首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 183 毫秒
1.
水稻抗白叶枯病基因Xa21转基因水稻及其杂交稻研究   总被引:16,自引:0,他引:16  
用基因枪转基因技术将高抗白叶枯病的Xa21基因导入中国三系杂交稻恢复系(明恢63)和保持系(皖B)中,获得转基因水稻系,其中4个株系只含有Xa21基因,不含选择标记潮霉素抗性基因hph。筛选抗白叶枯病转基因纯合系,在田间种植6代,用PCR检测证明,Xa21基因能稳定遗传表达。用转基因水稻配制两系杂交稻,杂交组合F1含有Xa21基因  相似文献   

2.
不同Xa21转基因杂交稻组合的大田试验与分析   总被引:7,自引:0,他引:7  
在北京、四川和江苏等地对Xa21转基因杂交稻进行了大田释放实验. 分别对转基因纯合的3个恢复系明恢63-Xa21、盐恢559-Xa21和C418-Xa21与各种不育系配组的23个杂交组合进行了抗性和农艺性状分析. 在不同的杂合遗传背景下转基因Xa21稳定遗传和高效表达, 所有杂交组合均具有对白叶枯病的广谱抗性. 转基因恢复系配制的杂交组合与  相似文献   

3.
分子标记辅助培育双抗稻瘟病和白叶枯病杂交稻恢复系   总被引:10,自引:3,他引:7  
本研究利用常规回交育种结合分子标记辅助选择技术,将来自C750的抗白叶枯病基因Xa23和抗稻瘟病基因pi9聚合到感病杂交稻恢复系闽恢3139中.最后在回交后代中获得了4个双抗稻瘟病和白叶枯病改良系ZR21-sk1、ZR21-sk2、ZR21-sk3和ZR21-sk4,且其遗传背景恢复率达96%以上.用来自福建省具有代表性的24个稻瘟病菌株和白叶枯病广致病型菌系P6对改良株系进行人工接菌鉴定,结果表明,聚合了Xa23和pi9基因的改良系同时抗稻瘟病和白叶枯病,且抗性与抗谱与供体亲本C750相似.农艺性状分析显示,改良株系所配组合基本保持闽恢3139的农艺性状和配合力,可直接应用于生产或作抗性育种亲本.  相似文献   

4.
由白叶枯病菌引起的白叶枯病是一种世界范围的严重水稻病害。水稻抗病主效基因Xa3/Xa26是一个对白叶枯病具有剂量效应的抗性基因,即它对白叶枯病的抗性随着该基因的表达量的升高而增强。我们通过农杆菌介导的遗传转化方法,利用玉米泛素基因的启动子(PUbi)在水稻中组成型表达Xa3/Xa26基因。用于遗传转化的构件除了携带Xa3/Xa26基因外,还携带抗除草剂的草丁膦乙酰转移酶基因Bar作为遗传转化的筛选标记。我们获得的携带单拷贝PUbi:Xa3/Xa26的两个转基因家系无论在成株期还是在苗期对白叶枯病都具有高水平的广谱抗性,且转基因家系的主要农艺性状与对照相比无显著差别。因为转基因家系中Xa3/Xa26基因与Bar基因紧密连锁,这两个家系可以作为育种的种质资源用于培育既抗白叶枯病又抗除草剂的水稻品种。  相似文献   

5.
传统水稻育种技术最主要瓶颈是选择效率低和周期长。为了提高水稻优异材料选育和杂交稻组配效率,创新水稻分子育种策略,利用分子标记辅助选择多基因聚合和早世代杂交组配,展开水稻恢复系分子改良和杂交新组合的调查评价。供体亲本H318与恢复系亲本华占进行杂交,通过选择和设计关键有利基因的分子标记,利用毛细管电泳基因分型技术,将Wxb、fgr、Xa23、Pi2、Pi46以及Pita 6个稻米品质、香味、抗白叶枯病和抗稻瘟病相关功能基因进行聚合利用。通过多世代的田间生物学性状调查,米质、抗性等表型鉴定,获得14份以恢复系华占为遗传背景,目标基因纯合的优质、双抗和香型稳定的水稻株系。依据材料稳定遗传特性,将改良后代株系与生产应用的不育系进行测配和组合的调查评价,筛选获得潜在优良杂交稻。在育种进程中采用"多基因聚合-早世代组配"策略,实现多个有利基因快速聚合,定向改良稻米品质和抗病性等关键性状,并且促进杂交水稻组合的高效选育。  相似文献   

6.
分子标记辅助选择Xa23基因培育杂交稻抗白叶枯病恢复系   总被引:7,自引:1,他引:6  
水稻抗白叶枯病新基因Xa23抗谱广、抗性强,被定位在第11染色体上。以携带抗白叶枯病基因Xa23的抗病品系CBB23为抗源,以优良杂交稻亲本9311和1826为受体材料,采用杂交和复交,在分离群体中利用与Xa23紧密连锁的EST标记C189进行分子标记辅助选择,通过苗期分子标记检测和成株期农艺性状选择,获得160份目标基因纯合且农艺性状稳定的株系。使用鉴别菌系P6,采用人工剪叶接种法,在苗期和孕穗期对21份重点株系进行了抗性鉴定,所有株系在苗期和孕穗期都表现抗病。同时对3个不育系与其中5个株系配制的15个杂交组合进行了抗性鉴定,所有组合在苗期表现抗或中抗,在孕穗期表现抗。对其中6个杂交组合进行了品比试验,2个组合产量略低于对照两优培九,其余4个组合的产量均高于两优培九,用于测配的3个株系C6201、C6271和C6351有望作为杂交稻恢复系在生产中应用。研究表明在育种进程中利用与Xa23基因紧密连锁的分子标记C189开展抗白叶枯病分子标记辅助育种是一种有效的途径。  相似文献   

7.
分子标记辅助培育水稻抗白叶枯病和稻瘟病三基因聚合系   总被引:6,自引:2,他引:4  
水稻的白叶枯病和稻瘟病是水稻的两大主要病害, 通过分子标记辅助选择与传统的杂交、自交相结合的方法, 将抗稻瘟病的Pi9(t)基因和抗白叶枯病的Xa21及Xa23基因聚合到同一株系中, 经多代大田或/和温室接菌鉴定、室内标记选择和田间农艺性状的筛选, 获得了4个三基因聚合且农艺性状优良的株系L17~L20。用不同国家和地区的20个稻瘟病小种、中国流行的7个白叶枯病菌系C1~C7以及安徽省流行的白叶枯病菌系进行大田或/和温室抗病性鉴定, 结果显示, 株系L17~L20对20个稻瘟病小种均表现出抗性, 抗性水平与Pi9(t)基因的供体亲本75-1-127相当, 抗谱相同; 对白叶枯病的抗性和抗谱与Xa23基因相似, 不论在苗期还是在成株期均抗白叶枯病。与Xa21、Xa23基因的供体亲本M12和CBB23相比, 成株期的抗性水平有所增强。利用多重PCR技术, 在同一PCR反应中可同时选择Pi9(t)和Xa21基因, 提高了PCR选择效率。  相似文献   

8.
蜀恢527抗水稻白叶枯病改良系的遗传背景和农艺性状分析   总被引:9,自引:0,他引:9  
利用336个SSR标记和100个RAPD引物,对分子标记辅助选择获得的10个蜀恢527抗水稻白叶枯病改良系的遗传背景、白叶枯病的抗性和抗谱及农艺性状进行了研究。结果表明,10个改良株系在Xa21和Xa4位点纯合,抗我国7个病原型代表菌系CⅠ~CⅦ和菲律宾小种1和6(P1和P6)。在遗传背景分析检测的位点中,改良系与蜀恢527表现差异的SSR  相似文献   

9.
转Xa21基因杂交水稻选育和评价   总被引:1,自引:0,他引:1  
通过基因枪转基因方法和双质粒共转化体系将Xa21基因转入优良恢复系明恢63,得到转基因系M12和M22,并进一步做田间试验、新品种选育和食用安全性评价。结果显示:M12和M22对中国的所有白叶枯病小种都表现出高度抗性,但与原受体品种明恢63相比,农艺性状上有许多变异,主要表现在:结实率、千粒重等农艺性状变差,与珍汕97A的配合力显著降低;但与温敏不育系(X07S、056S)配组的F1有较好的田间表现。通过多代回交和分子标记辅助选择,成功地将Xa21基因从M12株系转到保持系80-4B和不育系80-4A中,得到抗白叶枯病的皖21B和皖21A。并利用皖21A不育系选育出优良杂交组合抗优97(皖21A×R-18),该组合在两年区域试验和一年生产试验中产量表现突出,米质优良。对不同世代和不同遗传背景的转基因品系进行白叶枯病鉴定和Southern分析表明:Xa21基因都能稳定遗传和正常表达,连续16代的种植并没使其白叶枯病的抗性减弱或丧失,而且不论Xa21基因是纯合的还是杂合的都有相同的抗性表现。对大鼠和小鼠的饲喂试验表明:转基因大米实质上等同于非转基因大米,是安全无害的。  相似文献   

10.
白叶枯病是世界上影响水稻产量最严重的病害之一,本研究利用携有目前已知的、抗谱最广和抗性最强的显性基因Xa23的水稻材料CBB23作为基因供体,以感白叶枯病的杂交水稻的3个骨干亲本培矮64S、明恢86和C418作为受体,采用杂交和复交,在分离群体中利用与Xa23紧密连锁的SSR标记RM206进行分子标记辅助选择。通过分子标记检测、田间抗性鉴定和农艺性状选择,BC3F3株系中获得Xa23基因纯合且农艺性状稳定的培矮64S、明恢86和C418。获得的恢复系或不育系及配制的杂交组合在田间对我国7个以及菲律宾P1和P6白叶枯病生理小种都具有抗性。  相似文献   

11.
In this paper, we described the breeding of transgenic rice restorer line for multiple resistance against bacterial blight, striped stem borer (SSB) and herbicide by conventional crossing of two transgenic parental lines transformed independently with different genes. Two stable transgenic rice lines used as donor parents were developed, one was Zhongguo91 which contained cry1Ab gene (for insect resistance) and bar gene (for tolerance of herbicide), and the other was Yujing6 which contained Xa21 gene (resistance to bacterial blight). The elite restorer line Hui773 was used as recipient and crossed with the two stable transgenic rice lines. Then five successive backcrosses were made using Hui773 as recurrent parent. Two rice elite restorers, T773-1 expressing cry1Ab and bar genes and T773-2 expressing Xa21 gene, were obtained, which were confirmed by PCR analysis and testing selectable marker genes in the hybrid progenies. The cross was made between T773-1 and T773-2 to select stable restorer line carrying Xa21, cry1Ab and bar genes. Finally, we obtained transgenic restorer line T773 with good agronomic traits and obvious multiple resistance to Xanthomonas oryzae pv. oryzae, striped stem borer (Chilo suppressalis) and herbicide. The hybrid F1 generation produced from the cross between transgenic restorer line T773 and a corresponding male sterile line Zaohua2A maintained obvious resistance to rice bacterial blight, rice leaffolder and striped stem borer, and showed significant heterosis. Our results indicate that it is feasible to develop transgenic hybrid rice cultivar through breeding transgenic restorer lines.  相似文献   

12.
Rice leaf folder, stem borer and brown planthopper (BPH) are the most devastating rice insect pests. Developing and planting insect-resistant rice varieties is the most economical and effective measure for controlling these pests. BPH can be controlled with native BPH-resistance genes in rice, while at present rice leaf folder and stem borer can only be controlled through planting transgenic Bt rice. In this study, the breeding of a new restorer line KR022 possessing stacked BPH-resistance genes Bph14 and Bph15, Bt gene cry1C and glufosinate-resistance gene bar, is reported for the first time. A rice restorer line R022 with BPH-resistance genes Bph14 and Bph15 was used as a recurrent parent to cross with the transgenic rice T1C-19 of cry1C and bar genes during the breeding process. The restorer line KR022 was developed from the backcross populations of R022 and T1C-19 through molecular marker-assisted selection and glufosinate-resistance selection. The cry1C and bar genes were found to integrate on chromosome 11 of KR022, and the genome recovery of KR022 was up to 95.8 % of the R022 genome. The quantification of Cry1C protein expression showed that it was expressed at different levels in the leaf, stem, panicle, endosperm, and root of KR022 and its hybrid rice. The insect-resistance evaluation indicated that KR022 and its hybrid rice had good resistance to rice leaf folder and stem borer, both in laboratory settings and in the field. Furthermore, they exhibited increased resistance to BPH at both the seedling and mature stage. The field trial showed there was no significant difference in key agronomic traits between KR022 and its recurrent parent R022, and four hybrids from KR022 yield much higher than the control II-You 838. Moreover, KR022 and its hybrid rice were found to have resistance to the herbicide glufosinate. These results demonstrate that KR022 is effective as a rice restorer line for the breeding of “green super rice”, possessing multiple tolerances to rice BPH, stem borer, leaf folder and glufosinate.  相似文献   

13.
J. Zhang    X. Li    G. Jiang    Y. Xu    Y. He 《Plant Breeding》2006,125(6):600-605
‘Minghui 63’ is a restorer line widely used in hybrid rice production in China for the last two decades. This line and its derived hybrids, including ‘Shanyou 63’, are susceptible to bacterial blight (BB), caused by Xanthomonas oryzae pv. oryzae (Xoo). To improve the bacterial blight resistance of hybrid rice, two resistance genes Xa21 and Xa7, have been introgressed into ‘Minghui 63’ by marker‐assisted selection and conventional backcrossing, respectively. The single resistance gene‐introgressed lines, Minghui 63 (Xa21) and Minghui 63 (Xa7) had higher levels of resistance to bacterial blight than their derived hybrids, Shanyou 63 (Xa21) or Shanyou 63 (Xa7). Both Xa21 and Xa7 showed incomplete dominance in the heterozygous background of rice hybrids by infection with GX325 and KS‐1‐21. The improved restorer lines, with the homozygous genotypes, Xa21Xa21 or Xa7Xa7, were more resistant than their hybrids with the heterozygous genotypes Xa21xa21 or Xa7xa7. To further enhance the bacterial blight resistance of ‘Minghui 63’ and its hybrids, Xa21 and Xa7 were pyramided into the same background using molecular marker‐aided selection. The restorer lines developed with the resistance genes Xa21 and Xa7, and their derived hybrids were evaluated for resistance after inoculation with 10 isolates of pathogens from China, Japan and the Philippines, and showed a higher level of resistance to BB than the restorer lines and derived hybrids having only one of the resistance genes. The pyramided double resistance lines and their derived hybrids have the same high level of resistance to BB. These results clearly indicate that pyramiding of dominant genes is a useful approach for improving BB resistance in hybrid rice.  相似文献   

14.
利用分子标记辅助选择和田间鉴定选择相结合的方法,将抗白叶枯病基因Xa23和抗褐飞虱基因Bph18(t)导入明恢86、蜀恢527和浙恢7954等3个骨干中籼恢复系,获得带有Xa23抗性基因纯合的改良恢复系明恢86-Xa23、蜀恢527-Xa23、浙恢7954-Xa23和携有抗褐飞虱Bph18(t)基因的蜀恢527-Bph18(t)、浙恢7954-Bph18(t),并从蜀恢527/IRBB23 F1和浙恢7954/IR65482 F1复交后代中选育出的带有Xa23和Bph18(t)的双基因聚合系浙蜀-Xa23-Bph18(t)。明恢86-Xa23、蜀恢527-Xa23、浙恢7954-Xa23和浙蜀-Xa23-Bph18(t)对中国和菲律宾的17个白叶枯病菌均表现高抗,蜀恢527-Bph18(t)、浙恢7954-Bph18(t)和浙蜀-Xa23-Bph18(t)对褐飞虱的抗性也达到中抗以上水平。抗性改良恢复系及其与不育系II-32A、沪旱11A的测交种在不接种白叶枯病菌条件下的产量和结实率与原来的恢复系及相应杂交种相仿,但在接种条件下带有Xa23基因的恢复系及测交种的结实率和产量明显优于原来的恢复系及相应杂交种。研究表明,抗性基因Xa23在不同恢复系背景下的抗性表达完全,对恢复系白叶枯病改良的效果明显,而抗性基因Bph18(t)对褐飞虱的改良效果与遗传背景有关。对分子标记回交和复交改良恢复系的抗病虫性进行了讨论。  相似文献   

15.
IR 58025A is a very popular wild‐abortive cytoplasmic male sterile (WA‐CMS) line of rice and is extensively used for hybrid rice breeding. However, IR 58025A and many hybrids derived from it possess mild aroma (undesirable in some parts of India) and are highly susceptible to bacterial blight (BB) and blast diseases. To improve IR 58025A for BB and blast resistance, we have introgressed a major dominant gene conferring resistance against BB (i.e. Xa21) and blast (i.e. Pi54) into IR 58025B, the maintainer line of IR 58025A. An introgression line of Samba Mahsuri (i.e. SM2154) possessing Xa21 and Pi54 genes in homozygous condition and fine‐grain type was used as donor parent, and backcross breeding strategy was adopted for targeted introgression of the resistance genes. PCR‐based molecular markers tightly linked to Xa21 and Pi54 were used for selection of BB‐ and blast‐resistant lines, while closely linked markers were used for identification of backcross‐derived plants devoid of Rf4 and aroma. At BC2F5, four backcross‐derived lines possessing resistance against BB and blast, devoid of aroma, high yield, short plant stature, long‐slender grain type and with recurrent parent genome recovery ranging from 88.8% to 98.6% were selected and advanced for further evaluation. The improved versions of IR 58025B, viz. SB54‐11‐143‐9‐44‐5, SB54‐11‐143‐9‐44‐98, SB54‐11‐143‐9‐44‐111 and SB54‐11‐143‐9‐44‐171, behaved as perfect maintainers when test‐crossed with WA‐CMS lines. Agronomically superior lines of improved IR 58025B are being converted to CMS line through backcrossing for developing high‐yielding and biotic stress‐resistant rice hybrids.  相似文献   

16.
S. Chen    C. G. Xu    X. H. Lin  Q. Zhang 《Plant Breeding》2001,120(2):133-137
Bacterial blight (BB), caused by Xanthomonas oryzae pv. oryzae (X00), is one of the most devastating diseases of rice world‐wide; it is also a serious problem of hybrid rice production in China. In this study, a molecular marker‐assisted introgression of Xa21, a gene highly resistant to a broad spectrum of Xoo strains, from ‘IRBB21’ was performed to improve the BB resistance of‘6078′, a new restorer line with high yielding potential. The entire process took one generation of crossing followed by three generations of backcrossing and one generation of selfing. The presence of Xa21 in each generation was determined by both polymerase chain reaction (PCR) and pathogen inoculation. Recombinations between Xa21 and flanking markers were identified by PCR analysis. Background selection was conducted in BC1F1 and BC2F1 using amplified fragment length polymorphism (AFLP) markers detecting a total of 129 polymorphic bands between‘6078’ and ‘IRBB21′. The individual selected in BC3F2, or‘6078′(Xa21), carried a fragment of less than 3.8 cM from the donor line in the Xa21 region on chromosome 11, and about 98.8% of the genetic background from the recurrent parent. The results showed that‘6078′(Xa21) had the same level and spectrum of BB resistance as the donor parent ‘IRBB21′, while maintaining the agronomic performance and combining ability of the original 6078. A significant increase in BB resistance was also achieved in the hybrid using 6078(Xa21) as the restorer line.  相似文献   

17.
B. Huang  J. Y. Xu  M. S. Hou  J. Ali  T. M. Mou 《Euphytica》2012,187(3):449-459
Four bacterial blight (BB) resistance genes, Xa7, Xa21, Xa22 and Xa23, were introgressed into an elite hybrid rice restorer line Huahui 1035, by marker-assisted selection (MAS). Ten promising BB resistant lines identified by MAS approach in Huahui 1035 restorer background and their respective F1 hybrids with a cytoplasmic male sterile line i.e. Jinke 1A, three BB resistant gene donors and their recurrent parent were evaluated for BB resistance by inoculating them with eleven representative races of Xanthomonas oryzae pv. oryzae (Xoo) in China. Further, the ten marker assisted selection of BB (MAS-BB) resistant restorer lines and their F1 hybrids were also characterized for agro-morphological traits and grain yield. Results revealed that restorer lines with Xa23 introgression i.e. HBQ809 and HBQ810 were found to be resistant to all eleven Chinese representative Xoo races, showing broad spectrum resistance to BB. However, the lines possessing Xa7 or Xa7+Xa21 were resistant to ten out of eleven Xoo races. While restorer lines with Xa21 were resistant to nine out of eleven Xoo races. Interestingly, the F1 hybrids with Xa23, Xa7 or Xa7+Xa21 were resistant to two severe epidemic Xoo races of China. Restorer lines i.e. HBQ807 and HBQ808 possessing Xa22 were only resistant to six or five out of inoculated eleven Xoo races. Lesion length comparisons between restorer lines and their F1 hybrids for the above four BB resistance genes showed them to be dominant in heterozygote genotype. Three promising high yielding F1 hybrids with BB resistance were identified for immediate exploitation for hybrid rice production in China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号