groups were significant (P < 0.05) for all traits and were maintained through maturity with few interchanges in ranking. The order of F1 cows for weight was as follows: Charolais (506 to 635 kg for different ages), Shorthorn and Salers, reciprocal Hereford-Angus (HA) with 1980s sires, Nellore, HA with reference sires, Galloway, Piedmontese, and Longhorn (412 to 525 kg for different ages). Order for height was as follows: Nellore (136 to 140 cm), Charolais, Shorthorn, Salers, HA with 1980s sires, Piedmontese, Longhorn, Galloway and HA with reference sires (126 to 128 cm). Hereford and Angus cows with reference sires were generally lighter than those with 1980s sires. In general, breed differences for height followed those for weight except that F1 Nellore cows were tallest, which may in part be due to Bos taurus-Bos indicus heterosis for size.  相似文献   

13.
Reproductive traits and preweaning growth of progeny from young Hereford, Red Poll, Hereford X Red Poll, Red Poll X Hereford, Angus X Hereford, Angus X Charolais, Brahman X Hereford and Brahman X Angus dams were evaluated. First-calf heifers were mated with Red Angus bulls; Santa Gertrudis sires were used for each cow's second and third breeding season. Herefords, Red Polls and Hereford-Red Poll crosses were below average in percentage of calves weaned, whereas Angus-sired and Brahman-sired dams exceeded the overall mean. Angus X Charolais (P less than .10), Brahman X Hereford (P less than .01) and Brahman X Angus (P less than .10) dams weaned a higher percentage of calves than straightbred Herefords. None of these breed types differed from young Angus X Hereford females in reproductive performance. Angus X Charolais calves ranked highest in 180-d calf weight, exceeding progeny from both Hereford (P less than .01) and Angus X Hereford (P less than .10) dams. Brahman X Hereford dams weaned heavier (P less than .05) calves than Herefords, but their progeny did not differ at weaning from those reared by Angus X Herefords. Calves from Brahman X Angus dams weighed 12.7 kg less (P less than .01) than Angus X Hereford progeny. Analysis of the Hereford-Red Poll diallel showed evidence of (P less than .10) maternal heterosis in 180-d calf weight.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Records of 9,055 lambs from a composite population originating from crossing Columbia rams to Hampshire x Suffolk ewes at the U.S. Meat Animal Research Center were used to estimate genetic parameters among growth traits. Traits analyzed were weights at birth (BWT), weaning (7 wk, WWT), 19 mo (W19), and 31 mo (W31) and postweaning ADG from 9 to 18 or 19 wk of age. The ADG was also divided into daily gain of males (DGM) and daily gain of females (DGF). These two traits were analyzed with W19 and with W31 in three-trait analyses. (Co)variance components were estimated with REML for an animal model that included fixed effects of sex, age of dam, type of birth or rearing, and contemporary group. Random effects were direct and maternal genetic of animal and dam with genetic covariance, maternal permanent environmental, and random residual. Estimates of direct heritability were .09, .09, .35, .44, .19, .16, and .23 for BWT, WWT, W19, W31, ADG, DGM, and DGF, respectively. Estimates of maternal permanent environmental variance as a proportion of phenotypic variance were .09, .12, .03, .03, .03, .06, and .02, respectively. Estimates of maternal heritability were .17 and .09 for BWT and WWT and .01 to .03 for other traits. Estimates of genetic correlations were large among W19, W31, and ADG (.69 to .97), small between BWT and W31 or ADG, and moderate for other pairs of traits (.32 to .45). The estimate of genetic correlation between DGM and DGF was .94, and the correlation between maternal permanent environmental effects for these traits was .56. For the three-trait analyses, the genetic correlations of DGM and DGF with W19 were .69 and .82 and with W31 were .67 and .67, respectively. Results show that models for genetic evaluation for BWT and WWT should include maternal genetic effects. Estimates of genetic correlations show that selection for ADG in either sex can be from records of either sex (DGM or DGF) and that selection for daily gain will result in increases in mature weight but that BWT is not correlated with weight at 31 mo.  相似文献   

15.
Growth and carcass data on 7,154 cattle from a purebred project and 1,241 cattle from a crossbred project, comprising 916 first-crosses and 325 purebred Brahman controls, were analyzed to estimate genetic parameters, including the genetic correlations between purebred and crossbred performance (rpc). The data also allowed the estimation of sire breed means for various growth and carcass traits. Crossbred calves were produced using 9 Angus, 8 Hereford, 7 Shorthorn, 14 Belmont Red, and 8 Santa Gertrudis sires bred to Brahman dams. These same sires produced 1,568 progeny in a separate purebreeding project. Cattle in both projects were managed under two finishing regimens (pasture and feedlot) to representative market live weights of 400 (domestic), 520 (Korean), and 600 kg (Japanese). The traits studied included live weight at around 400 d of age (400W), hot carcass weight (CWT), retail beef yield percentage (RBY), intramuscular fat percentage (IMF), rump fat depth (P8), and preslaughter ultrasound scanned eye muscle area (SEMA). Estimated breeding values (EBV) of sires from their BREEDPLAN genetic evaluations were used to assess their value in predicting crossbred performance. Regressions of actual crossbred calf performance on sire EBV for each of the traits differed little from their expectation of 0.5. Angus sires produced crossbred carcasses with the highest P8 and lowest RBY but highest IMF. In contrast, crossbred progeny from Belmont Red sires had the lightest 400W and CWT, lowest P8, and highest RBY. Estimates of rpc were 0.48, 0.48, 0.83, 0.95, 1.00, and 0.78 for 400W, CWT, RBY, IMF, P8, and SEMA, respectively. Commercial breeders selecting sires for crossbreeding programs with Brahman females, based on EBV computed from purebred data, might encounter some reranking of sire's performance for weight-related traits, with little expected change in carcass traits.  相似文献   

16.
Data collected from steer and bull progeny, fed to a constant final feedlot weight over 11 yr, were used to estimate heterosis in post-weaning feedlot growth and carcass traits in two-way and three-way rotational crossing systems and a breed composite from crossing Hereford, Angus and Charolais breeds. Steer and bull progeny from matings of beef x Brown Swiss-cross sires and dams also were compared with the straight beef breeds and beef crosses. Growth traits evaluated were initial weight on test, 112-d weight, total feedlot average daily gain and total days from initial to final weight. Carcass traits included hot carcass weight, dressing percentage, rib eye area, 12th-rib fat thickness, kidney, pelvic and heart fat, yield grade and marbling score. Heterosis estimates for calves of all crossing systems were significant for initial and 112-d weight and for saving of days in the feedlot, but not for average daily feedlot gain. Heterosis estimates were small and nonsignificant for most carcass traits except for fat traits in specific crosses. Males from Hereford and Angus sires mated to Angus x Hereford dams had higher (P less than .10) backfat than did the parental average. Male progeny from Charolais ranked higher (P less than .10 to P less than .01) than calves from Hereford and Angus sires for most growth traits. Progeny from Charolais sires were more desirable (P less than .10 to P less than .01) for traits related to cutability, but they had less (P less than .05 to P less than .01) marbling than calves of Angus sires.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Mature dams representing Hereford, Red Poll, F1 Hereford x Red Poll, F1 Red Poll x Hereford, F1 Angus x Hereford, F1 Angus x Charolais, F1 Brahman x Hereford and F1 Brahman x Angus breed types were evaluated. All cows were bred to Limousin sires to produce two-way or three-way-cross progeny. Mature Brahman x Hereford dams produced a higher (P less than .05) percentage of live calves than Herefords, but dam breed differences in percentage of calves weaned relative to the number of cows exposed for mating were not statistically significant. Progeny of Angus x Charolais and Red Poll dams were outstanding in weaning weight, but Hereford and Brahman-cross calves were below average. Planned comparisons showed that Angus x Charolais calves were heavier (P less than .01) at weaning than Hereford (23.0 +/- 3.8 kg) or Angus x Hereford (9.6 +/- 3.2 kg) progeny. Mature Angus x Hereford mothers weaned heavier calves than did Brahman x Herefords (7.4 +/- 3.2 kg, P less than .05) or Brahman x Angus (10.9 +/- 3.0 kg, P less than .01). Analysis of the Hereford-Red Poll diallel showed evidence of maternal heterosis in calf weaning weight (4.0 +/- 2.6 kg, P less than .05), but there was no difference in the percentage of calves weaned by crossbred vs straightbred dams.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The objective of this study was to characterize breeds representing diverse biological types for birth and weaning traits in crossbred cattle. Gestation length, calving difficulty, percentage of unassisted calving, percentage of perinatal survival, percentage of survival from birth to weaning, birth weight, BW at 200 d, and ADG were measured in 2,500 calves born and 2,395 calves weaned. Calves were obtained by mating Hereford, Angus, and MARC III (one-fourth Hereford, one-fourth Angus, one-fourth Pinzgauer, and one-fourth Red Poll) mature cows to Hereford or Angus (British breed), Brahman, Tuli, Boran, and Belgian Blue sires. Calves were born during the spring seasons of 1992, 1993, and 1994. Sire breed was significant for all traits (P < 0.002). Offspring from British breeds and the Belgian Blue breed had the shortest gestation length (285 d) when compared with progeny from other sire breeds (average of 291 d). Calving difficulty was greater in offspring from Brahman sires (1.24), whereas the offspring of Tuli sires had the least amount of calving difficulty (1.00). Offspring from all sire breeds had similar perinatal survival and survival from birth to weaning (average of 97.2 and 96.2%, respectively), with the exception of offspring from Brahman sires, which had less (92.8 and 90.4%, respectively). Progeny of Brahman sires were heaviest at birth (45.7 kg), followed by offspring from British breed, Boran, and Belgian Blue sires (average of 42.4 kg). The lightest offspring at birth were from Tuli sires (38.6 kg). Progeny derived from Brahman sires were the heaviest at 200 d (246 kg), and they grew faster (1.00 kg/d) than offspring from any other group. The progeny of British breeds and the Belgian Blue breed had an intermediate BW at 200 d (238 kg) and an intermediate ADG (average of 0.98 kg/d). The progeny of Boran and Tuli sires were the lightest at 200 d (227 kg) and had the least ADG (0.93 kg/d). Male calves had a longer gestation length, had a greater incidence of calving difficulty, had greater mortality to weaning, were heavier, and grew faster than female calves. Sire breed effects can be optimized by selection and use of appropriate crossbreeding systems.  相似文献   

19.
Data in this experiment consisted of 418 lactation records, and weaning and birth weight records from 600 crossbred calves. The traits evaluated included birth weight, weaning weight, weaning weight per cow exposed, weaning weight per weight of cow, weaning weight per weight of cow exposed, and predicted milk yield. Angus, Brangus, and Gelbvieh sires were mated to purebred Hereford cows. Yearling and 2-yr-old Angus-Hereford, Brangus-Hereford, and Gelbvieh-Hereford daughters then were bred to Polled Hereford bulls (Data Set 2). Later-parity Angus-Hereford, Brangus-Hereford, and Gelbvieh-Hereford daughters were mated to Salers or Simmental sires (Data Set 3). Differences between Gelbvieh- and Brangus-sired calves or Gelbvieh-Hereford and Brangus-Hereford daughters were never significant for weaning weight, birth weight, or milk yield. Angus crosses had the lowest weaning weight, birth weight, and milk yield, but the highest kilograms of calf weaned per cow exposed in all data sets. Angus-Hereford and Brangus-Hereford dams had higher weaning weight per weight of cow exposed than Gelbvieh-Hereford dams (P < .01) in Data Set 3. There were no other significant differences related to cow weight.  相似文献   

20.
Estimates of genetic parameters resulting from various analytical models for birth weight (BWT, n = 4,155), 205-d weight (WWT, n = 3,884), and 365-d weight (YWT, n = 3,476) were compared. Data consisted of records for Line 1 Hereford cattle selected for postweaning growth from 1934 to 1989 at ARS-USDA, Miles City, MT. Twelve models were compared. Model 1 included fixed effects of year, sex, age of dam; covariates for birth day and inbreeding coefficients of animal and of dam; and random animal genetic and residual effects. Model 2 was the same as Model 1 but ignored inbreeding coefficients. Model 3 was the same as Model 1 and included random maternal genetic effects with covariance between direct and maternal genetic effects, and maternal permanent environmental effects. Model 4 was the same as Model 3 but ignored inbreeding. Model 5 was the same as Model 1 but with a random sire effect instead of animal genetic effect. Model 6 was the same as Model 5 but ignored inbreeding. Model 7 was a sire model that considered relationships among males. Model 8 was a sire model, assuming sires to be unrelated, but with dam effects as uncorrelated random effects to account for maternal effects. Model 9 was a sire and dam model but with relationships to account for direct and maternal genetic effects; dams also were included as uncorrelated random effects to account for maternal permanent environmental effects. Model 10 was a sire model with maternal grandsire and dam effects all as uncorrelated random effects. Model 11 was a sire and maternal grandsire model, with dams as uncorrelated random effects but with sires and maternal grandsires assumed to be related using male relationships. Model 12 was the same as Model 11 but with all pedigree relationships from the full animal model for sires and maternal grandsires. Rankings on predictions of breeding values were the same regardless of whether inbreeding coefficients for animal and dam were included in the models. Heritability estimates were similar regardless of whether inbreeding effects were in the model. Models 3 and 9 best fit the data for estimation of variances and covariances for direct, maternal genetic, and permanent environmental effects. Other models resulted in changes in ranking for predicted breeding values and for estimates of direct and maternal heritability. Heritability estimates of direct effects were smallest with sire and sire-maternal grandsire models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号