首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lignin is considered to be a crucial component controlling litter decomposition but its role in the production of dissolved organic matter (DOM) from litter is not well understood. Our main objective therefore was to examine the amounts and properties of DOM produced in decomposing litter, with special emphasis on the role of lignin degradation. We exposed litter of five different tree species (Sycamore maple, Mountain ash, European beech, Norway spruce, Scots pine) in litterbags at the soil surface of two neighbouring sites to degradation under field conditions. Litterbags were sampled eight times during 27 months of exposure in the field. We determined mass loss and characterized the lignin fraction by two different methods (van Soest procedure, acid‐detergent lignin: ADL, CuO oxidation). Litter was irrigated in the laboratory and leachates were analysed for dissolved organic carbon (DOC) and characterized by UV and fluorescence spectroscopy. Litter decomposition followed a two‐stage model characterized by initially rapid and then decreasing degradation with time. In the initial phase of litter decomposition, leached amounts of DOM decreased with time and no effects of lignin degradation were found. The contents of ADL in the litter residues and CuO oxidation products suggest larger degradation and oxidation of lignin in beech, spruce and pine litter than in maple and ash litter. The production of DOM from litter with larger lignin degradation increased in the second phase of decomposition, when mass loss exceeded 10–20%. In contrast, DOM produced from litter showing weak lignin degradation (maple, ash) did not increase further in the second phase of decomposition. In the leachates of litter with large lignin degradation (beech, spruce, pine), UV absorbance and fluorescence spectroscopy indicated a larger increase in the contribution of lignin‐derived compounds to DOM with increasing mass loss than for litter species with relatively stable lignin. We conclude that degradation of lignin is an important control on DOM production during the second phase of litter decomposition.  相似文献   

2.
Litter decomposing basidiomycetous fungi produce ligninolytic oxidases and peroxidases which are involved in the transformation of lignin, as well as humic and fulvic acids. The aim of this work was to evaluate their importance in lignin transformation in forest litter. Two litter decomposing basidiomycete species differing in their abilities to degrade lignin - Hypholoma fasciculare, and Gymnopus erythropus - were cultured on sterile or non-sterile oak litter and their transformation of a 14C-labelled synthetic lignin (dehydrogenation polymer 14C-DHP) was compared with that of the indigenous litter microflora. Both in sterile and non-sterile litter, colonisation by basidiomycetes led to higher titres of lignocellulose-degrading enzymes, in particular of laccase and Mn-peroxidase (MnP). The titres of the latter were 6 to 40-fold increased in the presence of basidiomycetes compared to non-sterile litter. During 10 weeks, G. erythropus mineralised over 31% of 14C-DHP in sterile litter and 23% in non-sterile litter compared to 14% in the non-sterile control. Lignin mineralization by H. fasciculare was comparable to the non-sterile control, 12% in sterile litter and 16% in the non-sterile litter. The largest part of 14C from 14C-DHP was transformed into humic compounds during litter treatment with both fungi as well as in the control. In addition to the fast lignin mineralization, microcosms containing G. erythropus also showed a lower final content of unaltered lignin and 23-28% of the lignin was converted into water-soluble compounds with relatively low molecular mass (<5 kDa). Both G. erythropus and H. fasciculare were also able to further mineralise humic compounds. During a 10-week fungal treatment of an artificial 14C-humic acid (14C-HA) supplemented to the natural humic material of a forest soil, the fungi mineralised 42% and 19% of the labelled material, respectively, under sterile conditions. The 14C-HA mineralization by introduced basidiomycetes in microcosms containing non-sterile humic material, however, did not significantly differ from that of a non-sterile control and was around 12%. Altogether the results show that saprobic basidiomycetes can considerably differ in their rates of lignin and humic substance conversion. Furthermore, lignin degradation in forest soil can rather slow down by interspecific competition than it is accelerated by cooperation of different microorganisms occupying specific nutritional niches. Therefore, the overall contribution of saprobic basidiomycetes depends on their particular eco-physiological status and the competitive pressure, and may be often lower than initially expected. Significant lignin transformation including partial mineralization is seemingly not exclusively dependent on exceptional high titres of ligninolytic enzymes but also on so far unknown factors. Higher endocellulase production and subsequent weight loss was found in microcosms where saprobic basidiomycetes were combined with indigenous microbes. Potentially, lignin degradation by the basidiomycetes may have increased cellulose availability to the indigenous microbes.  相似文献   

3.
 Litter bags containing sterile Scots pine (Pinus sylvestris) needles (19.8% lignin, 26.5% cellulose and 0.34% N) were inoculated with two species of fungi in the laboratory and then placed in the litter layer of a pine plantation. Marasmius androsaceus, which can degrade lignocellulose, was initially displaced by other fungal colonisers and was not detected in the litter after 2–3 months; but was re-isolated from the needles after 12 months. Trichoderma viride, which is a cellulolytic species and also antagonistic to other fungi, dominated the litter throughout the experiment. The control litter was naturally colonised by litter fungi. After 12 months, mass losses were similar at 52% for M. androsaceus and 48% for T. viride, compared with 36% for the control litter colonised by a more complex fungal community. Lignin concentrations increased with time in control litter and with T. viride because mass losses of carbohydrates were greater than those of lignin. Litter inoculated with M. androsaceus showed significant lignin decomposition throughout the experiment but cellulose concentrations showed a proportional increase in the first 6 months, suggesting that the fungus was preferentially exploiting hemicellulose and non-structural carbohydrates. Analysis of TFA-extractable sugars (mainly from hemicellulose) and CuO-derived phenylpropanoid moieties from lignin confirmed the differential patterns of resource decomposition which were not evident from total mass losses. During the initial stages of decomposition, T. viride was as effective in utilising structural polysaccharides as the complex fungal community in the control litter. Furthermore, M. androsaceus not only exhibited unexpectedly low cellulolytic activity but also facilitated lignin depolymerisation after the fungus was no longer detectable in the litter. The pre-inoculation of litter with these two fungal species therefore affected the overall dynamics of decomposition at a biochemical level. This study illustrates the importance of understanding the effects and interactions of specific fungi, rather than assumptions about the functional competence of diverse communities, on the processes of litter decomposition. Received: 5 July 2000  相似文献   

4.
Decomposing needles from a Norway spruce forest in southern Sweden were studied for 559 days under laboratory conditions. Falling needles were collected in control (Co) plots and plots that had received 100 kg N ha−1 yr−1 as (NH4)2SO4 for 9 years under field conditions. One of the aims was to determine whether the previously documented low decomposition rate of the N fertilized (NS) needles could be explained by a lower degradation degree of lignin. The lignin content was studied using the alkaline CuO oxidation method, the Klason lignin method and CPMAS 13C NMR spectroscopy. The amounts of cellulose and hemicellulose were also determined.The fertilized needle litters initially decomposed faster than the unfertilized, but later this reaction reversed, so that at the end the mass loss was 45% initial C in the control and 35% initial C in NS. Klason lignin decreased with time in both treatments and overall, the change of Klason lignin mirrored the litter mass loss. No major difference as regards the decomposition of hemicellulose occurred between the treatments, whereas significantly lower concentrations of cellulose were found in NS needles throughout the incubation. The CuO derived compounds (VSC) were somewhat lower in NS needles throughout the decomposition time. Initially, VSC increased slightly in both treatments, which contradicts the Klason lignin data. There was a weak positive relationship (p>0.05) between VSC and Klason lignin. Both vanillyls compounds (V) and cinnamyl compounds (Ci) increased slightly during decomposition, whereas syringyl compounds (S) vanished entirely. The lignin degradation degree, i.e. the acid-to-aldehyde ratio of the vanillyl compounds expressed as (Ac/Al)v, showed no significant effect of treatment. The 13C NMR analyses of the combined samples showed increased content of aromatic C with increasing decomposition time. The carbohydrate content (O-alkyl C) was lower in the fertilized needle litter throughout the incubation time. The alkyl C content tended to increase with decomposition time and N fertilization. The alkyl C/O-alkyl C ratios increased in both treatments during the incubation. The NMR results were not tested statistically.In conclusion, no major difference concerning lignin degradation could be found between the unfertilized and N fertilized needle litter. Thus, the study contradicts the hypothesis that higher amounts of N reduce lignin degradation. The reduced biological activity is probably due to direct N effects on the microorganisms and their decomposing ability.  相似文献   

5.
A 120 days’ incubation experiment was conducted to analyze the effect of temperature on the decomposition of leaf litter (Altingia obovata) in two tropical primary montane rainforests with different precipitation conditions. The results showed no difference in mass loss of leaf litter between the two forests at 20 °C, in spite that Jianfengling forest had less precipitation than Diaoluoshan forest. But higher mass loss of leaf litter was found from Jianfengling forest site (30.1%) than that from Diaoluoshan forest site (25.9%) at 30 °C at the end of incubation. Lignin exhibited higher mass loss from Jianfengling forest (29.9%) than from Diaoluoshan forest (23.3%) at 20 °C, but no difference between two forest sites at 30 °C. Total carbohydrates were decomposed faster by the decomposers from Diaoluoshan forest site (42.7%) than that from Jianfengling forest site (36.3%) at 20 °C, but 46.6% and 38.5% for Jianfengling and Diaoluoshan montane rainforests, respectively, at 30 °C. Temperature increase did not significantly lead to the difference in mass loss of leaf litter for the two forest sites. Temperature increase did not affect lignin loss for Diaoluoshan forest, but reduced lignin loss for Jianfengling forest. Temperature increase accelerated the decomposition of carbohydrate for Jianfengling forest, but opposite for Diaoluoshan forest. The response of decomposition of leaf litter to forest type and temperature was positively related to the difference in microbial activities between both montane rainforests.  相似文献   

6.
A new process-based model of litter decomposition, characterized by detailed climatic data input and simple litter quality parameters, is proposed. Compared to existing litter carbon models, specific implementations for temperature and moisture limiting effects have been adopted. The model is capable to represent decomposition processes in Mediterranean ecosystems, with summer drought slowing down, even at optimal temperatures, the litter decay rates of sclerophyll plants whose leaf masses are rich in structural compounds and low in N content. The model was calibrated by a best fitting procedure of two different datasets. First, unpublished results of litterbag experiments on leaf litter of 9 Mediterranean species, decomposing under controlled and not limiting temperature and water conditions, have been used to estimate the decay rate dependency from litter quality that was defined by only three initial C pools (labile, stable and recalcitrant compounds) instead of traditional N-based indices. Second, a set of published data from three medium-term field experiments on a single species, Phillyrea angustifolia, decomposing under different climatic conditions, have been used to estimate the limiting effects of temperature and moisture. The model was then validated against published data on seven other species and showed a correct reproduction of the major patterns of litter mass loss during decomposition processes of other seven different Mediterranean species. The model simulations, satisfactory for different litter types under a wide range of climatic conditions, suggest that factors which were not taken into account, such as initial litter N contents, microclimatic variations related to stand structure, soil chemistry and texture, and microbial communities, are not very significant for assessing decomposition dynamics in Mediterranean ecosystems. The minimal requirements of input data, the simple structure, and the easiness of parameterisation make our model, among the many other available litter carbon models, an attractive alternative for different research purposes, at least for Mediterranean ecosystems.  相似文献   

7.
Leaf litters from beech (Fagus sylvatica L.) and oak (Quercus robur L.) trees were collected from mixed, deciduous woodlands growing on three soil types that varied in mineral nutrient concentrations and N mineralisation potential. Litter quality, including %N, %Mn, %P, acid detergent fibre, cellulose, Klason lignin, phenylpropanoid constituents of lignin, hexose and pentose sugar (mainly from hemicelluloses) varied within species according to soil type. However, oak and beech showed the opposite responses to soil nutrient status for most of these variables. The litters were incubated in the laboratory for 12 months (at 18 °C and constant moisture) on beds of forest floor material from two soils of contrasting high nutrient material (HNM) or low nutrient material (LNM) nutrient status to investigate litter quality and substrate interactions. At 4, 8 and 12 months there were significant differences in mass losses from oak and beech litters from all sites, and for each litter type exposed to the HNM and LMN soils. At 12 months mean mass losses were higher for HNM treatment (38.7% oak, 27.8% beech) than for the LNM treatment (30.6% oak, 25.5% beech). However, the beech and oak litters from the different sites consistently responded in opposite ways on the same soil treatment reflecting site-related effects on litter quality. Initial concentration of Klason lignin was the best predictor for mass losses from litter species and litter types. Intra-specific variation in rates of litter decomposition of beech and oak litters from different sites, and differences in their interactions with the two forest floor materials, illustrate the complexities of proximate controls on decomposition that are often masked in system-level studies.  相似文献   

8.
Comparative study of crude and purified cellulose from wheat straw   总被引:1,自引:0,他引:1  
A sequential totally chlorine-free procedure for isolation of cellulose from wheat straw was proposed in this study. The dewaxed straw was pretreated with 0.5 M NaOH in 60% methanol at 60 degrees C for 2.5 h under ultrasonic irradiation for 0-35 min and sequentially posttreated with 2% H(2)O(2)-0.2% TAED at pH 11.8 for 12 h at 48 degrees C, which together solubilized 85.3-86.1% of the original hemicelluloses and 91.7-93.2% of the original lignin, respectively. The yield of crude cellulose ranged between 46.2 and 49.2% on a dry weight basis related to wheat straw, which contained 11.2-12.2% residual hemicelluloses and 2.5-2.9% remaining lignin. Further treatment of the corresponding crude cellulosic preparations with 80% acetic acid-70% nitric acid under the condition given yielded 36.8-37.7% of the purified cellulose, which contained minor amounts of bound hemicelluloses (2.5-2.8%) and was relatively free of associated lignin (0.1-0.2%). The isolated crude and purified cellulose samples were comparatively studied by FT-IR and CP/MAS (13)C NMR spectroscopy, and the relative crystallinity was also estimated. The final stage treatment with 80% acetic acid-70% nitric acid decreased the hemicelluloses and lignin associated in the crude cellulose but led to 3.1-5.4% degradation of the original cellulose; in addition, the purity of the obtained cellulose was high. However, it was found that the final stage treatment is not severe enough to cause decrystallization of cellulose. The thermal stability of the purified cellulose is higher than that of the corresponding crude cellulose.  相似文献   

9.
Decomposition is influenced by a wide array of factors including macroclimate, microclimate, soil biota, soil nutrients, substrate piece size and substrate quality. To separate the influence of some of these factors a 10-year study, the Canadian Intersite Decomposition Experiment, was established in 1992 to measure the decay of 11 standard litter types on a range of forest types at 21 sites across Canada. As part of the study we analysed the initial elemental contents (N, P, S, K, Ca, Mg) and carbon (C) fractions (extractables, cellulose, hemicellulose, lignin) by13C NMR and wet chemical proximate analysis in a total of 37 primarily foliar litter types representative of the range of species found at the different CIDET sites. Litter types especially non-conifer species varied greatly in their qualities. Principal component analyses showed that the litter types could be distinguished by the elemental macronutrient contents through the ratio of N+P+K:S, by proximate chemical analyses through the ratio of water soluble:acid fractions, and by NMR through the ratio of O-alkyl:alkyl C. Litter quality data was used in three simple models of litter decay to predict how the mass loss of the different litter types could vary. Two models using a linear or single exponential decay equation and litter lignin and N content predicted a 2–5 fold difference in total mass loss for the different litter types. A third model using a summed exponential decay equation for three chemical fractions and a ligno-cellulose index predicted that for all but one litter type, variation in mass loss between types would be less than a 20%.  相似文献   

10.
[目的]开展凋落叶分解速率研究,探讨凋落叶分解速率与初始质量的关系,为甘肃省兴隆山森林生态系统物质循环研究提供依据。[方法]采用凋落物分解袋法,以兴隆山青杄、山杨和白桦3种主要树种的凋落叶为研究对象,进行凋落叶分解速率及凋落叶初始质量的研究,明确凋落叶分解速率与初始质量的关系。[结果]青杄中龄林针叶分解速率为0.16,95%分解期为19.08a;青杄近熟林针叶分解速率为0.13,95%分解期为23.70a;山杨和白桦凋落叶分解速率均为0.11,95%分解期分别为28.57a和27.27a;山杨和白桦凋落叶分解速率明显要小于青杄针叶,这很可能是凋落叶分解主场效应和分解袋孔径较小所致。凋落叶分解速率与氮含量呈显著线性正相关,与木质素含量、碳/氮值、木质素/氮值和钾含量呈显著线性负相关,特别是与木质素含量、氮含量和木质素/氮值,相关系数均达0.700 0以上;钾含量、木质素含量、木质素/氮、碳/磷和纤维素含量是影响兴隆山森林凋落叶分解速率的重要指标。[结论]木质素/氮值是影响凋落叶分解速率的关键质量指标,凋落叶初始木质素/氮值越高,分解速率越低。  相似文献   

11.
Understanding the interactions between the initial biochemical composition and subsequent decomposition of plant litter will improve our understanding of its influence on microbial substrate use to explain the flow of organic matter between soil carbon pools. We determined the effects of land use (cultivation/native woodland/native pasture), litter type (above and below ground) and their interaction on the initial biochemical composition (carbon, nitrogen, water soluble carbon, lignin, tannin and cellulose) and decomposition of litter. Litter decomposition was studied as the mineralization of C from litter by microbial respiration and was measured as CO2–C production during 105 d of laboratory incubation with soil. A two-pool model was used to quantify C mineralization kinetics. For all litter types, the active C pool decay rate constants ranged from 0.072 d−1 to 0.805 d−1 which represented relatively short half-lives of between 1 and 10 days, implying that this pool contained compounds that were rapidly mineralized by microbes during the initial stages of incubation. Conversely, the decay rate constants for the slow C pool varied widely between litter types within and among land uses ranging from 0.002 d−1 and 0.019 d−1 representing half-lives of between 37 and 446 days. In all litter types, the initial lignin:N ratio strongly and negatively influenced the decay rate of the slow C pool which implied that the interaction between these two litter quality variables had important controls over the decomposition of the litter slow C pool. We interpret our results to suggest that where the flow of C from the active pool to the slow pool is largely driven by microbial activity in soil, the rate of transfer of C will be largely controlled by the quality of litter under different land-use systems and particularly the initial lignin:N ratio of the litter. Compared with native pastures and cultivation, above and below ground litter from native woodland was characterized by higher lignin:N ratio and more slowly decomposing slow C pools which implies that litter is likely to persist in soils, however based on the sandy nature of the soils in this study, it is likely to lack protection from microbial degradation in the long term.  相似文献   

12.
Cellulose and lignin degradation dynamics was monitored during the leaf litter decomposition of three typical species of the Mediterranean area, Cistus incanus L., Myrtus communis L. and Quercus ilex L., using the litter bag method. Total N and its distribution among lignin, cellulose and acid-detergent-soluble fractions were measured and related to the overall decay process. The litter organic substance of Cistus and Myrtus decomposed more rapidly than that of Quercus. The decay constants were 0.47 year−1, 0.75 year−1 and 0.30 year−1 for Cistus, Myrtus and Quercus, respectively. Lignin and cellulose contents were different as were their relative amounts (34 and 18%, 15 and 37%, 37 and 39% of the overall litter organic matter before exposure, for Cistus, Myrtus and Quercus, respectively). Lignin began to decrease after 6 and 8 months of exposure in Cistus and Myrtus, respectively, while it did not change significantly during the entire study period in Quercus. The holocellulose, in contrast, began to decompose in Cistus after 1 year, while in Quercus and Myrtus immediately. Nitrogen was strongly immobilized in all the litters in the early period of decay. Its release began after the first year in Cistus and Myrtus and after 2 years of decomposition in Quercus. These litters still contained about 60, 20 and 90% of the initial nitrogen at the end of the experiment (3 years). Prior to litter exposure nitrogen associated with the lignin fraction was 65, 54 and 37% in Cistus, Myrtus and Quercus, while that associated with the cellulose fraction was 30, 24 and 28%. Although most of the nitrogen was not lost from litters, its distribution among the litter components changed significantly during decomposition. In Cistus and Myrtus the nitrogen associated with lignin began to decrease just 4 months after exposure. In Quercus this process was slowed and after 3 years of decomposition 8% of the nitrogen remained associated with lignin or lignin-like substances. The nitrogen associated with cellulose or cellulose-like substances, in contrast, began to decrease from the beginning of cellulose decomposition in all three species. At the end of the study period most of the nitrogen was not associated to the lignocellulose fraction but to the acid-detergent-soluble substance (87, 88 and 84% of the remaining litter nitrogen).  相似文献   

13.
Litter is one of the main sources of dissolved organic carbon (DOC) in forest soils and litter decomposition is an important control of carbon storage and DOC dynamics. The aim of our study was to evaluate (i) effects of tree species on DOC production and (ii) relationships between litter decomposition and the amount and quality of DOC. Five different types of leaves and needles were exposed in litterbags at two neighboring forest sites. Within 12 months we sampled the litterbags five times and leached aliquots of field moist litter in the laboratory. In the collected litter percolates we measured DOC concentrations and recorded UV and fluorescence spectra in order to estimate the aromaticity and complexity of the organic molecules. Furthermore, we investigated the biodegradability of DOC from fresh and decomposed litter during 6 weeks incubations. Fresh sycamore maple litter released the largest amounts of DOC reaching about 6.2% of litter C after applying precipitation of 94 mm. We leached 3.9, 1.6, 1.0 and 3.3% carbon from fresh mountain ash, beech, spruce and pine litter, respectively. In the initial phase of litter decomposition significantly decreasing DOC amounts were released with increasing litter mass loss. However, after mass loss exceeds 20% DOC production from needle litter tended to increase. UV and fluorescence spectra of percolates from pine and spruce litter indicated an increasing degree of aromaticity and complexity with increasing mass loss as often described for decomposing litter. However, for deciduous litter the relationship was less obvious. We assume that during litter decomposition the source of produced DOC in coniferous litter tended toward a larger contribution from lignin-derived compounds. Biodegradability of DOC from fresh litter was very high, ranging from 30 to 95% mineralized C. DOC from degraded litter was on average 34% less mineralizable than DOC from fresh litter. Taking into account the large DOC production from decomposed needles we can assume there is an important role for DOC in the accumulation of organic matter in soils during litter decomposition particularly in coniferous forests.  相似文献   

14.
Decomposition processes in tropical semi-evergreen forests are still poorly understood. The influence of soil properties and litter quality on decomposition rate was studied in two semi-evergreen forests of Guadeloupe, a forest plantation and a secondary forest, located on different soils. Leaf litter of four tree species was enclosed in litterbags for a 14-month period. Non-linear correlations were calculated between mass loss and the concentration of major leaf components (soluble C, N, lignin, cellulose, tannins, total soluble phenols) in order to determine the best predictor of leaf litter decomposition. Soil physico-chemical properties and ratios between some of the above-mentioned litter quality parameters were also examined as mass loss predictors. In addition, non-linear correlations were calculated between mass loss and litter quality parameters, at successive periods. Litter quality was the main determinant of litter decomposition in the studied forests. Several litter quality parameters were correlated with leaf disappearance, varying according to stages of decomposition. Between 1 month and 2.5 months, the mass loss was correlated negatively with the initial phenol content and with initial lignin:N and (lignin+phenol):N ratios. From 2.5 to 5.5 months, the mass loss was correlated negatively with the initial phenol content and positively with the initial cellulose content. At later stages of decomposition (9-14 months), the mass loss was correlated negatively with the initial tannin content. Differences in soil characteristics and fauna did not seem to be enough to affect decomposition.  相似文献   

15.
We studied the spatial and temporal patterns of decomposition of roots of a desert sub-shrub, a herbaceous annual, and four species of perennial grasses at several locations on nitrogen fertilized and unfertilized transects on a Chihuahuan Desert watershed for 3.5 years. There were few significant differences between the decomposition rates of roots on the NH4NO3 fertilized and unfertilized transects. Decomposition of all roots followed a two-phase pattern: early rapid mass loss followed by a long period of low mass loss. Rates of decomposition were negatively correlated with the initial lignin content of the roots (r=0.90). Mass loss rates of the roots of the herbaceous annual, Baileya multiradiata, were significantly higher than those of the grasses and the shrub, probably as a result of subterranean termites feeding on B. multiradiata root material. The only location where mass loss rates were significantly different was the dry lake bed, where mass loss rates were lower than those recorded on the upper watershed. The spatial differences in mass loss rates in the dry lake were attributable to the high clay content of the soils, which reduced water availability, and to the absence of termites. Non-polar substances in decomposing roots decreased rapidly during the first year, then decreased at a low but fairly constant rate. Water-soluble compounds decreased rapidly (50–60% of initial concentration) during the first 3–6 months. Lignin concentrations of roots of perennial grasses were higher than those of herbaceous annual plants and woody shrubs. Lignin concentrations increased in all species during decomposition. The chemical changes in decomposing roots followed the patterns described for decomposing litter in mesic environments. Received: 20 January 1997  相似文献   

16.
Fungi were isolated from interior and surface of beech (Fagus crenata Blume) leaf litter by surface sterilization and washing methods. Species composition differed between the interior and surface of the leaves. Xylaria sp. (anamorph) was a major interior colonizer, while Pestalotiopsis spp. and Trichoderma spp. were predominantly surface colonizers. Ascochyta sp. was isolated from both the interior and surface of leaves. Leaf litter decomposing abilities of all isolated species were assessed by pureculture decomposition tests. Changes in lignin, carbohydrate and polyphenol amounts in the litter were investigated. Percent loss of original weight of sterilized beech leaf litter ranged from 0.24 to 11.16 % in the decomposition test. Interior fungi such as Xylaria sp. (anamorph) had the highest abilities to bleach leaf litter and decompose lignin. Most surface fungi had limited ability to decompose leaf litter and lignin. The difference in the decomposing abilities between the interior and surface fungi is discussed in relation to the difference in organic-chemical compositions between interior and surface of the litter.  相似文献   

17.
Diverse plant litter mixtures frequently decompose differently than expected compared to the average of the component species decomposing alone, and it remains unclear why decomposition may respond non-additively to diversity. Here, we hypothesized that litter chemical composition and chemical diversity would be important determinants of the strength and direction (synergistic versus antagonistic) of non-additive soil carbon (C) and nitrogen (N) cycling responses to litter mixtures. To test this, we performed a soil incubation experiment using litter mixtures comprised of up to four plant species, and we measured three components of decomposition: respiration, net N mineralization, and microbial biomass N accumulation. We used nine chemical traits to calculate the chemical composition and diversity of the litter mixtures. First, we found that respiration responded as the average of the individual species in the mixture (i.e. additively), rather than non-additively as initially predicted. Second, litter mixtures stimulated significantly more net N immobilization than expected in 64% of cases, and non-additive responses were highly dependent on mixture chemical composition, and were influenced to a lesser degree by chemical diversity. Specifically, concentrations of tannins and certain low molecular weight phenolics in the mixtures were positively correlated with greater N immobilization than expected. Non-additive N mineralization responses were poorly correlated with traditional measures of litter chemistry like N concentration, C:N, lignin:N, and phenolic:N. Our results also show that non-additive N mineralization responses were affected by loss of some species significantly more than others, and the effects of species loss could depend on 1) whether a species contains compounds with strong effects on non-additive responses; and 2) whether those compounds are also found in other species. Finally, litter mixtures stimulated more microbial biomass N than expected in 45% of cases, but non-additive responses were only weakly dependent on the litter chemistry variables that we measured.  相似文献   

18.
寒旱环境植物护坡力学效应与根系化学成分响应   总被引:2,自引:0,他引:2  
该项研究以试验区两种生长期为6a的灌木植物柠条锦鸡儿、霸王为例,分析了根系中所含半纤维素、木质素、纤维素和果胶质4种主要化学成分及其含量,并探讨了根系力学强度与其化学成分及其含量变化之间的关系。结果表明:柠条锦鸡儿根系平均抗拉强度为28.36~34.75MPa,霸王为4.53~6.61MPa,即柠条锦鸡儿根系平均抗拉强度显著大于霸王,且这两种灌木根系所含的4种化学成分由多至少依次为半纤维素、木质素、纤维素、果胶质,其中柠条锦鸡儿根系半纤维素含量为17.8%~29.03%,木质素为3.41%~5.36%,纤维素为2.3%~2.79%,果胶质为1.45%~2.15%;霸王根系半纤维素含量为15.6%~23.04%,木质素为3.69%~4.89%,纤维素为2.1%~3.06%,果胶质为1.92%~2.37%。两种灌木根系纤维素含量与根径、根系抗拉强度之间均表现出一定相关性;霸王根系半纤维素含量与其根系根径、抗拉强度之间呈相关性;柠条锦鸡儿根系果胶质含量与其根径、根系抗拉强度间均呈相关关系。本项研究可为进一步分析植物根系力学强度及其效应与根系组成特性之间的变化关系提供理论依据。  相似文献   

19.
Litter quality and nitrogen release in tropical agriculture: a synthesis   总被引:7,自引:0,他引:7  
 Litter of high quality is required for increased soil organic matter turnover and improved crop production in tropical agroecosystems. Studies on litter quality using plant residues have produced inconsistent results. This study reports on previously published data on litter quality, in an attempt to define universal chemical determinants controlling N release in tropical agriculture. N concentrations and polyphenol/N ratios are determinants of the N release of plant residues with limited N concentrations, i.e. of <2% and <1%, respectively. Lignin levels and lignin/N ratios were not observed to be good predictors of N release. The C/N ratio was found to be the best determinant of N release for a wide range of residue N concentrations. More specifically, critical levels of C and plant nutrients which limit the enzyme activities of microbial decomposers were found to be important for determining nutrient release. Received: 9 February 1999  相似文献   

20.
采用热重法研究了纤维素、木聚糖和木质素含量对生物质热解特性的影响,分析了三组分相互混合热解时的交互作用规律,及其对热解动力学参数的影响;同时,在生物质真空热解液化系统上考察了三组分含量对热解液化产物分布及生物油组成的影响。结果表明,纤维素热解较为剧烈,生物油中芳香族、糖类、醛类和醇类含量较高;木聚糖的热稳定性较差,生物油中芳香族、酮类和酸类物质较多;木质素热解较为平缓且固体残留物较多,生物油成分主要为芳香族化合物。纤维素对活化能和指前因子的影响较大,木聚糖和木质素对反应级数的影响较大;纤维素的热解有利于减少固体残留物,而木质素的热解产物有利于促进糖类的分解;木聚糖对纤维素的热解具有明显的抑制作用;木聚糖能促进木质素的低温热解,两者混合热解对生物油组成影响较小。因此,高纤维素含量的生物质可以获得更高的生物油产率,且适量的木质素有利于促进纤维素的分解,为进一步提高生物油产率和品质提供了理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号