首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adiponectin is a cytokine secreted specifically by adipocytes that has been proposed to enhance insulin sensitivity and prevent atherosclerosis. Adiponectin receptors (adipoR1 and adipoR2) are recently found in mice which act as receptors for globular and full-length adiponectin to mediate the fatty-acid oxidation and glucose uptake in muscle and liver. The primary goal of this study was to examine chromosome localization of porcine adiponectin and adiponectin receptors and the gene expression pattern in various tissues of pigs of the three genes. Radiation hybrid mapping demonstrated that porcine adiponectin, adipoR1 and adipoR2 were located to chromosome13q36-41, 10p11 and 5q25, in the regions that were syntenic to the homologs of human genes, respectively. Semi-quantitative RT-PCR showed that porcine adiponectin mRNA was specifically expressed in adipose tissue and porcine adipoR1 and adipoR2 mRNA were ubiquitously expressed in many tissues except brain. Comparison to adipoR2 mRNA which was highly expressed in liver, heart, kidney, adipose tissues and lung, adipoR1 mRNA was expressed at relatively high levels in porcine muscle, leukocytes and epididymis. Our data provide basic molecular information useful for the further investigation on the function of the three genes.  相似文献   

2.
Nesfatin-1, a product of the nucleobindin 2 (NUCB2) gene, purportedly plays important roles in whole-body energy homeostasis. Experiments were conducted to determine how NUCB2 expression in fat depots may be controlled in the pig and to test the hypothesis that nesfatin-1 regulates appetite and LH secretion in the gilt. Prepubertal gilts were used to study expression of NUCB2 in fat and the effects of intracerebroventricular (i.c.v.) injection of nesfatin-1 on food intake and pituitary hormone secretion. Growing pigs (gilts and barrows at 22 wk of age, n = 1,145) or sexually mature gilts (n = 439) were used to test association of SNP in the NUCB2 gene with growth traits. The expression of NUCB2 was similar for subcutaneous fat compared with perirenal fat. An i.c.v. injection of the melanocortin-4 receptor agonist [Nle4, d-Phe7]-α-melanocyte-stimulating hormone did not alter expression of NUCB2 mRNA in the hypothalamus but reduced (P = 0.056) NUCB2 mRNA expression in subcutaneous fat. Short-term (7 d) submaintenance feeding reduced (P < 0.05) BW and did not alter expression of mRNA for NUCB2, visfatin, or leptin but increased (P < 0.05) expression of adiponectin mRNA in fat. Central injection of nesfatin-1 suppressed (P < 0.001) feed intake. Secretion of LH was greater (P < 0.01) after i.c.v. injection of nesfatin-1 than after saline. Single nucleotide polymorphisms in the porcine NUCB2 gene were not associated with adiposity of growing pigs or age at puberty in gilts but were associated (P < 0.05) with BW at puberty. These data indicate that NUCB2 is expressed in fat depots of the pig and that the level of expression is sensitive to stimulation of appetite-regulating pathways in the hypothalamus. It is confirmed herein that nesfatin-1 can regulate appetite in the pig and affect the gonadotropic axis of the prepubertal pig. Association of SNP in the porcine NUCB2 gene with BW at puberty suggests that regulation of appetite by nesfatin-1 in the pig affects growth, which may have important consequences for adult phenotypes.  相似文献   

3.
4.
为了研究紫花苜蓿对猪生长及肉质性能的作用,选用16头长×大外二元育肥猪,在基础饲料中添加4%苜蓿,应用免疫组织化学、酶联免疫吸附试验、实时荧光定量PCR研究脂肪代谢相关因子在mRNA水平和蛋白质水平表达的差异。结果显示:饲料中添加苜蓿后,杂交猪骨骼肌细胞中瘦素(leptin)基因(P<0.05)和蛋白(P>0.05)的表达量下降,与日增重呈轻度负相关(r=-0.314);转录因子C/EBPβ(CCAAT/en-hancer binding proteins,CEBPβ)基因和蛋白的表达量变化不明显;过氧化氢酶体激活增殖受体(peroxisome proliterator actiated receptors,PPARr)基因和蛋白水平高于对照组(P>0.05),与日增重(r=-0.837)、瘦肉率(r=-1.000)、pH1(r=-1.000)呈高度负相关,与脂率(r=1.000)、熟肉率(r=1.000)高度正相关;脂联素(adiponectin)基因(P>0.05)和蛋白(P<0.05)表达量高于对照组,与脂率(r=-1.000)、熟肉率(r=-1.000)、胴体重(r=-0.500)、屠宰率(r=-0.500)、肉色评分(r=-0.500)、pH24(r=-0.500),肌内脂肪含量(r=-0.500)负相关,与日增重(r=0.837)、瘦肉率(r=1.000)、pH1(r=1.000)、眼肌面积(r=0.500)、失水率(r=0.500)正相关;脂肪分化相关蛋白(adiposedifferentiation-related protein,ADFP)基因(P>0.05)和蛋白(P<0.05)表达量上调,但与肉质、体增重等指标相关性不大;脂蛋白脂酶(lipo-protein lipase,LPL)基因和蛋白变化不明显,与各项屠宰指标不相关。这些结果表明一定量的紫花苜蓿下调Leptin、通过CEBPβ上调PPARr、ADFP和Adiponectin 3个基因和蛋白的表达,增加猪的日增重、肌内脂肪,影响肉质性状,对LPL的作用较小。这些研究为紫花苜蓿在养猪业中的开发利用奠定了理论基础。  相似文献   

5.
Fetal pigs in one uterine horn of each of five gilts were hypophysectomized (HX) in utero by electrical cauterization at 72-74 days of gestation and sera collected at 110 days of gestation. Sera from HX fetuses had lower levels of insulin-like growth factor-1 compared to control littermates (P less than .05). Sera were tested for their effects on primary cultures of stromal-vascular cells from adipose tissue. The soluble protein concentration/dish was lower when pig cells were cultured in sera from HX fetuses compared to sera from control fetuses (P less than .01). Sera from HX fetuses inadequately supported growth of stromal-vascular cells so subsequent experiments utilized pooled sera from normal and HX adult pigs. Sera from HX and control fetuses were mixed with sera from the two adult pools and tested for incorporation of tritiated thymidine into rat preadipocytes and the appearance of adipocytes (determined histochemically) in pig stromal-vascular cultures. In cultures fed sera from HX fetuses there was a lower (P less than .05) number of pig fat cells/culture and a lower level (P less than .06) of preadipocyte proliferation in rat cell cultures when compared to control fetal sera. Fetal pig serum contains factors (adipogenic) which promote the proliferation and differentiation of adipocytes in culture. Serum from HX fetuses has a lower level of adipogenic factors.  相似文献   

6.
7.
Growth and compositional changes of fetal tissues in pigs   总被引:2,自引:0,他引:2  
Three hundred twenty fetuses were obtained from 33 pregnant gilts (Camborough-22, Pig Improvement Co.) to determine rates of nutrient deposition in fetal tissues and to estimate nutrient requirements for fetal growth. Pregnant gilts were fed an equal amount of a gestation diet (2.0 kg/d; as-fed basis), and were slaughtered at d 0, 45, 60, 75, 90, 102, or 110 of gestation (n = 3 to 6 per day). Fetuses were dissected into carcass and individual tissues (including gastrointestinal tract, liver, lung, heart, kidney, spleen [> or = d 75]), and partial placental collection was made for chemical analysis. Fetal tissues were weighed and analyzed for DM, ash, CP, and crude fat. Regression equations were obtained to explain the weight and compositional changes of individual tissues during gestation. Weights of the fetus, carcass, gastrointestinal tract, liver, heart, lung, and kidney increased cubically (P < 0.001), whereas brain weight increased linearly (P < 0.001) as gestation progressed. Fetal protein and fat contents increased quadratically (P < 0.001) as gestation progressed (R2 = 0.906 and 0.904, respectively). Changes in fetal protein and fat contents fit a multiphasic regression that consisted of two linear equations (P < 0.001, R2 = 0.988 and P < 0.001, R2 = 0.983, respectively), indicating that protein and fat growth accelerated after d 69 of gestation. Fetal protein and fat accretions were 0.25 and 0.06 g/d (P < 0.001) before d 69 of gestation, and increased to 4.63 and 1.09 g/d (P < 0.001) after d 69 of gestation. Protein needs for tissue protein gains increased 19-fold after d 69 of gestation. Results of this study indicate that the growth of the fetus and fetal tissues occurs at different rates during gestation and support the practice of a two-phase feeding strategy (before and after approximately d 70 of gestation) for pregnant gilts.  相似文献   

8.
Impact of betaine on pig finishing performance and carcass composition   总被引:2,自引:0,他引:2  
Two experiments were conducted to evaluate the effect of betaine supplementation of finishing diets on growth performance and carcass characteristics of swine. Experiment 1 included 288 pigs in a 2 x 2 x 3 factorial arrangement of treatments consisting of barrows and gilts of two genetic populations fed diets with 1.25 g/kg supplemental betaine from either 83 or 104 kg to 116 kg and control pigs fed betaine-devoid diets. Pigs were housed three pigs per pen with eight replicate pens per treatment. Diets were corn-soybean meal-based with 300 ppm added choline. Genetic populations differed (P < 0.05) in fat depth (2.24 vs 2.93 cm) and longissimus muscle depth (53.8 vs 49.1 mm) at 116 kg. Betaine reduced feed intake (P < 0.05); however, real-time ultrasound measurements were not affected. In Exp. 2, 400 pigs were used in a 2 x 2 x 2 factorial arrangement of treatments to evaluate the effect of sex (barrow or gilts), betaine (0 or 1 g/kg of diet), and crude protein (CP) (0.70% lysine = 12.7% CP or 0.85% lysine = 15.0% CP) when fed from 60 to 110 kg live weight. Pigs had been assigned to either a high- or low-protein feeding regimen at an average initial weight of 11.3 kg and were maintained on their respective protein levels throughout the experiment. For a 56-d period from 61.7 kg to 113.6 kg, pigs were fed diets with 300 ppm added choline. Within each protein level, pigs were randomly assigned to diets containing 0 or 1 g/kg betaine. Pigs were group-housed (four to five pigs per pen). Pig weight and feed intake were recorded every 28 d. Real-time ultrasound measurements were recorded initially and at d 28 on 64 pigs, and on all pigs prior to slaughter. Growth rate was fastest and feed intake greatest for barrows (P < 0.05) and for pigs receiving 12.7% crude protein. A crude protein x betaine interaction (P < 0.05) was observed from d 28 to 56 with pigs fed the 15% CP diet growing fastest when supplemented with 1 g/kg betaine, and pigs receiving the 12.7% CP diet growing fastest when the diets contained 0 g/kg betaine. Gilts more efficiently (P < 0.05) converted feed into body weight gain, as did pigs receiving the 12.7% CP diet (P < 0.05). Longissimus muscle area and fat measurements were unaffected by betaine or dietary protein on d 28. However, by d 56 betaine reduced average fat depth in barrows (P < 0.05; 3.21 vs 3.40 cm), but not in gilts. Betaine may be more effective at altering body composition in barrows than in gilts.  相似文献   

9.
10.
The present study was performed in order to evaluate the effects of lower than usual industry levels of dietary trace minerals on plasma levels, faecal excretion, performance, mortality and morbidity in growing-finishing pigs in a hot African climate. Group 1 (n = 100 pigs) received a diet with common industry levels of trace minerals. Group 2 (n = 100 pigs) received reduced dietary trace mineral levels but were fed the same basic diet as Group 1. Mortality, morbidity, pig performance and carcass measurements were evaluated. Two pigs in Group 1 and three pigs in Group 2 died. Thirteen pigs in Group 1 and 27 pigs in Group 2 were medically treated (P < 0.05). Carcass masses, back fat depth, loin depth, and lean percent were not significantly different between the groups. However, the carcasses when evaluated revealed a non-significant higher back fat thickness, lower loin eye area and percentage of fat-free lean in barrows compared to gilts within each group. Despite lower initial masses, pigs fed diets containing industry levels of trace minerals were heavier (P < 0.05) and had a higher (P< 0.05) than average daily gains compared to those that received a diet containing lower levels of trace minerals. Faecal zinc excretion was significantly lower (P < 0.05) in pigs fed with lower dietary zinc levels. Copper, manganese and iron excretion were not affected (P > 0.05) by the dietary levels of these trace minerals. Plasma trace mineral concentrations were not affected by the dietary treatment.  相似文献   

11.
The aims of this study were to study the effects of fasting on progesterone (P4) production in the pig and to verify whether fasting influences luteal expression of PGF(2alpha) receptor (FPr) and prostaglandin secretion. Superovulated prepubertal gilts were used; half of them were fasted for 72h starting on day 2 (F2) or 9 (F9) of the induced estrous cycle, respectively, while two groups (C2 and C9) served as respective controls. Plasma P4 and PGFM concentrations were determined by RIA while FPr mRNA expression in CLs collected at the end of fasting period was measured by real-time PCR. In experiment 1, plasma P4 concentrations in fasted gilts were significantly (P<0.01) higher than in controls starting from day 3 (F2; n=6) and 10 (F9; n=6). FPr mRNA expression was similar in F2 and C2 (n=6) CLs while it was significantly (P<0.05) higher in F9 than in C9 (n=6) CLs. In experiment 2, cloprostenol administered on day 12 significantly (P<0.05) increased FPr mRNA expression in CLs from both F9 (n=6) and C9 (n=6) gilts. At the time of cloprostenol injection PGFM levels were significantly higher (P<0.05) in the fasted group and cloprostenol-induced luteolysis in fasted but not in normally fed gilts. Results from this study indicate that fasting in prepubertal gilts induced to ovulate stimulates luteal P4 and PGFM production as well as FPr mRNA expression, thus increasing luteolytic susceptibility.  相似文献   

12.
Hormonal products have been developed for fixed-time artificial insemination (FTAI) to improve the efficiency of swine production. Here, we evaluated the effect of an FTAI protocol initiated during different phases of the estrous cycle on follicle development and ovulation in gilts. A total of 36 gilts were equally divided into three groups designated as the luteal (L), follicular (F), and post-ovulation (O) groups and fed with 20 mg of altrenogest for 18 days, followed by intramuscular injection of 1000 IU PMSG at 42 h after withdrawal of altrenogest, and 100 μg of GnRH after an 80-h interval. The L group had the highest number of follicles 4–6 mm in diameter, as well as corpora hemorrhagica. The mRNA expression of caspase-9 in the L group were significantly lower than those in the O and F groups (P < 0.05), while CYP11A1 and VEGF mRNA expression levels were significantly higher (P < 0.05). Moreover, FSHR mRNA levels were significantly higher in the O group than in the L, F, and control groups (P < 0.05). LHCGR and CYP19A1 mRNA levels were the highest in the F group (P < 0.05). Thus, the changes in the expression of genes associated with follicular development, maturation, and ovulation identified in this study indicated that initiation of the FTAI protocol during the luteal phase induced a better environment for follicle development and ovulation in gilts.  相似文献   

13.
Adiponectin is an adipocyte-derived hormone that can improve insulin sensitivity. Its functions in regulating glucose utilization and fatty acid metabolism in mammals are mediated by 2 subtypes of adiponectin receptors (AdipoR1 and AdipoR2). This study was conducted to determine the effect of fasting on the expression of adiponectin and its receptors. The expression of adiponectin was not affected in s.c. adipose tissue, but adiponectin expression increased in visceral adipose tissue after fasting. In contrast, expression of both AdipoR mRNA was increased in the liver and s.c. adipose tissue of 24-h-fasted pigs compared with fed pigs, but the mRNA in muscle and visceral adipose tissue was not affected by fasting. A third putative adiponectin receptor, T-cadherin, was cloned and the mRNA expression was determined. T-Cadherin has been recognized to act as a vascular adiponectin receptor in vascular endothelial and smooth muscle cells. Our data showed that the expression of T-cadherin was decreased in the muscle of fasted pigs, suggesting that the expression of T-cadherin can be regulated by feeding status. In summary, in young pigs, adiponectin mRNA was up-regulated by fasting in visceral, but not s.c., adipose tissue, whereas AdipoR1 and AdipoR2 mRNA were increased in s.c., but not visceral, adipose tissue. The adiponectin receptor, T-cadherin, was expressed in s.c. and visceral adipose tissue and in muscle, but only muscle mRNA expression was decreased by fasting.  相似文献   

14.
An 8-wk study of the effects of CLA, rendered animal fats, and ractopamine, and their interactive effects on growth, fatty acid composition, and carcass quality of genetically lean pigs was conducted. Gilts (n = 228; initial BW of 59.1 kg) were assigned to a 2 x 2 x 3 factorial arrangement consisting of CLA, ractopamine, and fat treatments. The CLA treatment consisted of 1% CLA oil (CLA-60) or 1% soybean oil. Ractopamine levels were either 0 or 10 ppm. Fat treatments consisted of 0% added fat, 5% choice white grease (CWG), or 5% beef tallow (BT). The CLA and fat treatments were initiated at 59.1 kg of BW, 4 wk before the ractopamine treatments. The ractopamine treatments were imposed when the gilts reached a BW of 85.7 kg and lasted for the duration of the final 4 wk until carcass data were collected. Lipids from the belly, outer and inner layers of backfat, and LM were extracted and analyzed for fatty acid composition from 6 pigs per treatment at wk 4 and 8. Feeding CLA increased (P < 0.02) G:F during the final 4 wk. Pigs fed added fat as either CWG or BT exhibited decreased (P < 0.05) ADFI and increased (P < 0.01) G:F. Adding ractopamine to the diet increased (P < 0.01) ADG, G:F, and final BW. The predicted carcass lean percentage was increased (P < 0.05) in pigs fed CLA or ractopamine. Feeding either 5% fat or ractopamine increased (P < 0.05) carcass weight. Adding fat to the diets increased (P < 0.05) the 10th rib backfat depth but did not affect predicted percent lean. Bellies of gilts fed CLA were subjectively and objectively firmer (P < 0.01). Dietary CLA increased (P < 0.01) the concentration of saturated fatty acids and decreased (P < 0.01) the concentration of unsaturated fatty acids of the belly fat, both layers of backfat, and LM. Ractopamine decreased (P < 0.01) the i.m. fat content of the LM but had relatively little effect on the fatty acid profiles of the tissues compared with CLA. These results indicate that CLA, added fat, and ractopamine work mainly in an additive fashion to enhance pig growth and carcass quality. Furthermore, these results indicate that CLA results in more saturated fat throughout the carcass.  相似文献   

15.
Adiponectin's beneficial effects are mediated by the AdipoR1 and AdipoR2 receptors (AdipoRs). The pig is a good model to study complex disorders such as obesity. We analyzed the expression of adiponectin, AdipoRs and some key molecules of energy metabolism (AMP-activated protein kinase α [AMPKα], p38 mitogen-activated protein kinase [p38 MAPK], and PPARα) in 2 pig breeds that displayed an opposite genetic behavior for energy metabolism: Casertana (CE), a fat-type animal, and Large White (LW), a lean-type animal. Muscle, liver, visceral and subcutaneous adipose tissues, and brain tissues were examined. The AdipoRs cDNA sequences were identical in the 2 breeds. AdipoRs mRNA expression, measured in all tissues, was significantly lower only in the 2 adipose tissues of CE pigs (P < 0.05). The muscle expression of AdipoRs, AMPKα, p38 MAPK, and PPARα was lower in CE than in LW animals (P < 0.01, P < 0.05, P < 0.01, P < 0.01, respectively). In liver, no molecule differed between breeds. The expression of both AdipoRs in visceral and subcutaneous adipose tissues was lower in CE pigs (P < 0.01). In brain, AdipoR1 and AMPKα expression was lower in CE pigs (P < 0.01), whereas AdipoR2 tended to be lower in CE than LW pigs (P = 0.05). In conclusion, our results suggest that tissue-specific downregulation of Adiponectin, AdipoRs, and of the key molecules of energy metabolism may be associated with the tendency of CE pigs to accumulate fat.  相似文献   

16.
The present study aimed to characterize serum haptoglobin (Hp) concentrations throughout an entire lactation period in both primi- and multiparous cows and to compare them to the Hp mRNA expression in liver and - in view of Hp being potentially an adipokine - also in different subcutaneous (s.c.) and visceral fat depots. In addition, potential anti-inflammatory effects of long-term supplementation with conjugated linoleic acids (CLA) were evaluated by assessing Hp. Trial 1 comprised 33 cows and 16 Holstein heifers from day 21 ante partum until day 252 postpartum. The animals received 100 or 50 g/day CLA or a control fat supplement. Blood samples and biopsy (tail head fat and liver) samples were collected. Trial 2 included 25 Holstein heifers, 5 animals were slaughtered on the day of parturition, the remaining animals were allocated to either CLA (100 g/day, n=10) or control fat supplement (n=10) and slaughtered on days 42 and 105 postpartum, respectively. At slaughter, fat samples were collected from 3 different visceral depots, 3 s.c. depots and from liver tissue. Results indicated no effects of CLA on serum Hp and liver Hp mRNA for both trials and on Hp mRNA in biopsies from s.c. tail head fat. In omental and s.c. withers fat from trial 2, CLA reduced Hp mRNA on both day 42 and day 105. Hp mRNA was detectable in fat tissues from both trials with abundance values being significantly lower than in liver. The Hp mRNA abundance in the s.c. fat depots was generally higher than in the visceral depots. Haptoglobin mRNA abundance in the different tissues from trial 2 was correlated whereby all s.c. depots were interrelated. The evidence of Hp mRNA expression in adipose tissues and the presence of Hp-immune staining in histological fat sections confirm that Hp can be classified as a bovine adipokine. The lack of an evident relationship between circulating Hp concentrations and normal body fat portions in dairy cattle demonstrates that varying degrees of adiposity are not confounding factors when using Hp as inflammatory marker. The physiological changes in serum Hp concentration seem to be limited to parity and parturition. In view of the lack of effects of CLA on serum Hp concentrations, the observed reaction in two out of six different fat depots seems of marginal importance for the organisms as an entity.  相似文献   

17.
Adipose tissue (AT) expresses adipokines, which are involved in the regulation of energy expenditure, lipid metabolism and insulin sensitivity. Visceral (v.c.) and subcutaneous (s.c.) depots largely differ concerning their metabolic characteristics as to the control of lipolysis and the sensitivity to insulin. The adipokines adiponectin, leptin and visfatin influence lipolysis and insulin sensitivity. Signalling by G‐protein coupled receptor 41 (GPR 41) stimulates leptin release via activation by short‐chain fatty acids. We hypothesized that the metabolic differences between v.c. and s.c. fat depots may also apply to the expression of adiponectin, its receptors, leptin, visfatin, insulin receptor (IR) and GPR 41. Therefore, we aimed to compare the mRNA expression of adiponectin, leptin and visfatin, of the adiponectin receptors 1 and 2 (AdipoR1/2) and IR as well of GPR 41 between several s.c. and v.c. fat depots in sheep. Samples from 10 rams were collected at slaughter (40 kg BW) from three s.c. depots, i.e. close to sternum (s.c.S), close to withers (s.c.W), and at the base of tail (s.c.T), and from two v.c. depots, i.e. from perirenal (v.c.P) and omental (v.c.O) fat. The mRNAs of both adiponectin receptors, as well as IR and putative GPR 41, were higher expressed in v.c. fat than in s.c. fat (p ≤ 0.05). Leptin mRNA abundance was greater in s.c. than in v.c. fat (mean ± SEM: s.c.: 2.55 ± 0.81; v.c.: 0.66 ± 0.21) and also differed among the five separately measured fat depots. Our results show differences in mRNA abundance for leptin, AdipoR1 and R2, as well as for IR and GPR 41 in s.c. compared with v.c. fat, thus confirming the need for individual consideration of distinct fat depots, when aiming to characterize adipose functions in ruminants.  相似文献   

18.
The content and distribution of body lipids are of special interest for production efficiency and meat quality in the farm animal industry. Triglycerides represent the most variable fraction of tissue lipids, and are mainly stored in adipocytes. Although several studies have reported regional differences in the expression of genes and their products in adipocytes from various species, the characteristics of i.m. adipocytes remain poorly described. To evaluate adipocyte features according to muscle and other fat locations, adipocyte proteins were isolated from trapezius skeletal muscle, and intermuscular, s.c., or perirenal adipose tissues from 6 female pigs (80 d of age). Protein extracts were labeled and analyzed by 2-dimensional, fluorescent, differential gel electrophoresis. The comparisons revealed that 149 spots were always differentially expressed (P < 0.05, ratio exceeding |2|-fold difference) between i.m. adipocytes and the fat cells derived from the 3 other adipose locations. The proteins that were downregulated in i.m. fat cells belonged to various metabolic pathways, such as lipogenesis (cytosolic malate dehydrogenase and isocitrate dehydrogenase, P < 0.01), glycolysis (enolases and aldolase, P 相似文献   

19.
A total of 120 pigs [Duroc × (Landrace × Large White); initial average BW: 100.3 ± 2.5 kg] were used to investigate the effects of sex (barrows and gilts) and dietary total Lys restriction (7.0, 6.5, and 6.0 g·kg(-1)) on growth performance and carcass, meat, and fat characteristics. Pigs were intended for high-quality dry-cured ham from Spain (called Teruel ham), and a minimum fat thickness at the gluteus medius muscle (GM) is required (16 mm) for carcasses to be acceptable. Animals were slaughtered when they reached 129.0 ± 3.6 kg of BW. There were 6 treatments arranged factorially (2 sexes × 3 dietary Lys concentrations) and 4 replicates of 5 pigs per treatment. Barrows consumed more feed (P = 0.001) and tended to have less G:F (P = 0.06) than gilts. Carcasses from barrows were fatter (P = 0.001) and had heavier main trimmed lean cuts (P = 0.008) than gilts. A greater proportion of final acceptable carcasses for Teruel ham (P = 0.001) was observed in barrows than in gilts because of the greater percentage of carcasses that fulfill the minimum fat depth at GM required (P = 0.001). Meat from barrows had greater content of intramuscular fat (P = 0.02) than meat from gilts. Also, subcutaneous fat from barrows had less proportion of PUFA than fat from gilts (P = 0.02). A reduction in dietary Lys concentration decreased ADG (P = 0.004) and ADFI (P = 0.001) in pigs. In addition, backfat depth (P = 0.007) and fat at GM (P = 0.07) increased as dietary Lys decreased. The proportion of carcasses that fulfilled the minimum fat depth at GM required for Teruel ham increased as dietary Lys decreased in feed, but this effect was greater in gilts than in barrows (sex × Lys, P = 0.02). Meat and fat quality was not influenced by dietary treatment. We conclude that different feeding programs with different dietary Lys concentrations may be needed for barrows and gilts intended for production of dry-cured hams where a minimum carcass fat depth is required.  相似文献   

20.
Two experiments (EXP) were conducted to determine the roles of age, weight and estradiol (E) treatment on serum leptin concentrations and leptin gene expression. In EXP I, jugular blood samples were collected from gilts at 42 to 49 (n = 8), 105 to 112 (n = 8) and 140 to 154 (n = 8) d of age. Serum leptin concentrations increased (P < 0.05) with age and averaged 0.66, 2.7, and 3.0 ng/ml (pooled SE 0.21) for the 42- to 49-, 105- to 112-, and 140- to 154-d-old gilts, respectively. In EXP II, RNase protection assays were used to assess leptin mRNA in adipose tissue of ovariectomized gilts at 90 (n = 12), 150 (n = 11) or 210 (n = 12) d of age. Six pigs from each age group received estradiol (E) osmotic pump implants and the remaining animals received vehicle control implants (C; Day 0). On Day 7, back fat and blood samples were collected. Estradiol treatment resulted in greater (P < 0.05) serum E levels in E (9 +/- 1 pg/ml) than C (3 +/- 1 pg/ml) pigs. Serum leptin concentrations were not affected by age, nor E treatment. Leptin mRNA expression was not increased by age in C pigs nor by F in 90- and 150-d-old pigs. However, by 210 d of age, leptin mRNA expression was 2.5-fold greater (P < 0.01) in E-treated pigs compared to C animals. Serum insulin concentrations were similar between treatments for 210-d-old pigs. However, insulin concentrations were greater (P < 0.05) in E than C pigs at 90 d and greater in C than E animals at 150 d. Plasma glucose and serum insulin-like growth factor-I concentrations were not influenced by treatment. These results demonstrate that serum leptin concentrations increased with age and E-induced leptin mRNA expression is age- and weight-dependent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号