首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A phenanthrene-degrading bacterial strain Pseudomonas sp. GF3 was examined for plant-growth promoting effects and phenanthrene removal in soil artificially contaminated with low and high levels of phenanthrene (0, 100 and 200 mg kg−1) in pot experiments. Low and high phenanthrene treatments significantly decreased the growth of wheat. Inoculation with bacterial strain Pseudomonas sp. GF3 was found to increase root and shoot growth of wheat. Strain GF3 was able to degrade phenanthrene effectively in the unplanted and planted soils. Over a period of 80 days the concentration of phenanthrene in soil in which wheat was grown was significantly lower than in unplanted soil (p<0.05). At the end of the 80-d experiments, 62.2% and 42.3% of phenanthrene had disappeared from planted soils without Pseudomonas sp. GF3 when the phenanthrene was added at 100 and 200 mg kg−1 soil, respectively, but 84.8% and 70.2% of phenanthrene had disappeared from planted soils with the bacterial inoculation. The presence of vegetation significantly enhances the dissipation of phenanthrene in the soil. There was no significant difference in soil polyphenol oxidase activities among the applications of 0, 100 and 200 mg kg−1 of phenanthrene. However, the enzyme activities in planted and unplanted soils inoculated with the strain Pseudomonas sp. GF3 were significantly higher than those of non-inoculation controls. The bacterial isolate was also able to colonize and develop in the rhizosphere soil of wheat after inoculation.  相似文献   

2.
After the toxic spill occurred at Aznalcóllar pyrite mine (Southern Spain), a wide area of croplands near the Doñana Wild Park was contaminated with 4.5 million m3 of slurries composed of acidic waters loaded with toxic metals and metalloids such as As, Sb, Zn, Pb, Cu, Co, Tl, Bi, Cd, Ag, Hg and Se. Today, 6 years after the spill, the concentration of toxic elements in these soils is still very high, in spite of the efforts to clean the zone. However, some plant species have colonised this contaminated area. Legumes possessing N2-fixing nodules on their roots represented a significant proportion of these plants. Our objective was to use the Rhizobium-legume symbiosis as a new tool for bioremediate the affected area. We have isolated about 100 Rhizobium strains, 41 of them being resistant to high concentrations of As (300 mg l−1), Cu (100 mg l−1) and Pb (500 mg l−1). Their phenotypes and bioaccumulation potentials have been characterised by their growth rates in media supplemented with As and heavy metals. The presence of the resistance genes in some strains has been confirmed by PCR and Southern blot hybridisation. Several Rhizobium were symbiotically effective in the contaminated soils. On the other hand, the first steps in nodule establishment seemed to be more affected by heavy metals than N2-fixation.  相似文献   

3.
Long-term diversity-disturbance responses of soil bacterial communities to copper were determined from field-soils (Spalding; South Australia) exposed to Cu in doses ranging from 0 through to 4012 mg Cu kg−1 soil. Nearly 6 years after application of Cu, the structure of the total bacterial community showed change over the Cu gradient (PCR-DGGE profiling). 16S rRNA clone libraries, generated from unexposed and exposed (1003 mg Cu added kg−1 soil) treatments, had significantly different taxa composition. In particular, Acidobacteria were abundant in unexposed soil but were nearly absent from the Cu-exposed sample (P<0.05), which was dominated by Firmicute bacteria (P<0.05). Analysis of community profiles of Acidobacteria, Bacillus, Pseudomonas and Sphingomonas showed significant changes in structural composition with increasing soil Cu. The diversity (Simpsons index) of the Acidobacteria community was more sensitive to increasing concentrations of CaCl-extractable soil Cu (CuExt) than other groups, with decline in diversity occurring at 0.13 CuExt mg kg−1 soil. In contrast, diversity in the Bacillus community increased until 10.4 CuExt mg kg−1 soil, showing that this group was 2 orders of magnitude more resistant to Cu than Acidobacteria. Sphingomonas was the most resistant to Cu; however, this group along with Pseudomonas represented only a small percentage of total soil bacteria. Changes in bacterial community structure, but not diversity, were concomitant with a decrease in catabolic function (BioLog). Reduction in function followed a dose-response pattern with CuExt levels (R2=0.86). The EC50 for functional loss was 0.21 CuExt mg kg−1 soil, which coincided with loss of Acidobacteria diversity. The microbial responses were confirmed as being due to Cu and not shifts in soil pH (from use of CuSO4) as parallel Zn-based field plots (ZnSO4) were dissimilar. Changes in the diversity of most bacterial groups with soil Cu followed a unimodal response - i.e. diversity initially increased with Cu addition until a critical value was reached, whereupon it sharply decreased. These responses are indicative of the intermediate-disturbance-hypothesis, a macroecological theory that has not been widely tested in environmental microbial ecosystems.  相似文献   

4.
Here we present results from a field experiment in a sub-arctic wetland near Abisko, northern Sweden, where the permafrost is currently disintegrating with significant vegetation changes as a result. During one growing season we investigated the fluxes of CO2 and CH4 and how they were affected by ecosystem properties, i.e., composition of species that are currently expanding in the area (Carex rotundata, Eriophorum vaginatum and Eriophorum angustifolium), dissolved CH4 in the pore water, substrate availability for methane producing bacteria, water table depth, active layer, temperature, etc. We found that the measured gas fluxes over the season ranged between: CH4 0.2 and 36.1 mg CH4 m−2 h−1, Net Ecosystem Exchange (NEE) −1000 and 1250 mg CO2 m−2 h−1 (negative values meaning a sink of atmospheric CO2) and dark respiration 110 and 1700 mg CO2 m−2 h−1. We found that NEE, photosynthetic rate and CH4 emission were affected by the species composition. Multiple stepwise regressions indicated that the primary explanatory variables for NEE was photosynthetic rate and for respiration and photosynthesis biomass of green leaves. The primary explanatory variables for CH4 emissions were depth of the water table, concentration of organic acid carbon and biomass of green leaves. The negative correlations between pore water concentration and emission of CH4 and the concentrations of organic acid, amino acid and carbohydrate carbon indicated that these compounds or their fermentation by-products were substrates for CH4 formation. Furthermore, calculation of the radiative forcing of the species expanding in the area as a direct result of permafrost degradation and a change in hydrology indicate that the studied mire may act as an increasing source of radiative forcing in future.  相似文献   

5.
The aim of this greenhouse experiment was the assessment of the influence of H2SeO3 at soil concentrations of 0.05, 0.15 and 0.45 mmol kg−1, on the activity of selected oxidoreductive enzymes in wheat (Triticum aestivum). The wheat plants were grown in 2 dm3 pots filled with dust-silt black soil of pH 7.7. Applied H2SeO3 caused activation of plant nitrate reductase at all concentrations, but activation of plant polyphenol oxidase at only two lower concentrations. The highest concentration caused inhibition of polyphenol oxidase and peroxidase. Plant catalase activity decreased under the influence of 0.15 and 0.45 mmol kg−1 concentration. After the final analysis Se was quantified in plants and soil. The amounts in plants were: control (unamended soil) 1.95 mg kg−1; I dose (0.05 mmol kg−1) 18.27 mg kg−1; II dose (0.15 mmol kg−1) 33.20 mg kg−1 and III dose (0.45 mmol kg−1) 38.37 mg kg−1, in soil: 0.265 mg kg−1; 3.61 mg kg−1; 10.53 mg kg−1; 30.53 mg kg−1; respectively. Simultaneously, a laboratory experiment was performed, where the activity of soil catalase and peroxidase were tested after 1, 3, 7, 14, 28, 56, and 112 days after Se treatment. Peroxidase activity in soil decreased with increasing Se content, over the whole experiment. The lowest dose of Se caused activation a significant 10% increase in catalase activity, but the influence of others doses was unclear.  相似文献   

6.
Enzyme activities and microbial biomass in coastal soils of India   总被引:1,自引:0,他引:1  
Soil salinity is a serious problem for agriculture in coastal regions, wherein salinity is temporal in nature. We studied the effect of salinity, in summer, monsoon and winter seasons, on microbial biomass carbon (MBC) and enzyme activities (EAs) of the salt-affected soils of the coastal region of the Bay of Bengal, Sundarbans, India. The average pH of soils collected from different sites, during different seasons varied from 4.8 to 7.8. The average organic C (OC) and total N (TN) content of the soils ranged between 5.2-14.1 and 0.6-1.4 g kg−1, respectively. The electrical conductivity of the saturation extract (ECe) of soils, averaged over season, varied from 2.2 to 16.3 dSm−1. The ECe of the soils increased five fold during the summer season (13.8 dSm−1) than the monsoon season (2.7 dSm−1). The major cation and anion detected were Na+ and Cl, respectively. Seasonality exerted considerable effects on MBC and soil EAs, with the lowest values recorded during the summer season. The activities of β-glucosidase, urease, acid phosphatase and alkaline phosphatase were similar during the winter and monsoon season. The dehydrogenase activity of soils was higher in monsoon than in winter. Average MBC, dehydrogenase, β-glucosidase, urease, acid phosphatase and alkaline phosphatase activities of the saline soils ranged from 125 to 346 mg kg−1 oven dry soil, 6-9.9 mg triphenyl formazan (TPF) kg−1 oven dry soil h−1, 18-53 mg p-nitro phenol (PNP) kg−1 oven dry soil h−1, 38-86 mg urea hydrolyzed kg−1 oven dry soil h−1, 213-584 mg PNP kg−1 oven dry soil h−1 and 176-362 mg PNP g−1 oven dry soil h−1, respectively. The same for the non-saline soils were 274-446 mg kg−1 oven dry soil, 8.8-14.4 mg TPF kg−1 oven dry soil h−1, 41-80 mg PNP kg−1 oven dry soil h−1, 89-134 mg urea hydrolyzed kg−1 oven dry soil h−1, 219-287 mg PNP kg−1 oven dry soil h−1 and 407-417 mg PNP kg−1 oven dry soil h−1, respectively. About 48%, 82%, 48%, 63%, 40% and 48% variation in MBC, dehydrogenase activity, β-glucosidase activity, urease activity, acid phosphatase activity and alkaline phosphatase activity, respectively, could be explained by the variation in ECe of saline soils. Suppression of EAs of the coastal soils during summer due to salinity rise is of immense agronomic significance and needs suitable interventions for sustainable crop production.  相似文献   

7.
Physiological groups of soil microorganisms, total C and N and available nutrients were investigated in four heated (350 °C, 1 h) soils (one Ortic Podsol over sandstone and three Humic Cambisol over granite, schist or limestone) inoculated (1.5 μg chlorophyll a g−1 soil or 3.0 μg chlorophyll a g−1 soil) with four cyanobacterial strains of the genus Oscillatoria, Nostoc or Scytonema and a mixture of them.Cyanobacterial inoculation promoted the formation of microbiotic crusts which contained a relatively high number of NH4+-producers (7.4×109 g−1 crust), starch-mineralizing microbes (1.7×108 g−1 crust), cellulose-mineralizing microbes (1.4×106 g−1 crust) and NO2 and NO3 producers (6.9×104 and 7.3×103 g−1 crust, respectively). These crusts showed a wide range of C and N contents with an average of 293 g C kg−1 crust and 50 g N kg−1 crust, respectively. In general, Ca was the most abundant available nutrient (804 mg kg−1 crust), followed by Mg (269 mg kg−1 crust), K (173 mg kg−1 crust), Na (164 mg kg−1 crust) and P (129 mg kg−1 crust). There were close positive correlations among all the biotic and abiotic components of the crusts.Biofertilization with cyanobacteria induced great microbial proliferation as well as high increases in organic matter and nutrients in the surface of the heated soils. In general, cellulolytics were increased by four logarithmic units, amylolytics and ammonifiers by three logarithmic units and nitrifiers by more than two logarithmic units. C and N contents rose an average of 275 g C kg−1 soil and 50 g N kg−1 soil while the C:N ratio decreased up to 7 units. Among the available nutrients the highest increase was for Ca (315 mg kg−1 soil) followed by Mg (189 mg kg−1 soil), K (111 mg kg−1 soil), Na (109 mg kg−1 soil) and P (89 mg kg−1 soil). Fluctuations of the microbial groups as well as those of organic matter and nutrients were positively correlated.The efficacy of inoculation depended on both the type of soil and the class of inoculum. The best treatment was the mixture of the four strains and, whatever the inoculum used, the soil over lime showed the most developed crust followed by the soils over schist, granite and sandstone. In the medium term there were not significant differences between the two inocula amounts tested.These results showed that inoculation of burned soils with alien N2-fixing cyanobacteria may be a biotechnological means of promoting microbiotic crust formation, enhancing C and N cycling microorganisms and increasing organic matter and nutrient contents in heated soils.  相似文献   

8.
Metal hyperaccumulator plants like Alyssum murale have a remarkable ability to hyperaccumulate Ni from soils containing mostly insoluble Ni. We have shown some rhizobacteria increase the phytoavailability of Ni in soils, thus enhancing Ni accumulation by A. murale. Nine bacterial strains, originally isolated from the rhizosphere of A. murale grown in serpentine Ni-rich soil, were examined for their ability to solubilize Ni in different soils and for their effect on Ni uptake into Alyssum. Microbacterium oxydans AY509223; Rhizobium galegae AY509213; Microbacterium oxydans AY509219; Clavibacter xyli AY509236; Acidovorax avenae AY512827; Microbacterium arabinogalactanolyticum AY509225; M. oxydans AY509222; M. arabinogalactanolyticum AY509226 and M. oxydans AY509221 were added to low, moderate and high Ni-contaminated soils. M. oxydans AY509223 significantly increased Ni extraction by 10 mM Sr(NO3)2 from the high and medium soils and had no effect on Ni extraction from the low Ni soils. The other eight bacterial isolates significantly increased Ni extraction from all soils. There were no significant effects of bacterial inoculation on fresh and dry weight of A . murale shoots grown in the low and high Ni soils compared to an unamended control. M. oxydans AY509223 significantly increased Ni uptake of A. murale grown in the low, medium, and high soils by 36.1%, 39.3%, and 27.7%, respectively, compared with uninoculated seeds. M. oxydans AY509223 increased foliar Ni from the same soils from 82.9, 261.3 and 2829.3 mg kg−1 to 129.7, 430.7, and 3914.3 mg kg−1, respectively, compared with uninoculated controls. These results show that bacteria are important for Ni hyperaccumulation and could potentially be developed as an inoculum for enhancing uptake during commercial phytoremediation or phytomining of Ni.  相似文献   

9.
Fertilizer costs are a major component of corn production. The use of biofertilizers may be one way of reducing production costs. In this study we present isolation and identification of three plant growth promoting bacteria that were identified as Enterobacter cloacae (CR1), Pseudomonas putida (CR7) and Stenotrophomonas maltophilia (CR3). All bacterial strains produced IAA in the presence of 100 mg l−1 of tryptophan and antifungal metabolites to several soilborne pathogens. S. maltophilia and E. cloacae had broad spectrum activity against most Fusarium species. The only strain that was positive for nitrogen fixation was E. cloacae and it, and P. putida, were also positive for phosphate solubilization. These bacteria and the corn isolate Sphingobacterium canadense CR11, and known plant growth promoting bacterium Burkholderia phytofirmans E24 were used to inoculate corn seed to examine growth promotion of two lines of corn, varieties 39D82 and 39M27 under greenhouse conditions. When grown in sterilized sand varieties 39M27 and 39D82 showed significant increases in total dry weights of root and shoot of 10-20% and 13-28% and 17-32% and 21-31% respectively. Plants of the two varieties grown in soil collected from a corn field had respective increases in dry weights of root and shoot of 10-30% and 12-35% and 11-19% and 10-18%. In sand, a bacterial mixture was highly effective whereas in soil individual bacteria namely P. putida CR7 and E. cloacae CR1 gave the best results with 39M27 and 39D82 respectively. These isolates and another corn isolate, Azospirillum zeae N7, were tested in a sandy soil with a 55 and 110 kg ha−1 of nitrogen fertility at the Delhi research Station of Agriculture and Agri-Food Canada over two years. Although out of seven bacterial treatments, no treatment provided a statistically significant yield increase over control plots but S. canadense CR11 and A. zeae N7 provided statistically significant yield increase as compared to other bacteria. The 110 kg rate of nitrogen provided significant yield increase compared to the 55 kg rate in both years.  相似文献   

10.
Continuous culture methods were used to isolate bacteria from sediment from Lake Ontario. These mixed cultures were grown in chemostats at different dilution rates and the glucose concentration in the culture vessel, the optical density, the biomass of cells, and the number and types of bacteria present were monitored for at least 80 generations. Two bacterial types, bothPseudomonas spp., were present at all dilution rates in significant quantities. The mixed cultures exhibited a reciprocal relationship between dilution rate and biomass (and number of bacteria). When Hg was added to the growth medium at a concentration of 5 mg 1?1, the bacteria tolerated that concentration at a dilution rate of 0.117 h?1 substantial changes in the population were noted at a concentration of 10 mg 1?1 Hg. One of the isolates from the mixed culture would not grow at 5 or 10 mg 1?1 of Hg in continuous culture at a dilution rate of 0.066 h?1. In the mixed continuous culture the same isolate showed only minimal response to a Hg concentration of 10 mg 1?1.  相似文献   

11.
The concentrations of Zn, Cd, Pb and Cu in earthworm tissues were compared with the total and DTPA-extractable contents of these heavy metals in contaminated soils. Samples were taken from a pasture polluted by waste from a metallurgic industry over 70 y ago. Three individuals of Aporrectodea caliginosa and Lumbricus rubellus and soil samples were collected at six points along a gradient of increasing pollution. Total metal contents of earthworms, soil, and metals extracted by DTPA from the soil were measured. Total heavy metal contents of the soils ranged from 165.7 to 1231.7 mg Zn kg−1, 2.7 to 5.2 mg Cd kg−1, 45.8 to 465.5 mg Pb kg−1 and 30.0 to 107.5 mg Cu kg−1. Their correlations with metals extracted by DTPA were highly significant. Contents of the metals in earthworm tissues were higher in A. caliginosa than in L. rubellus, with values ranging from 556 to 3381 mg Zn kg−1, 11.6 to 102.9 mg Cd kg−1, 1.9 to 182.8 mg Pb kg−1 and 17.9 to 35.9 mg Cu kg−1 in A. caliginosa, and from 667.9 to 2645 mg Zn kg−1, 7.7 to 26.3 mg Cd kg−1, 0.5 to 37.9 mg Pb kg−1 and 16.0 to 37.6 mg Cu kg−1 in L. rubellus, respectively. Correlations between body loads in earthworms with either total or DTPA-extractable contents of soil metals were significant, except for Cd in L. rubellus and Cu in A. caliginosa. Considering its simple analytical procedure, DTPA-extractable fraction may be preferable to total metal content as a predictor of bio-concentrations of heavy metals in earthworms. Biota-to-Soil Accumulation Factor (BSAF) of these four metals are Cd>Zn>Cu>Pb, with range of mean values between: Cd (6.18-17.02), Zn (1.95-7.91), Cu (0.27-0.89) and Pb (0.08-0.38) in A. caliginosa, and Cd (3.64-6.34), Zn (1.5-6.35), Cu (0.29-0.87) and Pb (0.04-0.13) in L. rubellus. The BSAF of Ca, Fe and Mn are Ca>Mn>Fe, with mean values of: Ca (0.46-1.31), Mn (0.041-0.111), Fe (0.017-0.07) in A. caliginosa and Ca (0.98-2.13), Mn (0.14-0.23), Fe (0.019-0.048) in L. rubellus, respectively. Results of principal component analysis showed that the two earthworm species differ in the pattern of metal bioaccumulation which is related to their ecological roles in contaminated soils.  相似文献   

12.
We evaluated the spatial structures of nitrous oxide (N2O), carbon dioxide (CO2), and methane (CH4) fluxes in an Acacia mangium plantation stand in Sumatra, Indonesia, in drier (August) and wetter (March) seasons. A 60 × 100-m plot was established in an A. mangium plantation that included different topographical elements of the upper plateau, lower plateau, upper slope and foot slope. The plot was divided into 10 × 10-m grids and gas fluxes and soil properties were measured at 77 grid points at 10-m intervals within the plot. Spatial structures of the gas fluxes and soil properties were identified using geostatistical analyses. Averaged N2O and CO2 fluxes in the wetter season (1.85 mg N m−2 d−1 and 4.29 g C m−2 d−1, respectively) were significantly higher than those in the drier season (0.55 mg N m−2 d−1 and 2.73 g C m−2 d−1, respectively) and averaged CH4 uptake rates in the drier season (−0.62 mg C m−2 d−1) were higher than those in the wetter season (−0.24 mg C m−2 d−1). These values of N2O fluxes in A. mangium soils were higher than those reported for natural forest soils in Sumatra, while CO2 and CH4 fluxes were in the range of fluxes reported for natural forest soils. Seasonal differences in these gas fluxes appears to be controlled by soil water content and substrate availability due to differing precipitation and mineralization of litter between seasons. N2O fluxes had strong spatial dependence with a range of about 18 m in both the drier and wetter seasons. Topography was associated with the N2O fluxes in the wetter season with higher and lower fluxes on the foot slope and on the upper plateau, respectively, via controlling the anaerobic-aerobic conditions in the soils. In the drier season, however, we could not find obvious topographic influences on the spatial patterns of N2O fluxes and they may have depended on litter amount distribution. CO2 fluxes had no spatial dependence in both seasons, but the topographic influence was significant in the drier season with lowest fluxes on the foot slope, while there was no significant difference between topographic positions in the wetter season. The distributions of litter amount and soil organic matter were possibly associated with CO2 fluxes through their effects on microbial activities and fine root distribution in this A. mangium plantation.  相似文献   

13.
Emissions of N2O were measured following addition of 15N-labelled (2.6-4.7 atom% excess 15N) agroforestry residues (Sesbania sesban, mixed Sesbania/Macroptilium atropurpureum, Crotalaria grahamiana and Calliandra calothyrsus) to a Kenyan oxisol at a rate of 100 mg N kg soil−1 under controlled environment conditions. Emissions were increased following addition of residues, with 22.6 mg N m−2 (124.4 mg N m−2 kg biomass−1; 1.1 mg 15N m−2; 1.03% of 15N applied) emitted as N2O over 29 d after addition of both Sesbania and Macroptilium residues in the mixed treatment. Fluxes of N2O were positively correlated with CO2 fluxes, and N2O emissions and available soil N were negatively correlated with residue lignin content (r=−0.49;P<0.05), polyphenol content (r=−0.94;P<0.05), protein binding capacity (r=−0.92;P<0.05) and with (lignin+polyphenol)-to-N ratio (r=−0.55;P<0.05). Lower emission (13.6 mg N m−2 over 29 d; 94.5 mg N m−2 kg biomass−1; 0.6 mg 15N m−2; 0.29% of 15N applied) after addition of Calliandra residue was attributed to the high polyphenol content (7.4%) and high polyphenol protein binding capacity (383 μg BSA mg plant−1) of this residue binding to plant protein and reducing its availability for microbial attack, despite the residue having a N content of 2.9%. Our results indicate that residue chemical composition, or quality, needs to be considered when proposing mitigation strategies to reduce N2O emissions from systems relying on incorporation of plant biomass, e.g. improved-fallow agroforestry systems, and that this consideration should extend beyond the C-to-N ratio of the residue to include polyphenol content and their protein binding capacity.  相似文献   

14.
Earthworms have been termed ‘ecosystem engineers’ (sensu [Jones, C.G., Lawton, J.H., Shachak, M., 1994. Organisms as ecosysem engineers. Oikos 69, 373-386.]) because of the important roles they play in the soil. As a consequence, it is assumed that if earthworms change their behaviour following exposure to pesticides or pollutants this could have a drastic impact on soil functioning. To test this assumption under laboratory conditions, we studied the burrow systems made by two earthworm species (the anecic Aporrectodea nocturna and the endogeic Allolobophora icterica) in artificial soil cores containing imidacloprid, a widely used neonicotinoid insecticide. After 1-month incubation period, the macropores created in the soil core were analyzed by tomography. In order to further characterize transfer properties associated with burrow systems gas diffusion measurements were also carried out. The burrow systems made by the two earthworm species were very different: A. nocturna made more continuous, less branched, more vertical and wider burrows than A. icterica. Some changes to A. nocturna burrow systems were observed after exposure to imidacloprid (they made a smaller burrow system and burrows were more narrow), but only at the highest concentration of imidacloprid used (0.5 mg kg−1). A. icterica worms were more sensitive to imidacloprid and many differences in their burrow systems (length, sinuosity, branching rate and number of burrows) were observed at both concentrations tested (0.1 and 0. 5 mg kg−1). As a consequence, the continuity of the burrow systems made by both species was altered following imidacloprid treatment. Gas diffusion through the A. nocturna soil cores was reduced but no difference in gas diffusion was observed in the A. icterica soil cores.  相似文献   

15.
There is conflicting evidence about toxic effects of heavy metals in soil on symbiotic nitrogen fixation. This study was set-up to assess the general occurrence of such effects. Soils with metal concentration gradients were sampled from six established field trials, where sewage sludge or metal salts have been applied, or from a transect in a sludge treated soil. Additional contaminated soils were sampled near metal smelters, in floodplains, in sludge amended arable land and in a metalliferous area. Symbiotic nitrogen fixation was measured with 15N isotope dilution in white clover (Trifolium repens L.) grown in potted soil that was not re-inoculated, and using ryegrass (Lolium perenne L.) as reference crop. The fraction nitrogen in clover derived from fixation (Ndff) varied from 0 to 88% depending on soil. Pronounced metal toxicity on Ndff was only confirmed in a sludge treated soil where nitrogen fixation was halved from the control value at soil total metal concentration of 737 mg Zn kg−1, 428 mg Cu kg−1 and 10 mg Cd kg−1. The Ndff was significantly reduced by increasing metal concentration in soils from two other sites where Ndff was low throughout and where these effects might be attributed to confounding factors. No significant effects of metals on Ndff were identified in all other gradients even up to elevated total metal concentration (e.g. 55 mg Cd kg−1). The variation of Ndff among all soils (n=48), is mainly explained by the number of rhizobia in the soil (log MPN, log (cells g−1 soil)), whereas correlations with total or soil solution metal concentrations were weak (R2<0.25). The is significantly affected by the presence or absence of the host plant at the sampling site. No effects of metals were identified at even at total Zn concentrations of about 2000 mg Zn kg−1, whereas metal toxicity could be identified at lower most probable number (MPN) values. This survey shows that the metal toxicity on symbiotic nitrogen fixation cannot be generalized and that survival of a healthy population of the microsymbiont is probably the critical factor.  相似文献   

16.
《Applied soil ecology》2006,32(3):228-238
Pseudomonas bacteria isolated during 52 days on Gould's S1 agar from soil spiked with 0, 3.5 and 15 mg Hg(II) kg soil−1 were characterised to reveal whether mercury affected them differently. Isolates from the treatments with 0 and 15 mg Hg kg−1 were characterised using FT-IR characterisation and subsequent 16S rDNA partial sequencing of representative isolates. To verify the selectivity of Gould's S1 agar and the FT-IR characterisation, all 450 isolates were subjected to the following tests: Gram-determination, catalase and oxidase activity, pigment production on PDA and growth at different temperatures. Furthermore, the isolates were tested for their ability to grow on agar amended with 10 mg Hg kg−1 as an indication of mercury resistance. We found that up to 80% of the isolates in soil amended with 15 mg Hg kg−1 were mercury-resistant, whereas only up to 20% were resistant in the treatments with 0 and 3.5 mg Hg kg−1. We found two groups of Pseudomonas, which probably represent non-described species since they did not group closely with any known species of Pseudomonas in the dendrogram. Hg-enhanced isolates were closely related to P. frederiksbergensis. Furthermore, Hg resistance was almost exclusively restricted to P. frederiksbergensis and P. migulae groups. We conclude that Hg caused a shift in the dominating species of culturable Pseudomonas.  相似文献   

17.
Nitrogenase activity and trehalose accumulation were measured in nodulated and non-nodulated common beans (Phaseolus vulgaris) that were exposed to drought. Plants were infected with the Fix+Rhizobiumsp NGR234, or a Fix derivative (NGRΩfixF), or high trehalose-producing, native rhizobia. Trehalose content increased significantly while acetylene reduction activity (ARA) decreased in the nodules of plants exposed to drought. Nevertheless, ARA decreased at a slower rate in nodules with high trehalose levels. Under water stress, nodules infected with NGRΩfixF tended to accumulate more trehalose than nodules infected with wild-type NGR234 (9±0.1 vs 8±0.1 mg g−1 dw, respectively). Highest trehalose accumulations were registered in nodules of plants infected with native rhizobia (average 16 mg g−1 dw), and these plants also exhibited the highest relative water content (65%), while in plants infected with the NGRΩfixF RWC was significantly lower (56%). Our results suggest that nodule trehalose may protect bacterial nitrogenase activity under drought conditions, and that both trehalose and biological nitrogen fixation (BNF) contribute to drought tolerance.  相似文献   

18.
The biocontrol agents Coniothyrium minitans and Bacillus subtilis MBI 600 were added separately to three soil types that had been either sterilised, pasteurised or left non-sterile. Applied as a conidial suspension of 1×106 cfu g−1 soil, C. minitans showed good survival in all sterilised, pasteurised and non-sterile soils, remaining at the numerical level at which it was applied for the duration of the 30 d experiment. Applied at a lower rate of 1×103 cfu g−1 soil, C. minitans proliferated in sterilised soil to numbers slightly over 1×106 cfu g−1 soil, whereas no increase was seen in pasteurised or non-sterile soils from this lower application rate. However, although C. minitans was not easily recovered on plates from non-sterile soil, it did survive at the lower numerical level in pasteurised soil, and was recoverable throughout the experiment at the rate at which it was applied. B. subtilis MBI 600 survived well following introduction as a cell suspension into sterilised soil at a rate of 1×106 cfu g−1 soil. Spores were formed rapidly and, after 14 d, the introduced microorganism survived in this form rather than as vegetative cells. However, in non-sterile soil, the introduced microorganism did not compete well and decreased in number, with spores being formed in low numbers. Survival of B. subtilis MBI 600 in pasteurised soil was variable, but resembled the survival seen in non-sterile soil more than that seen in sterilised soil. More B. subtilis MBI 600 spores were formed in pasteurised soil than in non-sterile soil, however, and may have been important for survival in pasteurised soil. In conclusion, this work has shown that the biocontrol agent C. minitans can survive well in soil irrespective of whether the soil has been pasteurised or not and shows good promise as a soil inoculant for control of Sclerotinia sclerotiorum. Although soil pasteurisation does improve establishment of B. subtilis MBI 600 compared to non-sterile soil, survival is relatively poor when applied as cells. The best survival of B. subtilis MBI 600 occurred as spores in sterilised soil, and spore applications to pasteurised soil in an integrated control strategy may allow sufficient establishment of the biocontrol agent to target pathogens causing damping-off.  相似文献   

19.
Pseudomonas strains may be used as alternatives to fungicides as some of them produce secondary metabolites, which can inhibit growth of plant pathogenic fungi. Increased knowledge of non-target effects of the antagonistic bacteria on other soil organisms as well as of the survival and predation resistance of the antagonistic bacteria is necessary for risk assessment and increased performance of antagonistic bacteria as biological control agents. In the present study, we aimed to investigate the difference between Pseudomonas spp. with respect to their predation resistance to and effects on the three different and common soil flagellates Bodo caudatus, Cercomonas longicauda, and Neocercomonas jutlandica. Two antagonistic Pseudomonas: Pseudomonas fluorescens CHA0 and P. fluorescens DR54 and two positive control strains: P. fluorescens DSM 50090T and Pseudomonas chlororaphis ATCC 43928 were studied. CHA0, which is reported to produce a range of different antibiotic substances, was inhibitory to all the tested flagellates whereas DR54, which produces viscosinamide, only inhibited the growth rate of B. caudatus. Removal of spent medium from a CHA0 culture reduced the growth inhibition of C. longicauda, although the growth rate was still lowered compared with DSM 50090T. In contrast, removal of spent medium from a DR54 culture had minor effect on C. longicauda. The flagellate B. caudatus was far more sensitive towards the antagonistic Pseudomonas strains of the tested flagellates.  相似文献   

20.
Plasmid transfer among isolates of Rhizobium leguminosarum bv. viciae in heavy metal contaminated soils from a long-term experiment in Braunschweig, Germany, was investigated under laboratory conditions. Three replicate samples each of four sterilized soils with total Zn contents of 54, 104, 208 and 340 mg kg−1 were inoculated with an equal number (1×105 cells g−1 soil) of seven different, well-characterized isolates of R. leguminosarum bv. viciae. Four of the isolates were from an uncontaminated control plot (total Zn 54 mg kg−1) and three were from a metal-contaminated plot (total Zn 340 mg kg−1).After 1 year the population size was between 106 and 107 g−1 soil, and remained at this level in all but the most contaminated soil. In the soil from the most contaminated plot no initial increase in rhizobial numbers was seen, and the population declined after 1 year to <30 cells g−1 soil after 4 years. One isolate originally from uncontaminated soil that had five large plasmids (no. 2-8-27) was the most abundant type re-isolated from all of the soils. Isolates originally from the metal-contaminated soils were only recovered in the most contaminated soil. After 1 year, four isolates with plasmid profiles distinct from those inoculated into the soils were recovered. One isolate in the control soil appeared to have lost a plasmid. Three isolates from heavy metal contaminated soils (one isolate from the soil with total Zn 208 mg kg−1 and two isolates from the soil with total Zn 340 mg kg−1) had all acquired one plasmid. Plasmid transfer was confirmed using the distinct ITS-RFLP types of the isolates and DNA hybridization using probes specific to the transferred plasmid. The transconjugant of 2-8-27 which had gained a plasmid was found in one replicate after 2 years of the most contaminated soil but comprised more than 50% of the isolates. A similar type appeared in a separate replicate of the most contaminated soil after 3 years and persisted in both of these soils until the final sampling after 4 years. After 2 years isolates were recovered from four of the soil replicates with the chromosomal type of 2-8-27 which appeared to have lost one plasmid, but these were not recovered subsequently.Isolate 2-8-27 was among the isolates most sensitive to Zn in laboratory assays, whereas isolate 7-13-1 showed greater zinc tolerance. Acquisition of the plasmid conferred enhanced Zn tolerance to the recipients, but transconjugant isolates were not as metal tolerant as 7-13-1, the putative donor. Laboratory matings between 2-8-27 and 7-13-1 in the presence of Zn resulted in the conjugal transfer of the same small plasmid from 7-13-1 to isolate 2-8-27 and the transconjugant had enhanced metal tolerance. Our results show that transfer of naturally-occurring plasmids among rhizobial strains is stimulated by increased metal concentrations in soil. We further demonstrate that the transfer of naturally-occurring plasmids is important in conferring enhanced tolerance to elevated zinc concentrations in rhizobia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号