首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The initial introduction of Pinus elliottii (PEE) to China occurred in the 1930s, and the planting of this conifer species has now attained close to 3 million ha in the subtropical zone of southern China. A large-scale genetic improvement program for PEE was implemented in southern China to produce fast-growing trees with high wood quality to address the severe shortage of timber production over the last two decades. In this paper, selection for stem volume, basic wood density (DEN) and modulus of elasticity (MOE) was based on the Smith–Hazel index, and a total of approximately 2 000 individual trees from 158 PEE open-pollinated families were selected at 22 years of age. The DEN and MOE for each tree were determined by non-destructive evaluation techniques using the Pilodyn and Hitman Director ST300® acoustic velocity device. The heritabilities and genetic and phenotypic correlations for the traits that were measured were estimated using the residual maximum likelihood approach in the flexible mixed modelling program ASReml-R. The results showed that the heritability estimates for the wood properties were between 0.292 and 0.309, and the heritabilities of the growth traits ranged from 0.129 to 0.216. The genetic correlation between the DENP and acoustic velocity (V?) with MOEP was 0.45 and 0.95, respectively. An indirect selection based on V was observed to be highly effective for determination of MOE. It indicated that V can be integrated into tree improvement programs as a useful index of MOE by ranking candidate families or individuals within the selection population. The genetic correlations between the growth traits and wood properties were not significant. By contrast, the phenotypic correlations between them were significantly positive, but the correlation coefficients were very low. The appropriate selection index (I4), which placed 10 times as much weight on DEN and MOE as the equal emphsis method, was determined as the appropriate selection index.  相似文献   

2.

Context

Wood quality traits are important to balance the negative decline of wood quality associated with selection for growth attributes in gymnosperm breeding programs. Obtaining wood quality estimates quickly is crucial for successful incorporation in breeding programs.

Aims

The aims of this paper are to: (1) Estimate genetic and phenotypic correlations between growth and wood quality attributes, (2) Estimate heritability of the studied traits, and (3) Assess the accuracy of in situ non-destructive tools as a representative of actual wood density.

Methods

Wood density (X-ray densitometry), tree height, diameter, volume, resistance drilling, acoustic velocity, and dynamic modulus of elasticity were estimated, along with their genetic parameters, for 1,200, 20-year-old trees from 25 open-pollinated families.

Results

Individual tree level heritabilities for non-destructive evaluation attributes were moderate ( $ {\widehat{h}}_i^2=0.37-0.42 $ ), wood density and growth traits were lower ( $ {\widehat{h}}_i^2=0.23-0.35 $ ). Favorable genetic and phenotypic correlations between growth traits, wood density, and non-destructive evaluation traits were observed. A perfect genetic correlation was found between resistance drilling and wood density (r G ?=?1.00?±?0.07), while acoustic velocity and dynamic modulus of elasticity showed weaker genetic correlations with wood density (r G ?=?0.25?±?0.24;?0.46?±?0.21, respectively).

Conclusion

This study confirmed that resistance drilling is a reliable predictor of wood density in western larch, while the weak genetic correlations displayed by acoustic velocity and dynamic modulus of elasticity suggest limited dependability for their use as fast in situ wood density assessment methods in this species.  相似文献   

3.
Development of optimal ways to predict juvenile wood stiffness, strength, and stability using wood properties that can be measured with relative ease and low cost is a priority for tree breeding and silviculture. Wood static modulus of elasticity (MOE), modulus of rupture (MOR), radial, tangential, and longitudinal shrinkage (RS, TS, LS), wood density (DEN), sound wave velocity (SWV), spiral grain (SLG), and microfibril angle (MFA) were measured on juvenile wood samples from lower stem sections in two radiata pine test plantations. Variation between inner (rings 1–2 from pith) and outer (rings 3–6 from pith) rings was generally larger than that among trees. MOE and MOR were lower (50%) in inner-rings than in outer-rings. RS and TS were higher (30–50%) for outer-rings than inner-rings, but LS decreased rapidly (>200%) from inner-rings to outer-rings. DEN had a higher correlation with MOR than with MOE, while MFA had a higher correlation with dry wood MOE than with MOR. SLG had higher significant correlation with MOE than with MOR. DEN and MOE had a weak, significant linear relationship with RS and TS, while MOE had a strong negative non-linear relationship with LS. Multiple regressions had a good potential as a method for predicting billet stiffness (R 2 > 0.42), but had only a weak potential to predict wood strength and shrinkage (R 2 < 0.22). For wood stiffness acoustic velocity measurements seemed to be the most practical, and for wood strength and stability acoustic velocity plus core density seemed to be the most practical measurements for predicting lower stem average in young trees.  相似文献   

4.
A total of 360 bark-to-bark-through-pith wood strips were sampled at breast height from 180 trees in 30 open-pollinated families from two rotation-aged genetic trials to study inheritance, age-age genetic correlation, and early selection efficiency for wood quality traits in radiata pine. Wood strips were evaluated by SilviScan® and annual pattern and genetic parameters for growth, wood density, microfibril angle (MFA), and stiffness (modulus of elasticity: MOE) for early to rotation ages were estimated. Annual ring growth was the largest between ages 2–5 years from pith, and decreased linearly to ages 9–10. Annual growth was similar and consistent at later ages. Wood density was the lowest near the pith, increased steadily to age 11–15 years, then was relatively stable after these ages. MFA was highest (35°) near the pith and reduced to about 10° at age 10–15 years. MFA was almost unchanged at later ages. MOE increased from about 2.5 GPa near the pith to about 20 GPa at ages 11–15 years. MOE was relatively unchanged at later ages. Wood density and MOE were inversely related to MFA. Heritability increased from zero near the pith and stabilised at ages 4 or 5 for all four growth and wood quality traits (DBH, density, MFA and MOE). Across age classes, heritability was the highest for area-weighted density and MFA, lowest for DBH, and intermediate for MOE. Age-age genetic correlations were high for the four traits studied. The genetic correlation reached 0.8 after age 7 for most traits. Early selection for density, MFA and MOE were very effective. Selection at age 7–8 has similar effectiveness as selection conducted at rotation age for MFA and MOE and at least 80% effective for wood density.  相似文献   

5.
《Southern Forests》2013,75(2):99-105
South Africa has made excellent progress in breeding plantation trees fulfilling the primary demands of improved volume growth, stem and branching characteristics, tolerance to pests and diseases, and general adaptability. This has had marked positive impacts on wood quality, as straight stems normally contain no or very little reaction wood, while problems associated with pith eccentricity and wandering pith are kept to a minimum. The breeding of trees with small, well-distributed branches, forming large angles with the vertical axis of the tree stem, reduced performance problems associated with knots and knot-associated features. However, tree breeding and intensive silviculture are causing the average corewood diameter to increase, creating a wood resource that is increasing in variability, especially when combined with earlier harvesting. Reducing the size and improving the properties of the corewood zone have therefore become of utmost importance to ensure that the South African pine timber resource continues to meet quality demands related to strength, stiffness and stability. Breeding programmes to date have created sound bases for further wood quality improvement of the various pine species, especially of the corewood zone. Opportunities for success are excellent as large variation in corewood properties still exists within the current breeding populations, combined with operationally important wood properties, such as wood density, microfibril angle, spiral grain and transitional age, all being under moderate to strong genetic control. Corewood properties seem to be inherited largely independently of tree and growth characteristics, making it possible to combine improvement in these characteristics with desirable wood properties. This paper discusses results from several young field trials, which have shown marked family, species and site differences in wood stiffness. This suggests that there is good opportunity to increase the dynamic modulus of elasticity of corewood by early selection and breeding, using highly reliable non-destructive acoustic technology. The results also proved that vegetative propagation through cuttings has no detrimental effect on corewood stiffness. The latter may even increase with increasing physiological age of the cutting.  相似文献   

6.
采用Pundit、Metriguard、FFT等三种无损检测方法和常规弯曲法对加拿大扭叶松(lodgepole pine)蓝变与非蓝变实木板材的动态及静态弹性模量进行检测和比较研究。结果表明,蓝变材三种动态弹性模量及静态弹性模量均高于非蓝变材;对比分析表明,蓝变材和非蓝变材的动态及静态弹性模量存在差异,其中动态弹性模量差异均达到0.01显著性水平,静态弹性模量差异达到0.05显著性水平,并且心、边材及密度值不同是导致以上差异的主要原因。相关性分析表明,动态与静态弹性模量间相关性达到0.01显著性水平;尽管三种无损检测方法测量结果存在差异,但它们之间仍存在密切相关性,FFT 技术测量的准确性高于Pundit和Metriguard;板材中结子数影响木材动态和静态弹性模量,随着板材结子数增加弹性模量相应地降低。  相似文献   

7.
Genetic- and environmental variation and correlation patterns were characterized for modulus of elasticity (MOE), modulus of rupture (MOR) and related wood traits: latewood proportion, wood density, spiral grain, microfibril angle and lignin content in five full-sib families of Norway spruce. The families were evaluated on the basis of clearwood specimens from the juvenile -mature wood transition zone of 93 sampled trees at age 30 year from seed. Family-means varied significantly (p < 0.05) for all wood traits studied except lignin content. MOE varied between 7.9–14.1 GPa among trees and 9.4–11.0 GPa among families. MOR varied between 47–87 MPa among trees and 61–71 MPa among families. Families remained significantly different in an analysis of specific MOE (MOE/density) and MOR (MOR/density). Hence, solely relying on wood density as a wood quality trait in tree breeding would not fully yield the potential genetic gain for MOE and MOR. Correlations between wood structural traits and specific MOE and MOR are presented and discussed.  相似文献   

8.
The purpose of this study was to determine the modulus of elasticity (MOE) and the modulus of rupture (MOR) in the radial bending test for small, clear specimens of Finnish birch (Betula pendula Roth and B. pubescens Ehrh) wood originating from mature trees. The dependency of MOE and MOR on the specific gravity of birch wood was studied, and the relationship between MOE and MOR was modelled at the different heights and at the different distances from the pith of the tree. For B. pendula, the mean values for MOE and MOR were 14.5 GPa and 114 MPa, whereas B. pubescens had means of 13.2 GPa and 104 MPa, respectively. At the corresponding specific gravity, the bending stiffness and strength values did not differ between the two species. The results indicated a linear relationship between the MOE and MOR, irrespective of the birch species or the within-stem location. Both MOE and MOR increased clearly from the pith towards the surface of the tree and decreased slightly from the base to the top of the tree. It seems that if products with as high stiffness and bending strength as possible are wanted, sorting of raw materials into different grades according to their within-tree origin can be of value.  相似文献   

9.
Eight clones from a 16-year-old field trial of clonal cuttings of lodgepole pine (Pinus contorta Dougl. ex Loud. var. latifolia Engelm.) were analyzed for growth, growth pattern, and stem damage in the field. In addition, wood and fiber traits (acoustic velocity [AcVel] and spiral grain) were analyzed and wood density, microfibril angle, modulus of elasticity, and radial fiber diameter (FibDR) determined from SilviScan analyzes. Two clones with considerably more bent, broken, and leaning stems differed from the other clones in terms of microfibril angle and modulus of elasticity (MOE) in the outermost annual rings. FibDR and, to some extent, MOE in the outermost annual rings were negatively correlated with the frequency of bent, leaning, or broken stems, while microfibril angle (MFA) was positively correlated. AcVel was negatively correlated with both MFA and the frequency of bent, broken, and leaning stems. We conclude that AcVel could be used as an effective tool to predict severe stem damage and determine stem strength in the field instead of using costly lab-based SilviScan measurements of microfibril angle. If developed further, this approach could be used for large-scale screening of progeny tests when selecting for stem strength.  相似文献   

10.
The dynamic and static modulus of elasticity (MOE) between bluestained and non-bluestained lumber of Lodgepole pine were tested and analyzed by using three methods of Non-destructive testing (NDT), Portable Ultrasonic Non-destructive Digital Indicating Testing (Pundit), Metriguard and Fast Fourier Transform (FFT) and the normal bending method. Results showed that the dynamic and static MOE of bluestained wood were higher than those of non-bluestained wood. The significant differences in dynamic MOE and static MOE were found between bulestained and non-bluestained wood, of which, the difference in each of three dynamic MOE (Ep. the ultrasonic wave modulus of elasticity, Ems, the stress wave modulus of elasticity and El, the longitudinal wave modulus of elasticity) between bulestained and non-bluestained wood arrived at the 0.01 significance level, whereas that in the static MOE at the 0.05 significance level. The differences in MOE between bulestained and non-bluestained wood were induced by the variation between sapwood and heartwood and the different densities of bulestained and non-bluestained wood. The correlation between dynamic MOE and static MOE was statistically significant at the 0.01 significance level. Although the dynamic MOE values of Ep, Em, Er were significantly different, there exists a close relationship between them (arriving at the 0.01 correlation level). Comparative analysis among the three techniques indicated that the accurateness of FFT was higher than that of Pundit and Metriguard. Effect of tree knots on MOE was also investigated. Result showed that the dynamic and static MOE gradually decreased with the increase of knot number, indicating that knot number had significant effect on MOE value.  相似文献   

11.
以广西黄冕林场的几个桉树树种为研究对象,对比分析不同树种生长、立木材性以及林分密度对其影响。结果表明:各树种的生长(树高、胸径、单株材积、冠幅、树皮厚度)和材性(立木Pilodyn值、应力波波速、基本密度)性状均差异显著。比较3种不同林分密度的邓恩桉发现,林分密度对其生长、材质形成等产生显著影响,适宜的林分密度有利于林木生长和材性形成。对各性状采用主成分分析法进行了树种评价,结果表明:巨桉林木生长量大,大花序桉和本沁桉生长量相对较少,但木材材质相近,表现为坚硬,而粗皮桉、柳桉、邓恩桉均低于对照尾巨桉。从林木生长、立木材性方面看,适合于该地区发展的树种有巨桉、大花序桉和本沁桉,其中巨桉最适宜。  相似文献   

12.
Genetic parameters for wood stiffness and strength properties were estimated in a 29-year-old hybrid larch stand (Larix gmelinii var. japonica × Larix kaempferi). The study included 19 full-sib larch families from Hokkaido, northern Japan. Implications of these genetic parameters in wood quality improvement are subsequently discussed. Traits included in the analyses were the dynamic modulus of elasticity of green logs (E log), the modulus of elasticity (MOE), the modulus of rupture (MOR), compression strength parallel to the grain (CS) in small clear specimens, wood density (DEN), and diameter at breast height (DBH). DEN had the lowest coefficients of variation and MOE the highest. The narrow-sense heritability estimates of E log, MOE, MOR, and CS were 0.61, 0.44, 0.60, and 0.43, respectively, and those of DEN and all mechanical properties increased from an inner to outer position within the stem. E log and DEN had high positive phenotypic (0.52–0.83) and genetic (0.70–0.92) correlations with MOE, MOR, and CS. The mechanical properties of the inner position of the stem had rather high phenotypic and genetic correlations with those of the outer position and overall mean. The predicted gains in wood stiffness (E log and MOE) were higher than those of the strength properties (MOR and CS). The predicted correlated responses in MOE, MOR, and CS when selecting for E log and DEN were 72.6%–97.8% of a gain achievable from direct selection of these traits. DBH showed an insignificant correlation with all mechanical properties, although selection of this trait had a slightly negative effect on the mechanical properties.  相似文献   

13.
This study aimed to evaluate radial and among-family variations of wood properties in Picea jezoensis. A total of 174 trees were randomly selected from 10 open-pollinated families in a progeny trial for measuring stem diameter, dynamic Young’s modulus of log (DMOElog), annual ring width (ARW), air-dry density (AD), modulus of elasticity (MOE), and modulus of rupture (MOR). Mean values of DMOElog, AD, MOE, and MOR were 9.60 GPa, 0.41 g/cm3, 9.44 GPa, and 76.6 MPa, respectively. Significant differences among families were observed in all properties. F values obtained by analyzing variance in wood properties were higher than those generally observed in growth traits. In addition, F values in wood properties remained relatively higher from the 1st to 25th annual ring from the pith, although F value in ARW rapidly decreased with each increase in annual ring number. These results indicate that genetic factors largely contributed to the variance in wood properties compared with the growth traits.  相似文献   

14.
We tested the effects of growth characteristics and basic density on hydraulic and mechanical properties of mature Norway spruce (Picea abies (L.) Karst.) wood from six 24-year-old clones, grown on two sites in southern Sweden differing in water availability. Hydraulic parameters assessed were specific hydraulic conductivity at full saturation (ks100) and vulnerability to cavitation (Psi50), mechanical parameters included bending strength (sigma b), modulus of elasticity (MOE), compression strength (sigma a) and Young's modulus (E). Basic density, diameter at breast height, tree height, and hydraulic and mechanical parameters varied considerably among clones. Clonal means of hydraulic and mechanical properties were strongly related to basic density and to growth parameters across sites, especially to diameter at breast height. Compared with stem wood of slower growing clones, stem wood of rapidly growing clones had significantly lower basic density, lower sigma b, MOE, sigma a and E, was more vulnerable to cavitation, but had higher ks100. Basic density was negatively correlated to Psi50 and ks100. We therefore found a tradeoff between Psi50 and ks100. Clones with high basic density had significantly lower hydraulic vulnerability, but also lower hydraulic conductivity at full saturation and thus less rapid growth than clones with low basic density. This tradeoff involved a negative relationship between Psi50 and sigma b as well as MOE, and between ks100 and sigma b, MOE and sigma a. Basic density and Psi50 showed no site-specific differences, but tree height, diameter at breast height, ks100 and mechanical strength and stiffness were significantly lower at the drier site. Basic density had no influence on the site-dependent differences in hydraulic and mechanical properties, but was strongly negatively related to diameter at breast height. Selecting for growth may thus lead not only to a reduction in mechanical strength and stiffness but also to a reduction in hydraulic safety.  相似文献   

15.
The objectives of this study were to establish the method of evaluating wood mechanical properties by acoustic nondestructive testing at standing trees and at logs of a Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) plantation, and to compare three acoustic nondestructive methods for evaluating the static bending modulus of elasticity (MOE), modulus of rupture (MOR), and compressive strength parallel-to-grain (σc) of plantation wood as well. Fifteen Chinese fir plantation trees at 36 years of age were selected. Each tree was cut into four logs, for which three values of dynamic modulus of elasticity, i.e., E sw, of the north and south face based on stress waves to assume the measuring state of the standing tree, E fr, longitudinal vibration, and E us, ultrasonic wave, were measured in the green condition. After log measurements, small specimens were cut and air-dried to 12% moisture content (MC). Static bending tests were then performed to determine the bending MOE and MOR, and compressive tests parallel-to-grain were made to determine σc. The bending MOE of small clear specimens was about 7.1% and 15.4% less than E sw and E us, respectively, and 11.3% greater than E fr. The differences between the bending MOE and dynamic MOE of logs as determined by the three acoustic methods were statistically significant (P < 0.001). Good correlation (R = 0.77, 0.57, and 0.45) between E sw, E fr, and E us and static MOE, respectively, were obtained (P < 0.001). It can be concluded that longitudinal vibration may be the most precise and reliable technique to evaluate the mechanical properties of logs among these three acoustic nondestructive methods. Moreover, the results indicate that stress wave technology would be effective to evaluate wood mechanical properties both from logs and from the standing tree.  相似文献   

16.
近红外光谱技术具有快速、无损、样品易于准备、适合实际生产在线检测等优点,在木材科学研究领域的应用越来越广泛。文中阐述近红外光谱技术在木材纤维素、木质素和抽提物等化学属性预测,生长特性及物理力学特征等物理属性预测,以及在木质复合材料生产中应用的研究进展,分析了其在木材材性分析及木质复合材料生产中的研究趋势。  相似文献   

17.
乐器共鸣板用木材声学振动性能改良研究现状及趋势   总被引:1,自引:0,他引:1  
木材是制作乐器共鸣板的重要材料, 木材的声学性能在很大程度上决定了乐器的声学品质。文中在分析乐器板用木材声学振动性能改良的着手点与切入点的基础上, 总结木材声学振动性能改良方面的研究进展, 认为以下几个方面将成为未来研究的热点:1)从弹性模量、比弹性模量、声辐射品质常数和声阻抗等指标出发进行木材声学性能功能性改良研究; 2)开展乐器共鸣板用木材的替代树种用材的功能性改良研究, 扩大可用于制作乐器共鸣板的资源范围; 3)从改善木材声学振动效率和振动音色角度进行木材功能性改良的研究; 4)开展新型的乐器共鸣板用材研究。  相似文献   

18.
人工林杉木和杨树木材物理力学性质的株内变异研究   总被引:4,自引:0,他引:4  
按照中国国家标准研究杉木和I-214杨树木材的抗弯弹性模量、抗弯强度、顺纹抗压强度和密度,同时按照日本国家标准研究2个树种的顺纹抗剪强度.结果表明:杉木的抗弯强度、顺纹抗压强度和密度由胸高直径处向上呈波浪形增加,抗弯弹性模量则稳定降低,但不同高度间杉木的物理力学性质没有显著差异;近树皮处木材的物理力学性质高于近髓心处木材,并有极显著差异.对于I-214杨树,只有抗弯弹性模量从髓心到树皮逐渐增加,其他的物理力学性质,最小值在从髓心到树皮的过渡区,最大值在近树皮处,从髓心到树皮,杨树的物理力学性质有极显著的差异.杉木和杨树的径面顺纹抗剪强度从髓心到树皮有极显著差异,并且近树皮的高于近髓心的木材,而弦面顺纹抗剪强度从髓心到树皮没有显著差异.木材密度与力学性质有很好的线性相关关系,木材密度是一个很好的力学强度的预测手段.  相似文献   

19.
ABSTRACT

The main goal of this study was to investigate the visual characteristics, recovery rate, and flexural properties of sawn boards from a fibre-managed plantation Eucalyptus globulus resource as a potential raw material for structural building applications. The impacts of the visual characteristics, strength-reducing features, and variation in basic density and moisture content on the bending modulus of elasticity (MOE) and modulus of rupture (MOR) of the boards were investigated. The reliabilities of different non-destructive methods in predicting MOE and MOR of the boards were evaluated, including log acoustic wave velocity measurement and numerical modellings. The MOE and MOR of the boards were significantly affected by the slope of grain, percentage of clear wood, and total number of knots in the loading zone of the boards. The normal variation in basic density significantly influenced the MOE of the boards while its effect on the MOR was insignificant. The numerical models developed using the artificial neural network (ANN) showed better accuracies in predicting the MOE and MOR of the boards than traditional multi-regression modelling and log acoustic wave velocity measurement. The ANN models developed in this study showed more than 78.5% and 79.9% success in predicting the adjusted MOE and MOR of the boards, respectively.  相似文献   

20.
The quality of wood in 47-year-old standing trees of Japanese cedar grown in five plantation sites with different spacing (A, 1×1m; B, 2×2m; C, 3×3m; D, 4×4m; E, 5×5m) was evaluated using stress-wave and ultrasonicwave propagation methods. The magnitude of the velocities of these waves and the calculated dynamic modulus of elasticity (MOE) were used as indexes for assessing wood quality in standing trees. Results indicated that plantation spacings had moderate influence on the stress-wave and ultrasonic-wave velocities, and the degree of influence varied with the wave-propagating direction. Regardless of the testing method used, the velocities of waves propagated parallel to the grain in the standing trees with medium and poor growth conditions were significantly greater than those with superior growth conditions. The dynamic MOE of the trunk of standing trees of Japanese cedar was calculated by adjusting the effective mobility of free water and effective density in the trunk at various moisture contents. Results indicated that the dynamic MOE of wood in the standing trees of Japanese cedar was affected somewhat by the testing methods used. Furthermore, the dynamic MOE of the wood in the standing trees varied with the growth conditions imposed.Part of this report was presented at the World Conference on Timber Engineering, Montreax-Lausanne, Switzerland, August 17–20, 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号