首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Soil biology & biochemistry》2001,33(4-5):449-455
The influence of several soil properties on soil conduciveness or suppressiveness to disease caused by the soil fungus Fusarium oxysporum f. sp. cubense was studied in seven field plots of banana plantations, situated in Tenerife and Gran Canaria islands (Canary Islands, Spain). In each plot, soil samples were taken in conducive and suppressive areas to Fusarium wilt. Water-stable aggregates (WSA: 200–2000 μm diameter), soil particle size, and selected soil solution characteristics [pH, electric conductivity (EC) and soluble Na] were determined in the samples. Aggregate water-stability was higher in soils of conducive areas than in suppressive areas. The percentage of WSA in the conducive areas ranged from 460 to 330 g kg−1, while in the suppressive areas the maximum value was 285 g kg−1 and the minimum was 150 g kg−1. The soils had high clay content and the EC and soluble Na tended to be higher in suppressive areas than in conducive areas. Soil solution pH was lower in conducive areas (except sites 1 and 9). Our data provide evidence that in different soil areas of the same plot, the structural stability of aggregates, presumably controlled in part by the clay fraction, soluble Na concentration and EC, is of great importance for the conduciveness or suppressiveness to banana wilt caused by Fusarium oxysporum f. sp. cubense of the soils studied. Finally, we hypothesize that a greater stability of the aggregates forming anaerobiosis could partly explain most of the available Fe found in soil areas where the disease was severe, at least in these types of soils.  相似文献   

2.
The bases for the microbiological nature of certain soils to suppress plant diseases caused by soil pathogens are well established. However, the microbial origin of the suppressiveness does not exclude edaphic factors and soil-management strategies, which need to be studied under field conditions. With respect to abiotic factors, we investigated the importance of potassium (K) selectivity on soil conduciveness and suppressiveness to banana wilt (positive or negative disease expression) caused by soil fungus Fusarium oxysporum f. sp. cubense in Sorribas field plots (transported volcanic soils) from the Canary Islands that are naturally affected by Fusarium wilt. To facilitate comparison among sites, soil K variables were normalized using Z scores and tested by one-way analysis of variance within each soil sample type (soil areas where banana plants show positive or negative wilting symptoms characteristic of Panama disease), with the site as the block factor. Variations of Z scores within the same plot were explained mostly by the differences between soil K indices between areas with and without disease. In fact, soil conduciveness or suppressiveness to Fusarium wilt seemed to be substantially affected by changes in exchangeable and solution K indices. Potassium selectivity coefficients (KG) were always greater in areas without disease than in those with disease. The differences between samples can be related to allophane composition and clay mineral distribution in disease and disease-free soils. The larger selectivity of suppressive soils for K can be partly attributed to the K-fixing capacity of silicon-rich allophane. Moreover, there was a clear separation between available iron (Fe) [extracted by diethylenetriaminepentaacetic acid (DTPA)] and the mass of stable aggregate in water (WSA) in conducive and suppressive soil samples by KG. These results suggest that WSA and Fe-DTPA in soils of volcanic nature affected by F. oxysporum f. sp. cubense seem to depend on K selectivity characteristics associated with these soils.  相似文献   

3.
Disease suppressiveness against Rhizoctonia solani AG 2-1 in cauliflower was studied in two marine clay soils with a sandy loam texture. The soils had a different cropping history. One soil had a long-term (40 years) cauliflower history and was suppressive, the other soil was conducive and came from a pear orchard not having a cauliflower crop for at least 40 years. These two soils were subjected to five successive cropping cycles with cauliflower or remaining fallow in a greenhouse experiment. Soils were inoculated with R. solani AG 2-1 only once or before every crop. Disease decline occurred in all treatments cropped with cauliflower, either because of a decreased pathogen population or increased suppressiveness of the soil. Disease suppressiveness tests indicated that the conducive soil became suppressive after five subsequent cauliflower crops inoculated each cycle with R. solani AG 2-1. Suppressiveness of all treatments was measured in a seed germination test (pre-emergence damping-off) as well as by measuring the spread of R. solani symptoms in young plants (post-emergence damping-off). Results showed that suppressiveness was significantly stimulated by the successive R. solani inoculations; presence of the cauliflower crop had less effect. Suppressiveness was of biological origin, since it disappeared after sterilization of the soil. Moreover, suppressiveness could be translocated by adding 10% suppressive soil into sterilized soil. The suppressive soil contained higher numbers of culturable filamentous actinomycetes than the conducive soil, but treatments enhancing suppressiveness did not show an increased actinomycetes population. The suppressiveness of the soil samples did also not correlate with the number of pseudomonads. Moreover, no correlation was found with the presence of different mycoparasitic fungi, i.e. Volutella spp., Gliocladium roseum, Verticillium biguttatum and Trichoderma spp. The suppressive soil contained a high percentage of bacteria with a strong in vitro inhibition of R. solani. These bacteria were identified as Lysobacter (56%), Streptomyces (23%) and Pseudomonas (21%) spp. A potential role of Lysobacter in soil suppressiveness was confirmed by quantitative PCR detection (TaqMan), since a larger Lysobacter population was present in suppressive cauliflower soil than in conducive pear orchard soil. Our experiments showed that successive cauliflower plantings can cause a decline of the damage caused by R. solani AG 2-1, and that natural disease suppressiveness was most pronounced after subsequent inoculations with the pathogen. The mode of action of the decline is not yet understood, but antagonistic Lysobacter spp. are potential key organisms.  相似文献   

4.
In Cameroon, andosols are suspected to be suppressive to cocoyam (Xanthosoma sagittifolium) root rot disease (CRRD) caused by the Oomycete pathogen Pythium myriotylum. To determine factors involved in disease suppressiveness, andosols were studied in comparison to ferralsols known to be disease-conducive. Soil samples were collected from six sites of which three were in andosols around Mount Cameroon (Boteva, Njonji, and Ekona) and the three others in ferralsols (Bakoa, Lapkwang, and Nko’o canane). Greenhouse plant experiments were used to assess soil suppressiveness. Soils were artificially infested with two levels of P. myriotylum inoculum (100 and 300 mycelia strands g−1 soil) prior to planting cocoyam. Disease severity was significantly higher in ferralsols than in andosols. Andosols partly lost their suppressiveness as a result of autoclaving and could recover suppressiveness following recolonisation by their original microflora. Soil microbial groups implicated in the disease suppression were investigated by assessing the effect of fungicide, bactericide, and pasteurisation on andosol suppressiveness. Andosols suppressiveness was significantly reduced following pasteurisation and treatment with fungicide and bactericide. The possible influence of microbial biomass on andosol suppressiveness was investigated by comparing microbial populations of suppressive andosols to those in andosols that had lost suppressiveness. A comparative analysis of suppressive and conducive soil properties was performed to identify soil variables, which may contribute to soil suppressiveness. Soil chemical analysis results showed that organic matter content was higher in andosols than in ferralsols. In addition, the content of mineral nutrients such as Ca, K, Mg and N, was higher in andosols than in ferralsols. These soil variables negatively correlated with disease severity. By contrast, sand and clay, which were higher in ferralsols than in andosols, were positively related to disease severity. This study has confirmed the suppressive nature of andosols from Mount Cameroon to CRRD. The results suggest that high organic matter content is likely mediating P. myriotylum suppression in andosols by improving soil structure, increasing soil nutrient content and microbial biomass, and sustaining microbial activity.  相似文献   

5.
In Switzerland, similar types of rhizosphere pseudomonads producing the biocontrol compound 2,4-diacetylphloroglucinol (Phl) have been found in soils suppressive to Thielaviopsis basicola-mediated black root rot of tobacco as well as in conducive soils. However, most findings were based on the analysis of a limited number of Pseudomonas isolates, obtained from a single experiment and only from T. basicola-inoculated plants. Here, an approach based on denaturing gradient gel electrophoresis (DGGE) of dominant phlD alleles from tobacco rhizosphere provided different phlD migration patterns. Sequencing of phlD-DGGE bands revealed a novel phylogenetic cluster of phlD sequences found in both suppressive and conducive soils in addition to previously-documented phlD alleles. phlD-DGGE bands and alleles differed little from one plant to the next but more extensively from one sampling to the next during the three-year study. Three of the 13 bands and 12 of the 31 alleles were only found in suppressive soil, whereas five bands and 13 alleles were found exclusively in conducive soil. The population structure of phlD+ pseudomonads depended more on the individual soil considered and its suppressiveness status than on inoculation of tobacco with T. basicola. In conclusion, phlD-DGGE revealed additional phlD diversity compared with earlier analyses of individual Pseudomonas isolates, and showed differences in phlD+Pseudomonas population structure in relation to disease suppressiveness.  相似文献   

6.
Fusarium wilts are economically important diseases for which there are no effective chemical control measures. Biological control strategies are becoming efficient alternatives for controlling this disease. The suppressiveness to Fusarium oxysporum f. sp. lycopersici race 1 of grape marc compost and cork compost was evaluated in comparison to peat by using a susceptible cultivar of tomato (Lycopersicon esculentum cv. Marmande). Based on community level physiological profiles, different community structures were evident among the plant growth media evaluated. The peat microbial community, growth medium conducive to wilt, used mostly sugars, while those associated with both composts, the very suppressive grape marc and the moderately suppressive cork, used mostly carboxylic acids, amino acids, amines, phenolic compounds and polymers.  相似文献   

7.
The effect of storage conditions on compost suppressiveness against fusarium wilt of melon, caused by Fusarium oxysporum f. sp. melonis (FOM) was studied in relation to the dynamics of compost microbial activity and biodegradability. For this purpose, mature suppressive compost, prepared from tomato plants and separated cow manure, was divided into four portions and stored for one year under cool/warm (12 or 28 °C) or dry/wet (15-35 or 55-65% moisture content) conditions, in four different combinations: cool-dry, warm-dry, cool-wet and warm-wet. All composts retained and even enhanced their suppressive capacity during storage, with no significant differences among them by the end of the storage period. However, significant differences were found in the dynamics of some of the measured chemical and microbial properties. The microbial activity of composts stored under wet conditions was higher than that of those stored under dry condition, which resulted in a substantial decrease in dissolved organic matter content (expressed as dissolved organic carbon; DOC) and increase in its recalcitrance to biological degradation, decrease in basal heat emission, slower response to added glucose or citric acid, and higher NO3 concentration, indicating increased nitrification under wet conditions. The DOC significantly correlated with several microbial properties as well as with compost suppressiveness of fusarium wilt of melon seedlings, and may be regarded as a most suitable general index for compost maturity. A best-subset multiple linear regression analysis revealed that the three best predictors, namely dissolved organic carbon (DOC), basal heat, and mesophilic bacterial counts, could explain as much as 83% of the total variance in compost suppressiveness. The generally agreed association between compost maturity and suppressiveness was verified in this case. It appears that compost microbial populations might compete and interfere with the saprophytic stage of FOM conidia, between germination and host invasion. In conclusion, it was demonstrated that compost suppressiveness against fusarium wilt of melon can be maintained for at least one year under a wide range of storage conditions, without any loss of suppressive capacity. This fact has positive logistical implications for the use of suppressive composts against FOM.  相似文献   

8.
Sodium (Na) and calcium (Ca) in brackish water differentially affects boron (B) nutrition of plants grown on calcareous and salt-affected soils. A glasshouse experiment was conducted to evaluate the effect of brackish irrigation water with different sodium adsorption ratio (SARiw) [distilled-water control, 8, and 16 (mmolc L?1)1/2] on B nutrition of maize. Plants were grown for 40 days with 5 levels of B (0, 1.29, 2.30, 3.22, and 4.46 mg kg?1 soil). Boron application significantly improved plant growth at lower rates. High B rates and application of high SARiw decreased plant growth independently, and the reduction in growth was further aggravated due to combined effect of both B and high SARiw. Decreased growth was attributed mainly to increased shoot B and Na concentration, while decreased Ca concentration. These ionic changes also altered internal and external B requirements. Yield decrease was observed at lower B concentration in soil solution B and plants shoot grown with high SARiw than in plants grown with distilled water and low B application rates.  相似文献   

9.
Clubroot disease of cruciferous plants caused by the soil-borne pathogen Plasmodiophora brassicae is difficult to control because the pathogen survives for a long time in soil as resting spores. Disease-suppressive and conducive soils were found during the long-term experiment on the impact of organic matter application to arable fields and have been studied to clarify the biotic and abiotic factors involved in the disease suppression. The fact that a large amount of organic matter, 400 t ha−1 yr−1 farmyard manure (FYM) or 100 t ha−1 yr−1 food factory sludge compost (FSC), had been incorporated for more than 15 yr in the suppressive soils and these soils showed higher pH and Ca concentration than the disease conducive soil led us to hypothesize that an increase in soil pH due to the long-term incorporation of Ca-rich organic matter might be the primary cause of the disease suppression. We have designed a highly reproducible bioassay system to examine this hypothesis. The suppressive and conducive soils were mixed with the resting spores of P. brassicae at a rate of 106 spore g−1 soil, and Brassica campestris was grown in a growth chamber for 8 d. The number of root hair infections was assessed on a microscope. It was found that the incorporation of FYM and FSC at 2.5% (w/w) to the conducive soil suppressed the infection and that the finer particles (?5 mm) of FSC inhibited the infection and increased soil pH more effectively. Neutralization of the conducive soil by Ca(OH)2, CaCO3 and KOH suppressed the infection, but the effectiveness of KOH was less than those of Ca(OH)2 and CaCO3. Acidification of the suppressive soils by H2SO4, promoted the infection. The involvement of soil biota in the disease suppression was investigated using the sterilized (γ-ray irradiation) suppressive soils with respect to soil pH. The γ-ray irradiation promoted the infection at pH 5.5, but no infection was observed at pH 7.4 irrespective of the sterilization status. All these observations suggest that soil pH is a major factor in disease suppression by organic matter application and that Ca and soil biota play certain roles in the suppression under the influence of soil pH.  相似文献   

10.
The boron (B) sufficiency range for plant growth is narrow and its management is problematic under brackish irrigation water. This study was conducted to evaluate the B requirement of mungbean at different sodium adsorption ratios of irrigation waters (SARiw) [control, 8 and 16 (mmolc L?1)1/2]. The boron adsorption characteristics of a loamy soil were first determined in the laboratory by equilibrating 2.5 g soil with 0.01 M CaCl2 solution containing different B levels. Boron rates for a pot study were computed against different soil solution levels by fitting sorption data in a modified Freundlich model [x/m = K f (EBC)1/n ]. The maximum increase in shoot dry matter was 11.9% when B was applied at 1.29 mg kg?1 soil at control SARiw. Visual leaf B toxicity symptoms appeared at higher B rates and became severe at higher SARiw. By contrast to Ca, shoot concentrations of B and Na increased significantly with B application and SARiw. For optimum shoot growth, internal and external B requirements were 25 mg B kg?1 shoot dry matter and 0.39 mg B L?1 soil solution, respectively, at control SARiw. At higher SARiw, a lower concentration of B in plant shoots and soil solution had an inhibitory effect on plant growth.  相似文献   

11.
Application of organic amendments has been proposed as a strategy for the management of diseases caused by soilborne pathogens. However, inconsistent results seriously hinder their practical use. In this work we use an extensive data set of 2423 studies derived from 252 papers to explore this strategy. First, we assess the capability of a specific organic amendment to control different diseases; second, we investigate the influence of organic matter (OM) decomposition on disease suppressiveness; and third, we search for physical, chemical and biological parameters able to identify suppressive OM. OM was found to be consistently suppressive to different pathogens in only a few studies where a limited number of pathogens were tested. In the majority of studies a material suppressive to a pathogen was ineffective or even conducive to other pathogens, suggesting that OM suppressiveness is often pathogen-specific. OM decomposition in many studies (73%, n = 426) emerged as a crucial process affecting suppressiveness. During decomposition, disease suppression either increased, decreased, was unchanged or showed more complex responses, such as ‘hump-shaped’ dynamics. Peat suppressiveness generally decreased during decomposition, while responses of composts and crop residues were more complex. However, due to the many interactions of contributing factors (OM quality, microbial community composition, pathosystem tested and decomposition time), it was difficult to identify specific predictors of disease suppression. Among the 81 parameters analysed, only some of the 643 correlations showed a consistent relationship with disease suppression. The response of pathogen populations to OM amendments was a reliable feature only for some organic matter types (e.g. crop residues and organic wastes with C-to-N ratio lower than ∼15) and for pathogens with a limited saprophytic ability (e.g., Thielaviopsis basicola and Verticillium dahliae). Instead, population responses of the pathogenic fungi Phytophthora spp., Rhizoctonia solani and Pythium spp. appeared unrelated to disease suppression. Overall, enzymatic and microbiological parameters, rather than chemical ones, were much more informative for predicting suppressiveness. The most useful features were FDA activity, substrate respiration, microbial biomass, total culturable bacteria, fluorescent pseudomonads and Trichoderma populations. We conclude that the integration of different parameters (e.g. FDA hydrolysis and chemical composition by 13C NMR) may be a promising approach for identification of suppressive amendments.  相似文献   

12.
Compost amended soil has been found to be suppressive against plant diseases in various cropping systems. The level and reproducibility of disease suppressive properties of compost might be increased by the addition of antagonists. In the present study, the establishment and suppressive activity of two fungal antagonists of soil-borne diseases was evaluated after their inoculation in potting soil and in compost produced from different types of organic waste and at different maturation stages. The fungal antagonists Verticillium biguttatum, a mycoparasite of Rhizoctonia solani, and a non-pathogenic isolate of Fusarium oxysporum antagonistic to fusarium wilt, survived at high levels (103–105 CFU g–1) after 3 months incubation at room temperature in green waste compost and in potting soil. Their populations faded out in the organic household waste compost, especially in the matured product. In bioassays with R. solani on sugar beet and potato, the disease suppressiveness of compost increased or was similar after enrichment with V. biguttatum. The largest effects, however, were present in potting soil, which was very conducive for the disease as well as the antagonist. Similar results were found in the bioassay with F. oxysporum in carnation where enrichment with the antagonistic F. oxysporum had a positive or neutral effect. We foresee great potential for the application of antagonists in agriculture and horticulture through enrichment of compost or potting soil with antagonists or other beneficial micro-organisms.  相似文献   

13.
《Soil Use and Management》2018,34(1):154-162
Fusarium wilt disease is one of the most serious soil‐borne diseases in banana orchards worldwide. Some soils are suppressive to Fusarium wilt, although the mechanisms are still unclear. In this study, two typical banana‐growing soils (ultisol and inceptisol), which were either suppressive or conducive to Fusarium wilt, were collected from Hainan, China. Particle size distribution, pH values, electrical conductivity (EC ), enzyme activities and microbial polymerase chain reaction amplification of the soil samples were analysed. The suppressive soils had significantly more >2 and <0.053 mm aggregates than the conducive soils. In addition, the suppressive soils had a comparatively even size distribution within the range of 0–0.25 mm. Total carbon, total nitrogen and soil enzyme activities in the aggregates of suppressive soils were also significantly higher than those in the conducive soils. For example, soil invertase activities in the >2 mm aggregates were 7.9–11.9 and 3.2–3.3 mg/g for the suppressive and conducive soils, respectively. Furthermore, in situ EC can be applied as an indicator of the integrated contrast between the suppressive and conducive soils, and could be a new tool for monitoring soil‐borne disease.  相似文献   

14.
The aim of this study was to investigate the potentials and limitations in restoring soil suppressiveness in disturbed soils. Soils from three sites in UK and Switzerland (STC, REC, THE) differing in their level of suppressiveness to soil-borne and air-borne diseases were γ-irradiated and this soil matrix was re-inoculated with 1% (w/w) of either parent native soil or native soil from the other sites (‘soil inoculum’). Suppressiveness to air-borne and soil-borne diseases was quantified by means of the host-pathogen systems Lepidium sativum (cress)-Pythium ultimum, an oomycete causing root rot and seedling damping-off, and Arabidopsis thaliana-Hyaloperonospora parasitica, an oomycete causing downy mildew. Soil microbial biomass, activity and community structure, as determined by phospholipid fatty acid (PLFA) profiles, were measured in native, γ-irradiated, and re-inoculated soils. Both, L. sativum and A. thaliana were highly susceptible to the pathogens if grown on γ-irradiated soils. Re-inoculation completely restored suppressiveness of soils to the foliar pathogen H. parasitica, independently of soil matrix or soil inoculum, whereas suppressiveness to P. ultimum depended on the soil matrix and, to a lesser extent, on the soil inoculum. However, the soil with the highest inherent suppressiveness did not reach the initial level of suppressiveness after re-inoculation. In addition, native microbial populations as defined by microbial biomass, activity and community structure, could not be fully restored in re-inoculated soils. As for suppressiveness to P. ultimum, the soil matrix, rather than the source of soil inoculum was identified as the key factor for re-establishing the microbial community structure. Our data show that soils do not or only slowly fully recover from sterilisation by γ-irradiation, indicating that agricultural soil management practices such as soil fumigation or heat treatments frequently used in vegetable cropping should be avoided.  相似文献   

15.
通过土柱淋洗试验的方法,研究了脱硫副产物在改良碱性土壤过程中对碱性土壤化学指标(代换性钠、ESP、SAR、pH值)的影响。本研究采用两种碱性土壤(强度碱化土和碱土),两种土壤各分两个脱硫副产物施用水平(强度碱化土为3 g kg-1和3 6 g kg-1;碱土为7 g kg-1和8 4 g kg-1)。结果表明,经过施加烟气脱硫副产物和淋洗各种试验处理的代换性钠、ESP、SAR和pH值都有了明显的降低,碱性土壤得到了改良;同时,高烟气脱硫副产物施加水平的碱性土壤改良效果要优于低施加水平的碱性土壤;强度碱化土和碱土分别施加3 6 g kg-1、8 4 g kg-1烟气脱硫副产物后,在强度碱化土表层(0~40 cm)和碱土表层(0~20 cm)ESP<15、SAR<13和pH<8 5,已经降至中度碱化土水平,改良效果显著。  相似文献   

16.
Watermelon is susceptible to Fusarium wilt in successively mono-cropped soil. Pot experiments were carried out to investigate the effect of intercropping with aerobic rice on Fusarium wilt in watermelon. The tested soil was classified as a loam soil, previously planted with watermelon and collected from Hexian county, Anhui province, China. The results obtained are listed as follows: (1) 66.7% of watermelon plants were infected with wilt disease and 44.4% died on 40 days after transplanting in mono-cropped soil, but plants were much less susceptible to infection when intercropped with rice; (2) the density of Fusarium oxysporum f. sp. niveum decreased by 91% in soil from the intercropped watermelon rhizosphere when compared with that from the mono-crop 40 days after transplanting; (3) densities of bacteria and actinomycetes increased, but fungal density decreased in rhizosphere soil from the intercrops in comparison with the mono-crop control; (4) compared to the control, the germinated Fusarium spores were decreased by 41.0% in the treatment with addition of 1.5 ml rice root exudates. Adding 20 ml of root exudates decreased Fusarium spore production by 76.4%; and (5) the activities of defense enzymes in the leaves and roots of watermelons in the intercropped system were significantly lower than those in the mono-cropped system. It is suggested that intercropping with aerobic rice alleviated Fusarium wilt in watermelon, by restraining the spore production of Fusarium and by changing the microbial communities in rhizosphere soil through the production of rice root exudates.  相似文献   

17.
Two fungal plant pathogens, Rhizoctonia solani AG 2-2 and Fusarium oxysporum f.sp. lini, were studied in relation to general responses of soil fungi and bacteria following incorporation of Brassica juncea. Our aim was to understand to what extent the changes in the biological and physicochemical characteristics of the soil could explain the effects on the studied pathogens and diseases, and to determine the temporal nature of the responses. Short-term effects of mustard incorporation (up to 4 months) were investigated in a microcosm experiment, and compared with a treatment where composted plant material was incorporated. In a field experiment, the responses were followed up to 11 months after removal or incorporation of a mustard crop. In general, responses in the variables measured changed more after incorporation of fresh mustard material than after addition of similar amounts of composted plant material (microcosms) or after removal of the mustard crop (field). The soil inoculum potential of R. solani AG 2-2 decreased directly after incorporation of mustard, but increased later to disease levels above those in the untreated soil. Neither of these effects could be explained by changes in the population density of R. solani AG 2-2. Fusarium spp. were less influenced, although an increase in the suppressiveness to Fusarium wilt was observed after mustard incorporation as compared with the treatment where mustard was removed. The microbial responses to mustard incorporation were more pronounced for bacteria than for fungi. After an initial substantial increase, the bacterial density decreased but remained above the levels in the control treatment throughout the experimental periods. The bacterial community structure was modified up to 8 months after mustard incorporation. We conclude that incorporation of fresh mustard influences soil microbial communities, especially the bacteria, and has a potential to control the pathogenic activity of R. solani 2-2 on a short-term perspective. The time dependency in microbial responses is important and should be taken into consideration for the evaluation of the potential of Brassicas to control plant disease on a field scale.  相似文献   

18.
Irrigation with low-quality water may change soil hydraulic properties due to excessive electrical conductivity (ECw) and sodium adsorption ratio (SARw). Field experiments were conducted to determine the effects of water quality (ECw of 0.5–20 dS m?1 and SARw of 0.5–40 mol0.5 l?0.5) on the hydraulic properties of a sandy clay loam soil (containing ~421 g gravel kg?1 soil) at applied tensions of 0–0.2 m. The mean unsaturated hydraulic conductivity [K(ψ)], sorptive number (α) and sorptivity coefficient (S) varied with change in ECw and SARw as quadratic or power equations, whereas macroscopic capillary length, λ, varied as quadratic or logarithmic equations. The maximum value of K(ψ) was obtained with a ECw/SARw of 10 dS m?1/20 mol0.5 l?0.5 at tensions of 0.2 and 0.15 m, and with 10 dS m?1/10 mol0.5 l?0.5 at other tensions. Changes in K(ψ) due to the application of ECw and SARw decreased as applied tension increased. Analysis indicated that 13.7 and 86.3% of water flow corresponded to soil pore diameters <1.5 and >1.5 μm, respectively, confirming that macropores are dominant in the studied soil. The findings indicated that use of saline waters with an EC of <10 dS m?1 can improve soil hydraulic properties in such soils. Irrigation waters with SARw < 20 mol0.5 l?0.5 may not adversely affect hydraulic attributes at early time; although higher SARw may negatively affect them.  相似文献   

19.
不同钠吸附比的咸水结冰融水入渗后滨海盐土的水盐分布   总被引:2,自引:2,他引:0  
在室内利用相同矿化度(10 g·L-1)、不同钠吸附比(5、10 和30)的咸水进行咸水结冰融水模拟试验、结冰融水入渗和咸水直接入渗的土柱试验, 以淡水处理为对照, 分析不同钠吸附比咸水结冰融水入渗下滨海盐土水盐分布特征。结果表明: 咸水冰融化过程中, 融出水的矿化度和钠吸附比均呈由高到低的变化趋势。咸水结冰融水入渗速度和入渗深度均快于和深于淡水。咸水钠吸附比越小, 结冰融水入渗速率越快、深度越深。水盐分布也表现为低钠吸附比咸水结冰处理的表层土壤含水量较低, 水分向深层迁移, 这种水分分布也使盐分向深层运移, 表现为表层土壤含盐量低, 深层土壤含盐量大。土层含水量低钠吸附比咸水处理高于高钠吸附比处理, 10~45 cm 土层则表现出相反的趋势; 表层土含盐量低钠吸附比处理高于高钠吸附比处理, 且咸水处理下土壤脱盐的深度大于淡水处理。钠吸附比5 的咸水结冰处理, 0~10 cm 土壤平均含水量和含盐量分别为30.3%和1.1 g·kg-1, 显著低于其他处理。为比较咸水结冰灌溉和咸水直接灌溉的效果, 室内利用含盐量为10 g·L-1、钠吸附比10 的咸水进行直接入渗的土柱(土壤含盐量为21.3 g·kg-1)模拟试验, 结果表明: 与咸水直接入渗处理相比, 咸水结冰融水处理盐分淋洗效果更好, 该处理0~25 cm土层平均土壤含盐量为2.9 g·kg-1, 显著低于咸水直接入渗的10.6 g·kg-1。  相似文献   

20.
Biowaste can be converted into compost by composting or by a combination of anaerobic digestion and composting. Currently, waste management systems are primarily focused on the increase of the turnover rate of waste streams whereas optimisation of product quality receives less attention. This results in low quality composts that can only be sold on bulk markets at low prices. A new market for quality compost could be potting mixes for horticultural container-grown crops to partially replace non-renewable peat and increase the disease suppressiveness of potting mixes. We report here on the effect of wetsieving biowaste prior to composting on compost quality and on disease suppressiveness against the plant pathogen Pythium ultimum of peat mixes amended with this compost. The increased organic matter and decreased salt content of the compost allow for significantly higher substitution rates of peat by compost. In this study up to 60% v/v compost peat replacement did not affect cucumber growth. However, disease suppressiveness of the potting mixes strongly increased from 31 to 94% when the compost amendment rate was increased from 20 to 60%. It was shown that general disease suppression for P. ultimum can only be effective when the basal respiration rate is sufficiently high to support microbial activity. In addition, organic matter of the compost should reach a sufficient stability level to turn from disease conducive to disease suppressive. Increasing the compost addition from 20 to 60% did not significantly affect plant yield, yield variation were due to differences in nutrient levels. It can be concluded that compost from wetsieved biowaste has high potential to replace peat in growing media for the professional market.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号