首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
A three-dimensional circulation model was used in conjunction with larval fish vertical behaviour models to study the interaction between larval vertical distribution, advection and the outcome of larval transport along the central portion of the east coast of the United States. The circulation model was forced by tides, a northern boundary inflow, and winds. Vertical behaviour models were developed for Atlantic menhaden ( Brevoortia tyrannus ) and spot ( Leiostomus xanthurus ). The purpose of this modelling effort was to investigate the transport pathways of Atlantic menhaden and spot larvae from offshore spawning grounds to estuarine nursery habitats. The coupled circulation and behavioural model demonstrated the importance of along-shelf transport in what is generally thought to be a 'cross-shelf' problem. Cross-shelf transport was associated with bathymetric features, such as shoals. Both physical (e.g. wind) and biological (e.g. changes in larval behaviour) events were responsible for many of the observed patterns in larval transport. Overall, larval transport was determined by circulation but was modified by larval vertical distributions.  相似文献   

2.
Present theory suggests that population regulation in marine fishes cannot be resolved until an understanding of the processes involved in shaping the overall distribution (the number of populations, geographical extent, mean abundance and temporal changes in abundance) is developed. Here, we present a step toward understanding Atlantic menhaden population patterns, by studying processes in the Middle and South Atlantic Bights, which shape those patterns. We use individual-based and hydrodynamic models to reinterpret the 'mechanics' of the menhaden life history, and put forward several potentially testable hypotheses. The success of the menhaden reproductive strategy seems to depend on the seasonal changes in the mean flow field of the Middle and South Atlantic Bights, suggesting that their life history may have been strongly structured by the regional physics of the system. Because the annual menhaden migration is size-based and spawning occurs throughout the population's range, the size distribution of the adult population may influence the supply of larvae to particular estuaries along the coast. Recruitment of larvae into Delaware and Chesapeake Bays may be dependent on spawning to the north of the bays' mouths, owing to coastline shape and orientation in the vicinity of the bays. Our results suggest that management of this resource might be improved by consideration of the spatial and temporal variability in both the biological and the physical system.  相似文献   

3.
Atlantic menhaden ( Brevoortia tyrannus ) is an estuarine-dependent fish that spawns in coastal waters of the Middle and South Atlantic Bights. Circulation modelling studies of larval transport suggest that recruitment of larvae into the Albemarle-Pamlico Estuarine System, North Carolina, is linked to dynamics on the shelf from New York to South Carolina. Field-collected menhaden egg data (from MARMAP and SABRE) define a range of temperatures within which menhaden eggs have been found. In this study we refine the transport model-predicted spawning grounds for the 1994–95 season by using satellite-derived sea surface temperature data to highlight regions that are outside the observed spawning temperature range. We also use transport pathways leading from source locations to the estuarine system to characterize the temperature field experienced by particles/larvae during their spawning-ground to inlet transit. The modelled nearshore location of source regions agrees well with MARMAP and SABRE egg data, and points to the importance of understanding biological and physical linkages between the Middle and South Atlantic Bights. The combination of modelled transport and synoptic temperature maps can provide useful guidance to future sampling efforts as well as help refine our understanding of menhaden ecology.  相似文献   

4.
Currents that effect the shoreward transport of the larvae of estuarine-dependent fishes spawned in winter in Onslow Bay, North Carolina, USA, were driven by winds and pressure gradients, and influenced by the Gulf Stream. Aside from storms, winds over the continental shelf in Onslow Bay blew predominantly alongshore with velocities approaching 14 m s-1 during February and March 1986, and January and February 1989. Water masses and currents observed at two current-meter moorings, one at mid-shelf and the other on the outer shelf, reflected the onshore (or offshore) advection of interior water in compensation for the offshore (or onshore) advection of wind-driven surface water. Winds and currents reversed direction approximately every 4 to 6 days. The larvae of Atlantic menhaden, Brevoortia tyrannus , spot, Leiostomus xan- thurus, and Atlantic croaker, Micropogonias undulatus , were most abundant in 17–19oC and 20–21oC water of the outer shelf and Gulf Stream fronts. There was little indication of diel vertical migration; larval Atlantic menhaden were most abundant in mid- and surface water, while spot and Atlantic croaker were most abundant in mid- and deep water. Given this distribution, the inferred advective transport of larvae was at times onshore, but at other times it was offshore. Within a spawning season, the prevalence of either reciprocation could determine the number of larvae that reach coastal inlets.  相似文献   

5.
In this paper, we highlight the major results from the SABRE programme and applications to research and management. In particular, SABRE provided new scientific insights into the fisheries oceanography of the estuarine-dependent fishes of the South Atlantic Bight. Although we concentrated our efforts on Atlantic menhaden, we also gained insights on the coupling of physics to biology in the early life history of a number of marine fishes. Larval transport from spawning sites to and through barrier island inlets is now better understood. Analysis of menhaden population dynamics suggests survival in the late larval/early juvenile stage is particularly important to population growth. This phase of the life history appears likely to present a bottleneck to recruitment for Atlantic menhaden. We also made a number of technological breakthroughs which are already being applied elsewhere in research and assessments including the Continuous, Underway Egg Sampler (CUFES), enzyme-based approaches to evaluating condition of individual larvae and various physical and biological modelling innovations. Our experiences establishing and managing the SABRE research team also provide insights into one model for promoting multidisciplinary research in fisheries oceanography. Throughout SABRE, we have sought an open exchange of information and insights from a wide variety of researchers and environmental managers. We hope the synthesis provided here continues that dialogue.  相似文献   

6.
The circulation over the continental shelf off the southern Middle Atlantic Bight (MAB) and northern South Atlantic Bight (SAB) is examined for the fall and winter periods. Observational data are compared with results from a three-dimensional numerical model to identify the dominant processes on the shelf. By considering wind-forcing, tides, and a specified upstream inflow (into the MAB), the observed and modelled flow fields are in close agreement in the mid- and inner shelf regions. The resulting larval drift indicates a seasonal dependence of transport pathways from spawning grounds to estuarine nursery areas for menhaden larvae and other offshore-spawning estuarine-dependent fish. Specifically, the physical oceanography of the MAB and SAB during the fall and winter months suggests a north-to-south shift in spawning areas providing recruits to the Carolina estuaries, in agreement with the observed migration of the spawning populations.  相似文献   

7.
The circulation over the continental shelf off the southern Middle Atlantic Bight (MAB) and northern South Atlantic Bight (SAB) is examined for the fall and winter periods. Observational data are compared with results from a three-dimensional numerical model to identify the dominant processes on the shelf. By considering wind-forcing, tides, and a specified upstream inflow (into the MAB), the observed and modelled flow fields are in close agreement in the mid- and inner shelf regions. The resulting larval drift indicates a seasonal dependence of transport pathways from spawning grounds to estuarine nursery areas for menhaden larvae and other offshore-spawning estuarine-dependent fish. Specifically, the physical oceanography of the MAB and SAB during the fall and winter months suggests a north-to-south shift in spawning areas providing recruits to the Carolina estuaries, in agreement with the observed migration of the spawning populations.  相似文献   

8.
The South Atlantic Bight Recruitment Experiment (SABRE) brought together a interdisciplinary team of scientists to conduct research to enhance our understanding of the relationship between variation in environmental factors and the variable recruitment of 'estuarine dependent' fishes within the SAB. The project sought to develop a new fusion of government and academic scientists, each possessing unique skills, to address the difficult problem of recruitment variability in fishes. This fusion required the development of appropriate and at that time novel management and administrative strategies. SABRE initially focused on recruitment dynamics of Atlantic menhaden, Brevoortia tyrannus , in the South Atlantic Bight, but expanded over time to include several estuarine-dependent species and much of the Middle Atlantic Bight as well. The project was conducted from 1991 to 1997 and resulted in a substantial improvement in our understanding of the life history and ecology of Atlantic menhaden and the potential constraints upon its recruitment. SABRE also contributed to our understanding of the physical oceanography of the western North Atlantic shelf and adjacent coastal inlets and the implications of physical dynamics upon the potential pathways for larval transport.  相似文献   

9.
Understanding the interactions among biological and physical processes is essential to determining how the environment affects transport and survival of fishes. We examined vertical distribution in larval Atlantic menhaden (Brevoortia tyrannus) and Atlantic croaker (Micropogonias undulatus) using 126 depth stratified tows in Delaware Bay, USA, during two cruises, in December 2007 and February 2008. Menhaden larvae were 16.8–24.6 and 20.5–26.2 mm standard length in December and February. Corresponding lengths for croaker were 9.3–17.9 and 8.6–19.6 mm. Using empirical observations, and statistically derived models, we explored larval concentration for both species as a function of location, depth, diel period, tidal period, size, and pairwise interactions. Menhaden concentration was best modeled as a function of station, cruise, and interactions between depth and size as well as between station and cruise. No significant differences in larval menhaden concentration were present among tidal and diel periods. Croaker concentration was best modeled as a function of size and interactions between station and diel period, depth and size, cruise and size. Despite tidal period not emerging as a significant model parameter, we observed larger croaker larvae during nighttime flood tides. Our statistical models are consistent with processes of up‐estuary transport for both species, suggesting larvae are increasingly affected by behavioral responses as larvae grow, exhibiting stronger patterns in vertical distribution. The results refine our understanding of the potential importance of size‐related differences in vertical distribution for larval transport in these species. Future research should examine the interactions among size‐specific vertical migratory capabilities, vertical distribution, transport, and retention.  相似文献   

10.
An individual‐based model (IBM) for the simulation of year‐to‐year survival during the early life‐history stages of the north‐east Atlantic stock of mackerel (Scomber scombrus) was developed within the EU funded Shelf‐Edge Advection, Mortality and Recruitment (SEAMAR) programme. The IBM included transport, growth and survival and was used to track the passive movement of mackerel eggs, larvae and post‐larvae and determine their distribution and abundance after approximately 2 months of drift. One of the main outputs from the IBM, namely distributions and numbers of surviving post‐larvae, are compared with field data as recruit (age‐0/age‐1 juveniles) distribution and abundance for the years 1998, 1999 and 2000. The juvenile distributions show more inter‐annual and spatial variability than the modelled distributions of survivors; this may be due to the restriction of using the same initial egg distribution for all 3 yr of simulation. The IBM simulations indicate two main recruitment areas for the north‐east Atlantic stock of mackerel, these being Porcupine Bank and the south‐eastern Bay of Biscay. These areas correspond to areas of high juvenile catches, although the juveniles generally have a more widespread distribution than the model simulations. The best agreement between modelled data and field data for distribution (juveniles and model survivors) is for the year 1998. The juvenile catches in different representative nursery areas are totalled to give a field abundance index (FAI). This index is compared with a model survivor index (MSI) which is calculated from the total of survivors for the whole spawning season. The MSI compares favourably with the FAI for 1998 and 1999 but not for 2000; in this year, juvenile catches dropped sharply compared with the previous years but there was no equivalent drop in modelled survivors.  相似文献   

11.
Understanding large‐scale migratory behaviours, local movement patterns and population connectivity are critical to determining the natural processes and anthropogenic stressors that influence population dynamics and for developing effective conservation plans. Atlantic tarpon occur over a broad geographic range in the Atlantic Ocean where they support valuable subsistence, commercial and recreational fisheries. From 2001 through 2018, we deployed 292 satellite telemetry tags on Atlantic tarpon in coastal waters off three continents to document: (a) seasonal migrations and regional population connectivity; (b) freshwater and estuarine habitat utilization; (c) spawning locations; and (d) shark predation across the south‐eastern United States, Gulf of Mexico and northern Caribbean Sea. These results showed that some mature tarpon make long seasonal migrations over thousands of kilometres crossing state and national jurisdictional borders. Others showed more local movements and habitat use. The tag data also revealed potential spawning locations consistent with those inferred in other studies from observations of early life stage tarpon leptocephalus larvae. Our analyses indicated that shark predation mortality on released tarpon is higher than previously estimated, especially at ocean passes, river mouths and inlets to bays. To date, there has been no formal stock assessment of Atlantic tarpon, and regional fishery management plans do not exist. Our findings will provide critical input to these important efforts and assist the multinational community in the development of a stock‐wide management information system to support informed decision‐making for sustaining Atlantic tarpon fisheries.  相似文献   

12.
A growth and survival model of the early life stages was run along virtual drift trajectories tracked in a hydrodynamic model to simulate the annual recruitment process of anchovy (Engraulis encrasicolus) in the Bay of Biscay (NE Atlantic). These biophysical simulations concerning three different years were analysed in order to investigate the influence of environment and spawning dynamics on the survival of larvae and juveniles. The location of space–time survival windows suggested major environmental mechanisms involved in simulated recruitment variability at the different scales – retention of larvae and juveniles in favourable habitats over the shelf margins and turbulence effects. These small‐scale and meso‐scale mechanisms were related to the variations in wind direction and intensity during spring and summer. Survival was also variable according to the origin of the drift trajectories, that is spawning distribution in space and time. The observed spawning distribution (according to field surveys) was compared with the spawning distribution that would maximize survival (according to the biophysical model) on a seasonal scale, which revealed factors not considered in the biophysical model (e.g. spawning behaviour of the different age classes). The variation of simulated survival according to spawning distribution was examined on a multi‐annual scale and showed a coherent pattern with past and present stock structures. The interaction processes between the population (influence on spawning) and its environment (influence on survival) and its implications on recruitment and stock dynamics are discussed.  相似文献   

13.
Factors controlling the movement of fish larvae from coastal spawning environments to estuarine nursery areas are important to fish recruitment. In this paper, the role of physical processes in larval transport to estuarine nursery areas in the Aransas Pass region, Texas, is examined using a circulation model coupled with a fixed‐depth particle transport model. Two phases of transport are examined: transport on the shelf to the tidal inlet and transport through the inlet to estuarine nursery areas. Observed pulsing in the supply of red drum (Sciaenops ocellatus) larvae to the tidal inlet is significantly correlated with modeled particle supply. This pulsing is not correlated with a specific physical process, but results from the interaction of several factors affecting water movement, including low‐frequency variations in water level and wind forcing. Simulations suggest that the primary spawning region for red drum larvae that utilize nursery habitat in the Aransas Pass region is located north of the inlet. Patterns in the trajectories of particles that successfully enter the inlet reveal that they move alongshelf in the nearshore region and then move into the inlet, rather than moving directly across the shelf to the inlet. The approach path of particles outside the inlet determines the spatial transport patterns for inlets with branched channels and multiple bays. This study demonstrates that physical processes play an important role in determining larval supply to a tidal inlet.  相似文献   

14.
Sequential ichthyoplankton surveys were used to determine the spatial and temporal distribution of eggs and larvae over coastal spawning grounds of Atlantic cod (Gadus morhua) in Smith Sound, Trinity Bay, Newfoundland, during the spring and summer of 2006 and 2007. Egg densities showed similar patterns for both years with two peaks in abundance in spring (March–April) and late summer (late July). A clear progression of development stages (1–4) was observed in spring and summer in 2006 and summer in 2007, suggesting retention of eggs within the Sound during these periods. Modelled predictions of vertical egg distributions indicated eggs were broadly distributed near the surface during spring (March–April), but were concentrated below the pycnocline (>10 m) within the inner portions of the Sound during the summer months (July–August). Back‐calculated peaks in spawning based on water temperatures were estimated at 11 and 4 April for 2006 and 2007, respectfully, with late season peaks centred on 21–24 July for both years. Environmental data indicated cooler water temperatures and periods of high wind stress in spring, and warmer, calmer periods late summer, consistent with higher retention and faster development times on the spawning grounds later in the season. We conclude that spring and summer spawning events result in different distributions of early life stages and may lead to different distributions of juvenile and adult fish.  相似文献   

15.
In the southern part of the East China Sea (ECS), a large spawning ground of jack mackerel Trachurus japonicus has recently been found: Larval survival during the period of transport from the spawning ground along the shelf break is potentially a critical stage prior to recruitment. As such, the distribution of copepod nauplii in this region was investigated during the main spawning period in 2003–2006. The average naupliar density in 2003 was significantly higher than the other years along the shelf break, which is a major transport pathway for jack mackerel larvae (sea-surface temperature 20–23°C). Estimated egg production rates for Paracalanus spp., one of the most dominant genera of copepods in the southern ECS, based on temperature and chlorophyll-a concentration could not fully explain the spatial and annual variation in naupliar distribution and abundance. Although naupliar densities showed significant positive correlations with chlorophyll-a concentration for all years, an analysis of covariance revealed that naupliar density in 2003 was high even if the effect of chlorophyll-a concentration was excluded. This suggests that apart from copepod production, adult female distribution plays an important role in variability of the naupliar distribution and abundance in the southern ECS.  相似文献   

16.
The harvest of bay scallops (Argopecten irradians) from Buzzards Bay, Massachusetts, U.S.A. undergoes large interannual fluctuations, varying by more than an order of magnitude in successive years. To investigate the extent to which these fluctuations may be due to yearly variations in the transport of scallop larvae from spawning areas to suitable juvenile habitat (settlement zones), a high‐resolution hydrodynamic model was used to drive an individual‐based model of scallop larval transport. Model results revealed that scallop spawning in Buzzards Bay occurs during a time when nearshore bay currents were principally directed up‐bay in response to a persistent southwesterly sea breeze. This nearshore flow results in the substantial transport of larvae from lower‐bay spawning areas to settlement zones further up‐bay. Averaged over the entire bay, the spawning‐to‐settlement zone connectivity exhibits little interannual variation. However, connectivities between individual spawning and settlement zones vary by up to an order of magnitude. The model results identified spawning areas that have the greatest probability of transporting larvae to juvenile habitat. Because managers may aim to increase scallop populations either locally or broadly, the high‐connectivity spawning areas were divided into: (i) high larval retention and relatively little larval transport to adjoining settlement areas, (ii) both significant larval retention and transport to more distant settlement areas, and (iii) little larval retention but significant transport to distant settlement areas.  相似文献   

17.
Spawning habitat of the Atlantic menhaden in Onslow Bay, North Carolina   总被引:2,自引:0,他引:2  
The Continuous, Underway Fish Egg Sampler (CUFES) was used to sample pelagic eggs of the Atlantic menhaden ( Brevoortia tyrannus ) from 3-m depth off North Carolina in winter 1993–94 and 1994–95. Simultaneous measurements were made of temperature, salinity, and the concentration of chlorophyll a . The maximal concentration of eggs was 346 eggs m−3. Eggs were highly aggregated in patches which occurred between the Gulf Stream and mid-shelf fronts (17–23°C, 36.0–36.4‰). Unexpectedly, eggs were found almost exclusively in water of 20–60 m (mode 20 m) bottom depth. Thus, spawning appears related to bathymetry as well as hydrography. Variograms for egg concentration indicated a mean (± SE) patch scale of 3.6 ± 1.7 km and a high degree of spatial variance explained by CUFES sampling. Lagrangian modelling of particles moving in response to tides, winds, and a prescribed flow from the north indicated that the region of observed, maximal occurrence of eggs is favourable for the retention of eggs and larvae on the shelf adjacent to inlets used to enter nursery areas.  相似文献   

18.
An individual‐based model (IBM) was used to investigate the effects of physical and biological variables on the transport via a jet current of anchovy (Engraulis capensis) eggs from spawning to the nursery grounds in the southern Benguela ecosystem. As transport of eggs and early larvae is considered to be one of the major factors impacting on anchovy recruitment success, this approach may be useful to understand further the recruitment variability in this economically and ecologically important species. By coupling the IBM to a 3D hydrodynamic model of the region called Plume, and by varying parameters such as the spatial and temporal location of spawning, particle buoyancy, and the depth range over which particles were released, we could assess the influences of these parameters on transport success. A sensitivity analysis using a General Linear Model identified the primary determinants of transport success in the various experimental simulations, and model outputs were examined and compared with patterns observed in field studies. Model outputs compared well with observed patterns of vertical and horizontal egg distribution. Particle buoyancy and area of particle release were the major single determinants of transport success, with an egg density of 1.025 g cm?3 maximizing average particle transport success and the western Agulhas Bank being the most successful spawning area. This IBM may be useful as a generic prototype for other upwelling ecosystems.  相似文献   

19.
The reproductive environment of the South-west Atlantic anchovy, Engraulis anchoita , in the southern Brazilian coast was investigated using maritime weather reports from the US National Climatic Center. These reports were summarized to yield seasonal distributions of sea surface temperature, wind stress and Ekman transport for 2-month segments of the seasonal cycle. The vertical oceanographic structure and dynamics were studied using temperature and salinity data collected from oceanographic cruises. The seasonal distribution and biomass of South-west Atlantic anchovy spawners were estimated by acoustic surveys. Anchoita spawns intensively off southern Brazil during winter and early spring when the Ekman transport is directed onshore, and the combined effects of freshwater run-off and the flow of cold water near the bottom result in a strong vertical stability over the continental shelf. During this season, primary production peaks due to nutrient input from Sub-Antarctic waters and freshwater run-off. These conditions would avoid dispersal of eggs and larvae offshore and favour the production and maintenance of fine-scale food particle aggregations required for successful first feeding of newly hatched larvae. In summer, the conditions are almost reversed and anchoita spawners are virtually absent from the area. Thus, the spawning strategy of anchoita in southern Brazil seems to be tuned in a way to optimize larval retention, minimize exposure to turbulent mixing and take advantage of enhanced plankton productivity.  相似文献   

20.
In the marine environment, pelagic dispersal is important for determining the distribution and abundance of populations, as well as providing connections among populations. Estimates of larval dispersal from spawning grounds are important to determining temporal and spatial patterns in recruitment that may have significant influences on the dynamics of the population. We present a case study of the dispersal of Centropristis striata (black sea bass) larvae on the southeast U.S. continental shelf. We use a coupled larval behavior – 3D circulation model to compare the effects of the timing and location of spawning against that of larval vertical migration on larval dispersal. Using the results of field data on larval vertical distributions, we compare the dispersal of virtual 'larvae' which have ontogenetic changes in vertical behavior with that of particles fixed near the surface and near the bottom. Larvae were released at potential spawning sites four times throughout the spawning season (February through May) for 3 yr (2002–04) and tracked for the assumed larval duration (from 27 to 37 days including the egg stage). Results indicate that adult behavior, in the form of spawning time and location, may be more important than larval vertical behavior in determining larval dispersal on the inner- and mid- continental shelves of this region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号